

_



FAST-Anwendungssoftware

Automatisierungsbausteine

 L_ICIA_CommunicationInterface Funk-

tionsbausteine

Referenzhandbuch EN

 Automation Building Blocks

Dieses Handbuch gilt für die Automatisierungsbausteine „“ L_ICIA_COMMUNICATIONIN-
TERFACE Funktionsbausteine .

 Copyright

© 2025 Lenze SE . Alle Rechte vorbehalten.

 Impressum

Lenze SE

Hans-Lenze-Straße 1, D-31855 Aerzen, Deutschland

Telefon: +49 (0)5154 / 82-0

Fax: +49 (0)5154 / 82-2111

E-Mail: Lenze@Lenze.de

 Copyright

Alle Texte, Fotos und Grafiken in dieser Dokumentation unterliegen dem Urheberrechts-

schutz

. Kein Teil dieser Dokumentation darf ohne ausdrückliche schriftliche Genehmigung von

ohne ausdrückliche schriftliche Genehmigung von Lenze SE .

 Haftung

Alle in dieser Dokumentation enthaltenen Informationen wurden sorgfältig ausgewählt und

auf

die Übereinstimmung mit der beschriebenen Hard- und Software geprüft. Dennoch können

Abweichungen

nicht ausgeschlossen werden. Wir übernehmen keine Verantwortung oder Haftung für Schä-

den, die

entstehen können. Erforderliche Korrekturen werden in Aktualisierungen dieser Dokumen-

tation berücksichtigt.

 Marken

Microsoft, Windows und Windows NT sind eingetragene Marken oder Marken der Microsoft

Corporation in den USA und/oder anderen Ländern.

Adobe und Reader sind eingetragene Marken oder Marken von Adobe System Incorporated

in den USA und/oder anderen Ländern.

Alle weiteren in dieser Dokumentation genannten Markennamen sind Marken ihrer jeweili-

gen Eigentümer.

mailto:Lenze@Lenze.de

Inhalt

 Automation Building Blocks I

Inhalt

1 Funktionsblöcke .. 2-1
1.1 Dokumenthistorie .. 2-1
1.2 Über Automatisierungsbausteine .. 2-1
1.3 Verwendete Konventionen ... 2-2
1.4 Systemanforderungen.. 2-3

2 Funktionsblöcke .. 2-4
2.1 Funktionsblock L_ICIA_PROFIBUS_Base ... 2-6

2.1.1 Auswahl des Konfigurationsmodus (GSD/GSE-Konfiguration) 2-6
2.1.2 Parameterhandhabung ... 2-7
2.1.3 Inkompatibilitätsliste ... 2-12
2.1.4 Schnittstelle ... 2-13
2.1.5 Aufgabeninformationen ... 2-13
2.1.6 Ein- und Ausgänge ... 2-13
2.1.7 Eingaben ... 2-13
2.1.8 Ausgänge .. 2-16

2.2 Funktionsblock L_ICIA_PROFIBUS_In .. 2-19
2.2.1 Prozessdaten (PZD) .. 2-20
2.2.2 Drivecom-Zustandsmaschine .. 2-21
2.2.3 Inkompatibilitätsliste ... 2-22
2.2.4 Schnittstelle ... 2-23
2.2.5 Aufgabeninformationen ... 2-23
2.2.6 Ein- und Ausgänge ... 2-23
2.2.7 Eingänge ... 2-23
2.2.8 Ausgänge .. 2-23

2.3 Funktionsblock L_ICIA_PROFIBUS_Out... 2-27
2.3.1 Prozessdaten (PZD) .. 2-28
2.3.2 Drivecom-Zustandsmaschine .. 2-29
2.3.3 Inkompatibilitätsliste ... 2-30
2.3.4 Schnittstelle ... 2-31
2.3.5 Aufgabeninformationen ... 2-31
2.3.6 Ein- und Ausgänge ... 2-31
2.3.7 Eingaben ... 2-31
2.3.8 Ausgänge .. 2-31

3 Anwendungsbeispiel... 3-35
3.1 Inbetriebnahmesequenz (Bewegungsanwendung) ... 3-35
3.2 Inbetriebnahmeablauf (PROFIBUS) .. 3-43

4 Anhang .. 4-53
4.1 Unterstützte GSD-Konfigurationen ... 4-53
4.2 AIF-IN-Schnittstelle von 9300 .. 4-54
4.3 AIF-OUT-Schnittstelle von 9300 .. 4-55
4.4 Drivecom-Steuerwort ... 4-56
4.5 Drivecom-Statuswort ... 4-57
4.6 Drivecom DP V0-Parameterkanal (Tx) ... 4-58
4.7 Drivecom DP V0-Parameterkanal (Rx)... 4-59

1 Funktionsblöcke
1.1 Dokumenthistorie

 Automation Building Blocks 2-1

1 Funktionsblöcke

1.1 Dokumenthistorie

Version Beschreibung

0.1 24.11.2025 LSE Erste Ausgabe

0.2 04.12.2025 LSE Aktualisierung zur vereinfachten GSD-Identifizierungsmethode

1.0 03.02.2026 LSE Version V1.0 veröffentlicht

1.2 Über die Automatisierungsbausteine „

Dieses Handbuch beschreibt eine Softwarelösung für eine Teilaufgabe.

Es liegt in der Verantwortung des Benutzers, zu überprüfen, ob die von der Software vorgeschlagene

Lösung seinen Anforderungen entspricht. Falls erforderlich, muss die Lösung angepasst werden.

Physikalische Aspekte wie die Konstruktion des Antriebs sind nicht Bestandteil dieses Handbuchs.


Hinweis

Die in diesem Handbuch enthaltenen Anschlusspläne zeigen die Verkabelung, die für

den Betrieb der Software auf einem Beispiel-Demogerät erforderlich ist.

1 Funktionsblöcke
1.3 Verwendete Konventionen

 Automation Building Blocks 2-2

1.3 Verwendete Konventionen

In diesem Handbuch werden die folgenden Konventionen verwendet, um zwischen verschiedenen

Arten von Informationen zu unterscheiden:

Art der Information Hervorhebung Beispiel/Anmerkungen

Schreibweise von Zahlen

Dezimalzeichen Punkt Der Dezimalpunkt wird immer verwendet.
Beispiel: 1234,56

Text

Programmname » « »PLC Designer« ...

Variablennamen kursiv Durch Setzen von xEnable auf TRUE...

Funktionsblöcke fett

Der Funktionsbaustein L_MC1P_AxisBasicControl ...

Funktionsbibliotheken Die Funktionsbibliothek L_TT1P_TechnologyModules ...

Schaltflächen … und bestätigen Sie mit „Weiter“.

Quellcode Kurier ...

dwNumerator := 1;

dwDenominator := 1;

...

Schlüsselwörter Courier

fett
...beginnt mit FUNCTION und endet mit END FUNCTION.

Tastaturbefehle <bold> Drücken Sie die Taste <F2>, um Hilfe zur Eingabe anzufordern

Wenn für die Ausführung eines Befehls eine Tastenkombination erforderlich ist, wer-
den die Befehle durch ein „+“ getrennt:
Drücken Sie die Tasten <Umschalt>+<ESC>, um ...

 Variablennamen

Die von Lenze verwendeten Konventionen für die Variablennamen von Lenze-Systemblöcken, Funk-

tionsblöcken und Funktionen basieren auf der „ungarischen Notation“. Diese Notation ermöglicht

es, die wichtigsten Eigenschaften (z. B. den Datentyp) der entsprechenden Variable anhand ihres

Namens zu identifizieren, z. B. xAxisEnabled.

1 Funktionsblöcke
1.4 Systemanforderungen

 Automation Building Blocks 2-3

1.4 Systemanforderungen

 Software

Produkt Typ Version

PLC Designer 4.1 oder höher

 Hardware

Produkt Typ Hardware-Version Firmware-Version

i950 I95AExxxF1AV10Z02R nicht relevant 1.14 oder höher

PROFIBUS-Steckplatzmodul I9MAFP0000000S

2 Funktionsblöcke
1.4 Systemanforderungen

 Automation Building Blocks 2-4

2 Funktionsblöcke

Die Funktionsblöcke L_ICIA_PROFIBUS_Base, L_ICIA_PROFIBUS_In und L_ICIA_PROFIBUS_Out sind

für Ersatzszenarien der Servoumrichter-Serie 9300 durch die neuesten CbM/DbM-Systeme von

Lenze wie beispielsweise den i950 vorgesehen.

Abbildung1 : 9300 Servoumrichter mit PROFIBUS-Modul1

Abbildung2 : i950 Servoumrichter mit PROFIBUS-Steckplatzmodul


Hinweis:

In vielen Fällen ist möglicherweise ein Eins-zu-Eins-Austausch erforderlich, ohne das

Programm der Logik-SPS zu verändern.

1 Für Lenze-Geräte wie 9300 standen zwei AIF-Module für PROFIBUS zur Verfügung:

1 = EMF2133IB mit erweitertem Umfang an GSD/GSE-Konfigurationen (siehe Kapitel „4.1 ”)
2 = EMF2131IB mit einem grundlegenden Umfang an GSD/GSE-Konfigurationen (nur Drivecom-Antriebsprofil mit 1 … 4 Prozessdaten)

Logik-SPS

(PROFIBUS-Master)

Logik-SPS

(PROFIBUS-Master)

Servoumrichter
9300

EMF2133IB

(PROFIBUS-Slave-Modul)

i950 Servoumrichter

I9MAFP0000000S

(PROFIBUS-Slave-Modul)

2 Funktionsblöcke
1.4 Systemanforderungen

 Automation Building Blocks 2-5

Es gibt drei Funktionsblöcke, die die AIF-Feldbuskommunikation in drei Unterfunktionen aufteilen:

Abbildung3 : Übersicht über die Prozessdatenkommunikation (PDO) und die Parameterkanalkommunikation (SDO)

1. Ein Funktionsblock L_ICIA_PROFIBUS_In zum Extrahieren der Prozessdaten-Steuerungsinfor-

mationen aus den auf PROFIBUS empfangenen Rohdaten. Die Methode liefert die Prozessdaten

im Format AIF_IN des Servoumrichters 9300 (siehe Kapitel „2.2 ” und „3.2 ”).

2. Ein Funktionsblock L_ICIA_PROFIBUS_Out zum Zusammenstellen des vollständigen Feldbus-

Telegramms, das an die Logik-SPS übertragen werden soll. Die Methode liest die Prozessdaten-

Steuerungsinformationen im Format AIF_Out des Servoumrichters 9300 (siehe Kapitel2.3

und3.2).

3. Der Funktionsbaustein L_ICIA_PROFIBUS_Base, der den Kommunikationsaufbau und den DP-

V0-Parameterkanal verarbeitet (siehe Kapitel2.1).


Hinweis:

Deklarieren und rufen Sie die PROFIBUS-Funktionsbausteine immer in der folgenden

Reihenfolge auf:

• L_ICIA_PROFIBUS_Base

• L_ICIA_PROFIBUS_In

• L_ICIA_PROFIBUS_Out

L_ICIA_PROFIBUS_In:

Feldbus-Prozessdaten von der
logischen SPS

L_ICIA_PROFIBUS_Base:

- Feldbus-Initialisierung

- Anforderung der Daten des Feldbus-DP-V0-Pa-

rameterkanals von der logischen SPS (optional)

- Antwortdaten des Feldbus-DP-V0-Parameter-

kanals an die logische SPS (optional)

L_ICIA_PROFIBUS_Out:

Feldbus-Prozessdaten zur logi-
schen SPS

2 Funktionsblöcke
2.1 Funktionsbaustein L_ICIA_PROFIBUS_Base

 Automation Building Blocks 2-6

2.1 Funktionsbaustein L_ICIA_PROFIBUS_Base

Der Funktionsbaustein L_ICIA_PROFIBUS_Base muss zur korrekten Initialisierung der GSD/GSE-

Konfiguration immer in das SPS-Projekt integriert werden. Bei Konfiguration verarbeitet der Bau-

stein zusätzlich den DP V0-Parameterkanal, sofern dieser ausgewählt ist.

2.1.1 Auswahl des Konfigurationsmodus (GSD/GSE-Konfiguration)

Die Konfiguration der PROFIBUS-Kommunikation für jeden Slave wird mit Hilfe der GSD/GSE-Datei

definiert. In der Regel wird der Umfang der PROFIBUS-Tx/Rx-Daten während der Programmierung

der Logik-SPS vordefiniert. Eine aus einer Reihe möglicher Konfigurationen (siehe Kapitel „4.1 ”) be-

stimmt die Struktur des PROFIBUS-Telegramms an ein Slave-Gerät.

Während der Initialisierung der PROFIBUS-Kommunikation identifiziert der Funktionsbaustein L_I-

CIA_PROFIBUS_Base die ausgewählte GSD/GSE-Konfiguration, wie im Anhang, Kapitel „4.1 ” auf-

geführt. Zu diesem Zweck liest ein interner Service2 die empfangene GSD-Konfiguration.

 GSD/GSE-Konfiguration einstellen (BYTE ARRAY[23])

Die angeforderte GSD-Konfiguration wird vom Funktionsbaustein L_ICIA_PROFIBUS_Base konti-

nuierlich abgefragt, um nach einer neuen GSD/GSE-Konfiguration zu suchen:

Byte-Länge der neuen GSD-Konfiguration (grün markierter Teil der Daten)

GSD-Konfiguration einstellen (1 … 5 Bytes, gemäß Kapitel „4.1 “)

Die aktive GSD-Konfiguration wird im Index 0x2348:003 angezeigt.

2

2 Funktionsblöcke
2.1 Funktionsbaustein L_ICIA_PROFIBUS_Base

 Automation Building Blocks 2-7

2.1.2 Parameterhandhabung

Die Parameterkommunikation muss über die GSD/GSE-Konfiguration aus der logischen SPS ausge-

wählt werden und ist in den vollständigen Rx/Tx-PROFIBUS-Daten enthalten. Beim Empfang einer

gültigen GSD/GSE-Konfiguration (xInit = FALSE) wird ein optionaler Parameterkanal (DRIVECOM DP

V0) initialisiert, sofern dieser in der GSD/GSE-Konfiguration enthalten ist.

Prozessdatenkommunikation (PZD)

Prozessdatenkommunikation (PZD) + Parameterkanal (PAR)

Abbildung4 : kein Parameterkanal (nur PZD) Abbildung5 : mit Parameterkanal (PZD + PAR)

Bei einem konfigurierten Parameterkanal werden die niedrigsten 8 Bytes der auf L_ICIA_PROFI-
BUS_In.adwFieldBusIn empfangenen/auf L_ICIA_PROFIBUS_Out.adwFieldBusOut gesendeten

Rohdaten wie im Anhang, Kapitel „4.6 ” und „4.7 ” dargestellt interpretiert.

Abbildung6 : DP V0-Parameterkanaldaten als Teil des vollständigen PROFIBUS-Telegramms

In Migrationsszenarien kann es vorkommen, dass die überlagerte Logik-SPS Adresscodes/Subcodes

der Lenze GDC-3 -Geräte 8200/9300 (Legacy-Geräte) adressiert, die auf dem Servoumrichter i950

nicht verfügbar sind.

3 GDC = Global Drive Control, eine der erfolgreichsten Frequenzumrichter-/Servoumrichter-Serien von Lenze

2 Funktionsblöcke
2.1 Funktionsbaustein L_ICIA_PROFIBUS_Base

 Automation Building Blocks 2-8

Beispiel:

tatsächliche Motordrehzahl:
Codenummer: 51
Untercodenummer: 0
Zugriff: schreibgeschützt
Einheit: [rpm]
Größe: 4 Byte
Skalierungsfaktor: 10000 : 1 (FIX324)

tatsächliche Motordrehzahl:
Indexnummer: 0x606C
Unterindexnummer: 0
Zugriff: schreibgeschützt
Einheit: [rpm]
Größe: 4 Byte
Skalierungsfaktor: 231 : 480000 („_s”5
)

Abbildung7 : 9300 Servoumrichter (Auslaufmodell)

Abbildung8 : i950-Servoumrichter (aktuelles Produkt)

Aufgrund der Nichtübereinstimmung zwischen der Codeliste des alten GDC-Geräts und der aktuel-

len Indexliste des i950 ist eine interne Neuzuordnung der Codes/Subcodes zu den aktuellen (Benut-

zer-)Indizes erforderlich. Die Entsprechung zwischen den alten GDC-Codes und den i950-Indizes

wird über eine Zuordnungstabelle auf dem Ein-/Ausgang ascParReference definiert.

Die Erstellung der Zuordnungstabelle muss vom Benutzer auf folgende Weise vorgenommen wer-

den:

Legen Sie die Anzahl der Objekte in Ihrer Zuordnungsliste fest: Die Anzahl der Objekte

bestimmt, auf wie viele verschiedene Codes/Indizes Sie zugreifen möchten.

Beispiel: Die Logik-SPS verwendet den DP V0-Parameterkanal, um die folgenden

Codes von einem 9300-Servoumrichter zu lesen:

• C0051/000: tatsächliche Motordrehzahl, skaliert in [U/min]

• C0053/000: tatsächliche Gleichstrom-Busspannung, skaliert in [V]

• C0063/000: tatsächliche Motortemperatur, skaliert in [°C]

In diesem Beispiel erfordert die Zuordnungsliste drei Einträge.

Deklarieren Sie im SPS-Programm des i950 ein Datenarray mit einer entsprechenden

Anzahl von Einträgen vom Typ L_ICIA_sc93ParReference wie folgt:

ascParReference: ARRAY[1..3] OF L_ICIA_sc93ParReference; // Zuordnungstabelle

4 Das FIX32-Format verwendet eine Datengröße von 4 Byte und einen Skalierungsfaktor von 10000, d. h. ein Wert von 10000 entspricht einem physikalischen Wert
von 1,0000 [U/min]. Dieses Format wird in der Lenze-Terminologie auch als „_e4”-Format bezeichnet.
5 Die Skalierung „_s” wurde mit der Lenze 9400-Serie eingeführt und skaliert die Motordrehzahl als 32-Bit-Wert. Ein Rohwert von 231 entspricht einem physikalischen
Wert von 480000[U/min].

start

Schritt 1

Schritt 2

2 Funktionsblöcke
2.1 Funktionsbaustein L_ICIA_PROFIBUS_Base

 Automation Building Blocks 2-9

Erweitern Sie die Deklaration aus Schritt 2, indem Sie dem Datenarray der

Zuordnungstabelle Initialisierungswerte zuweisen:

ascParReference: ARRAY[1..4] OF L_ICIA_sc93ParReference := [// Zuord-

nungstabelle

 (wCode:=11, wSubCode:=0, wIndex:=16#5500, bySubIndex:=1, bySize:=8, diNum:=10000, diDen:=1),

 (wCode:=51, wSubCode:=0, wIndex:=16#606C, bySubIndex:=0, bySize:=4, diNum:=1171875, diDen:=524288),

 (wCode:=53, wSubCode:=0, wIndex:=16#6079, bySubIndex:=0, bySize:=4, diNum:=10, diDen:=1),

 (wCode:=63, wSubCode:=0, wIndex:=16#2D49, bySubIndex:=5, bySize:=2, diNum:=1000, diDen:=1)];


Wie findet man die Werte für das Verhältnis von Zähler und Nenner?

Der Zähler/Nenner skaliert einen Rohwert des physischen Lenze-Geräts auf

den Rohwert des älteren Lenze-Geräts.

Beispiel: Der Zähler-/Nennerwert für die tatsächliche Motordrehzahl ergibt

sich aus dem Skalierungsverhältnis des Servoumrichters i950 (0x606C:000)

und des älteren Lenze-Produkts (C0051/000):

𝑑𝑖𝑁𝑢𝑚

𝑑𝑖𝐷𝑒𝑛
=
480000[𝑟𝑝𝑚]

231
∙
10000

1
=
4800000000

2147483648
=
1171875

524288

*) Verwenden Sie Berechnungen mit dem größten gemeinsamen Nenner, um die Zahlen für Zähler/Nenner zu
verkürzen.

Weisen Sie das Datenarray der Zuordnungstabelle dem Funktionsblock

L_ICIA_PROFIBUS_Base zu:


Tipp:

Rufen Sie den Funktionsbaustein L_ICIA_PROFIBUS_Base in einer Freilauf-

Task mit niedriger Priorität auf, um die Motion-Task mit hoher Priorität zu

entlasten.

Die Funktionsbausteine L_ICIA_PROFIBUS_In und L_ICIA_PROFIBUS_Out für

Prozessdaten können jedoch weiterhin in der Bewegungsaufgabe mit hoher

Priorität aufgerufen werden.

Ende

Schritt 4

Skalierungsverhältnis des physischen Lenze-
Geräts (i950)

Die Index-Skalierungsfaktoren können Sie in
den Tooltips der Parameterliste von »EASY
Starter« nachschlagen.

Skalierungsverhältnis des Legacy-Lenze-Geräts
(9300)

Die Code-Skalierungsfaktoren finden Sie im Re-
ferenzhandbuch des 9300 in der Attributtabelle.

Schritt 3

Weisen Sie das Mapping-Tabellen-Array ascParRefe-
rence dem entsprechenden Eingang von L_ICIA_PRO-
FIBUS_Base zu.

2 Funktionsblöcke
2.1 Funktionsbaustein L_ICIA_PROFIBUS_Base

 Automation Building Blocks 2-10


Hinweis:

Im Gegensatz zur Serie 9300 erlaubt die Serie i950 Parameter mit einem Fließkomma-

Datentyp (LREAL) mit einer Datengröße von 8 Byte. Auch dieser Parametertyp der Serie

i950 kann vom Funktionsbaustein L_ICIA_PROFIBUS_Base verarbeitet werden.

Um einen Datenwert mit vier Dezimalstellen auf Ihrer Maschinen-SPS zu empfangen,

wenden Sie eine Zähler-/Nenner-Skalierung von diNum = 10000 und diDen = 1 in der

Parameterreferenzliste an.

Zur Überwachung des Parameterkanals enthält der Funktionsblock L_ICIA_PROFIBUS_Base einen

integrierten Visualisierungsbildschirm:

Abbildung9 : integrierter Visualisierungsbildschirm des Funktionsblocks L_ICIA_PROFIBUS_Base

Sie können die interne Funktion des Parameter-
kanals testen, indem Sie die Schaltfläche xInter-
nalParChannel oben links im Visualisierungsbild-
schirm aktivieren.

Nach Aktivierung der internen Parameterkanal-
steuerung können Sie die Eingabefelder im Block
„Rx-Parameterdaten“ verwenden, um den Para-
meterkanal der SPS zu simulieren und das Ant-
worttelegramm des i950 auf Plausibilität zu über-

PLC_PRG.L_ICIA_PROFIBUS_Base1

2 Funktionsblöcke
2.1 Funktionsbaustein L_ICIA_PROFIBUS_Base

 Automation Building Blocks 2-11


So finden Sie heraus, auf welche Parameter/Indizes die logische SPS zugreift

Manchmal ist das Programm der logischen SPS nicht verfügbar. In diesem Fall sind

die von den logischen SPSen aufgerufenen Parameter nicht im Voraus bekannt und

können in der Referenzliste nicht berücksichtigt werden.

Eine einfache Möglichkeit, sich einen Überblick zu verschaffen, besteht darin, die Pa-

rameteranforderungstelegramme des DP-V0-Parameterkanals zu verfolgen. Gehen

Sie dazu wie folgt vor:

• Fügen Sie im SPS-Projekt des i950-Antriebs eine neue Ablaufverfolgung in

„PLC Designer“ ein.

• Fügen Sie der Ablaufverfolgung die folgenden Variablen der Parameterka-

nal-Rx/Tx-Telegramme hinzu:

o Rx-Index (L_ICIA_PROFIBUS_Base1.RxParData.wIndex)

o Rx-Subindex (L_ICIA_PROFIBUS_Base1.RxParData.bySubIndex)

• Starten Sie die Ablaufverfolgung, während die logische SPS versucht, über

den DP V0-Parameterkanal auf die Antriebsparameter zuzugreifen.

• Aktivieren Sie einen Messcursor in der Ablaufverfolgung: Die am Rx-Index

und Rx-Subindex gemessenen Werte geben die Antriebsparameter an, auf

die die Logik-SPS zuzugreifen versucht.

Abbildung10 : Beispiel für eine Trace-Überwachung des Parameterzugriffs der SPS (SDO)

Index 24522 / Subindex 0 (= C0053/000): DC-Busspannung

Index 24512 / Subindex 0 (= C0063/000): Motortemperatur

Index 24514 / Unterindex 0 (= C0061/000): Kühlkörpertempera-
tur

Index 24490 / Unterindex 0 (= C0085/000): Motor-Streuflussin-
duktivität

2 Funktionsblöcke
2.1 Funktionsbaustein L_ICIA_PROFIBUS_Base

 Automation Building Blocks 2-12

2.1.3 Inkompatibilitätsliste

Die folgenden Funktionen sind im Funktionsbaustein L_ICIA_PROFIBUS_Base nicht implementiert:

• Es wird kein PROFIsafe-Protokoll auf i950 PROFIBUS unterstützt.

• Die Parameter-/Indexnummern zwischen 9300 und i950 stimmen nicht überein. Verwenden

Sie eine Zuordnungsliste als Referenz zwischen den Parametern eines älteren Lenze-Geräts

und einem i950-Antriebsregler, wie im vorherigen Kapitel „2.1.2 ” gezeigt.

2 Funktionsblöcke
2.1 Funktionsbaustein L_ICIA_PROFIBUS_Base

 Automation Building Blocks 2-13

2.1.4 Schnittstelle

Abbildung11 : Schnittstelle des Funktionsblocks L_ICIA_PROFIBUS_Base

2.1.5 Aufgabeninformationen

Aufruf möglich von: Freilauf-Task zeitgesteuerter Auf-
gabe (INTERVAL)

 ereignisgesteuerte
Aufgabe (EVENT)

 Unterbrechungsauf-
gabe


Hinweis:

Stellen Sie sicher, dass Sie die CAA-Speicherbibliothek in Ihr SPS-Projekt aufgenommen

haben, um eine fehlerfreie Erstellung Ihres Codes zu gewährleisten.

2.1.6 Ein- und Ausgänge

Bezeichner

Datentyp

Beschreibung

Achse

AXIS_REF

Bezug zur angeschlossenen Antriebsachse

Bei einer i950-Anwendung weisen Sie diesem Signal immer die Motion_Axis zu.

ascParReference

ARRAY [*] OF L_ICIA_sc93ParRef-
erence

Parameter-Entsprechungsliste

Diese Liste definiert die Entsprechung zwischen 9300-Codes und i950-Indizes. Da Parameterwerte in Indizes ge-
speichert sind, die bei 9300 und i950 unterschiedliche Nummern haben, ermöglicht die Liste …

• … einen 9300-Code mit einem i950-Index zu verknüpfen

• … einen Skalierungsfaktor für Zähler/Nenner zwischen dem 9300-Parameterwert und dem i950-Indexwert zu
berücksichtigen

Eine detaillierte Übersicht über die Struktur ascParReference finden Sie im Kapitel „2.1.7 ” (nächste Seite).

2.1.7 Eingaben „ “

Bezeichner

Datentyp

Beschreibung

eFieldBusType

L_ICIA_eFieldBusType

Typ des Feldbusses

Standardmäßig ist dieses Signal auf 1 („PROFIBUS_2133“) gesetzt.

Bislang wird diese Variable im Funktionsbaustein L_ICIA_PROFIBUS_Base nicht verwendet, da die PROFIBUS-
Funktionsbausteine nur die PROFIBUS-Kommunikation unterstützen.

Hinweis: In Zukunft könnte der Eingang die Unterstützung verschiedener Feldbussysteme ermöglichen, die Lenze
für die Serie 9300 anbietet, wie z. B. CAN, INTERBUS, …

2 Funktionsblöcke
2.1 Funktionsbaustein L_ICIA_PROFIBUS_Base

 Automation Building Blocks 2-14

 Benutzerdefinierte Variablenstruktur L_ICIA_sc93ParReference

Die Struktur dient zur Definition der Parameterzuordnung auf der PROFIBUS-Ebene und der i950-

Ebene. Folgende Elemente sind Teil dieser Variablenstruktur:

Bezeichner

Datentyp

Beschreibung

wCode

WORD

Codenummer des 9300-Servoantriebs

Hinweis: Die 9300-Codenummer ergibt sich aus der Subtraktion des Indexwerts (Byte 3 und 4 des Parameterka-
nals) von einem festen Wert von 24575 (0x5FFF).

bySubCode

BYTE

Subcode-Nummer des Servoantriebs 9300

wIndex

WORD

entsprechende Indexnummer des i950-Servoantriebs

bySubIndex

BYTE

Unterindexnummer des i950-Servoantriebs

bySize

BYTE

Datengröße des Indexwerts des i950

Hinweis: Diese Information ist erforderlich, da die Datengröße des Indexwerts des i950 nicht unbedingt mit der Da-
tengröße des 9300-Codewerts übereinstimmt.

diNum
diDen

BYTE

Skalierungsfaktor zwischen dem 9300-Codewert und dem Indexwert des i950 (aufgeteilt in Zähler-/Nennerwerte)

Die Werte für den Skalierungszähler/Nenner können wie auf der nächsten Seite gezeigt ermittelt werden. Weitere
Details finden Sie im Kapitel „2.1.2 “.

 Hinweis:

Ein Anwendungsbeispiel finden Sie im Anhang im Kapitel „2.1.2 ”.

2 Funktionsblöcke
2.1 Funktionsbaustein L_ICIA_PROFIBUS_Base

 Automation Building Blocks 2-15

Beispiel: Berechnung der Skalierungswerte für Zähler/Nenner:

Die tatsächliche Motordrehzahl 0x606C:000 des i950-Servoantriebs sollte über den Parameterka-

nal gelesen und im 9300-Format des Codes C0051/000 an die SPS zurückgegeben werden:

9300:

Code/Subcode: C0051/000
Beispielwert: 123[U/min]
Rohwert: 1230000
Skalierung (Zähler): 10000
Skalierung (Nenner): 1

i950:

Code/Subcode: 0x606C:000
Beispielwert: 123[U/min]
Rohwert: 550293
Skalierung (Zähler): 1073741824
Skalierung (Nenner): 240000

Illustration12 : Code-Skalierung 9300
Abbildung13 : Code-Skalierung i950

Aus dem obigen Beispiel lassen sich die Gesamtwerte für Zähler/Nenner diNum und diDen berech-

nen:

𝑑𝑖𝑁𝑢𝑚

𝑑𝑖𝐷𝑒𝑛
=

10000
1

1073741824
240000

=
2400000000

1073741824
=
1171875

524288

2 Funktionsblöcke
2.1 Funktionsbaustein L_ICIA_PROFIBUS_Base

 Automation Building Blocks 2-16

2.1.8 Ausgaben

Identifikator

Datentyp

Beschreibung

scStateMachine

L_ICIA_scStateMachine

Daten der Kommunikationszustandsmaschine

Dieser Wert muss mit den entsprechenden Eingangs-/Ausgangsvariablen der Funktionsbausteine L_ICIA_PROFI-
BUS_In und L_ICIA_PROFIBUS_Out verbunden werden, um einen konsistenten Betrieb der PROFIBUS-Funktions-
bausteine zu gewährleisten. Eine detaillierte Beschreibung finden Sie auf der nächsten Seite.

xInit

BOOL

Statussignal: Initialisierung der GSD/GSE-Konfiguration läuft

 FALSE GSD/GSE-Konfiguration ohne Fehler abgeschlossen

 TRUE GSD/GSE-Konfiguration läuft/wurde mit Fehlern abgeschlossen

xError

BOOL

Statussignal: Fehler während der GSD/GSE-Konfiguration

 FALSE kein Fehler während der GSD/GSE-Konfiguration.

 TRUE Während der GSD/GSE-Konfiguration ist ein Fehler aufgetreten:

• Initialisierungssequenz kann nicht beendet werden – Statussignal xInit bleibt auf TRUE.

• Weitere Informationen finden Sie in der wError-Ausgabe.

eErrorID

WORD

Aktuelle Fehler-ID:

 0: kein Fehler aktiv

 110: GSD/GSE-Konfiguration konnte nicht identifiziert werden – bitte wählen Sie eine GSD/GSE-Konfi-
guration aus der Liste im Kapitel aus.4.1

Hinweise:
-

2 Funktionsblöcke
2.1 Funktionsbaustein L_ICIA_PROFIBUS_Base

 Automation Building Blocks 2-17

 Benutzerdefinierte Variablenstruktur L_ICIA_scStateMachine

Diese variable Struktur umfasst allgemeine Daten der Feldbuskommunikation, abhängig vom akti-

ven Feldbustyp:

Kennung

Datentyp

Beschreibung

eFieldBusType

L_ICIA_eFieldBusType

Aktuelle Fehler-ID:

 PROFIBUS_2133: Die Funktionsbausteine L_ICIA_PROFIBUS verhalten sich wie das PROFIBUS-Modul
EMF2133IB für 9300.

Hinweise: Bislang werden nur „PROFIBUS_2131” und „PROFIBUS_2133” unterstützt.

byGsdConfig

BYTE

Nummer der aktiven GSD/GSE-Konfiguration, die während der Kommunikationsinitialisierung gefunden wurde

Eine vollständige Übersicht über alle möglichen GSD/GSE-Konfigurationen finden Sie im Kapitel „4.1 ”.

byGsdGroup

BYTE

Gruppe der aktiven GSD/GSE-Konfiguration der aktiven GSD/GSE-Konfiguration, die während der Kommunikati-
onsinitialisierung eingerichtet wurde

Eine vollständige Übersicht über alle möglichen GSD/GSE-Konfigurationen finden Sie im Kapitel „4.1 “.

byGsdGroup

BYTE

Aktuelle Fehler-ID:

 1: kein Parameterkanal / Prozessdaten (Drivecom-Steuerung)

 2: Konsistente Drivecom-Parameterkanal-/Prozessdaten (Drivecom-Steuerung)

 3: Konsistenter Drivecom-Parameterkanal / konsistente Prozessdaten (Drivecom-Steuerung)

 4: Drivecom-Parameterkanal / Prozessdaten (Drivecom-Steuerung)

 5: Drivecom-Parameterkanal / konsistente Prozessdaten (Drivecom-Steuerung)

 6: kein Parameterkanal / konsistente Prozessdaten (Drivecom-Steuerung)

 7: kein Parameterkanal / Prozessdaten (Lenze-Gerätesteuerung)

 8: konsistenter Drivecom-Parameterkanal / Prozessdaten (Lenze-Gerätesteuerung)

 9: konsistenter Drivecom-Parameterkanal / konsistente Prozessdaten (Lenze-Gerätesteuerung)

 10: Drivecom-Parameterkanal / Prozessdaten (Lenze-Gerätesteuerung)

 11: Drivecom-Parameterkanal / konsistente Prozessdaten (Lenze-Gerätesteuerung)

 12: kein Parameterkanal / konsistente Prozessdaten (Lenze-Gerätesteuerung)

Hinweise: Eine vollständige Übersicht über alle möglichen GSD/GSE-Konfigurationen finden Sie im Kapitel „4.1 “.

byPzdSize

BYTE

Größe der Prozessdaten (PZD), skaliert in [Byte]

wDrivecomCtrl

BYTE

Drivecom-Steuerwort

Diese Variable wird nur in einer Konfiguration mit Drivecom-Prozessdatenkommunikation (byGsdGroup = 1 … 6)
verwendet. Die Bedeutung der einzelnen Steuerbits von wDrivecomCtrl wird im Anhang im Kapitel „4.4 “ erläutert.

wDrivecomStat

BYTE

Drivecom-Statuswort

Diese Variable wird nur in einer Konfiguration mit Drivecom-Prozessdatenkommunikation (byGsdGroup = 1 … 6)
verwendet. Die Bedeutung der einzelnen Steuerbits von wDrivecomStat wird im Anhang im Kapitel „4.5 “ erläutert.

eDrivecomState

L_ICIA_eDrivecomState

Aktueller Zustand der Drivecom-Zustandsmaschine:

 0: NOT_READY_TO_SWITCH_ON

 32: EINSCHALTSPERRE

 1: BEREIT_ZUM_EINSCHALTEN

 3: EINGESCHALTET

 23: SCHNELLSTOP_AKTIV

 7: BETRIEB_AKTIVIERT

 15: FEHLER_REAKTION_AKTIV

 8: FEHLER

Hinweise: Diese Variable wird nur in einer Konfiguration mit Drivecom-Prozessdatenkommunikation (byGsdGroup
= 1 … 6) verwendet. Die Drivecom-Zustandsmaschine ist in den Kapiteln2.2.2 und2.3.2 dargestellt.

xInit

BOOL

Statussignal: Initialisierung der GSD/GSE-Konfiguration läuft

 FALSE GSD/GSE-Konfiguration ohne Fehler abgeschlossen

 TRUE GSD/GSE-Konfiguration läuft/wurde mit Fehlern abgeschlossen

Hinweis: Dieses Signal spiegelt das Ausgangssignal L_ICIA_PROFIBUS_Base.xInit wider.

xError

BOOL

Statussignal: Fehler während der GSD/GSE-Konfiguration

 FALSE kein Fehler während der GSD/GSE-Konfiguration.

 TRUE Während der GSD/GSE-Konfiguration ist ein Fehler aufgetreten:

• Die Initialisierungssequenz kann nicht beendet werden – das Statussignal xInit bleibt auf
TRUE.

• Weitere Informationen finden Sie unter dem Ausgang L_ICIA_PROFIBUS_Base.wError.

Hinweis: Dieses Signal spiegelt das Ausgangssignal L_ICIA_PROFIBUS_Base.xError wider.

2 Funktionsblöcke
2.1 Funktionsbaustein L_ICIA_PROFIBUS_Base

 Automation Building Blocks 2-18

Kennung

Datentyp

Beschreibung

adwRawDataIn

ARRAY [0..15] OF DWORD

Rohdaten an der Feldbus-Schnittstelle

Das variable Datenarray ist eine Kopie der Feldbus-Roh-Eingangsdaten, die am Eingang adwFieldBusIn des Funk-
tionsbausteins L_ICIA_PROFIBUS_In empfangen wurden.

adwRawDataOut

ARRAY [0..15] OF DWORD

Rohausgangsdaten auf der Feldbus-Schnittstelle

Das variable Datenarray ist eine Kopie der Feldbus-Rohausgangsdaten, die am Ausgang adwFieldBusOut des
Funktionsblocks L_ICIA_PROFIBUS_Out generiert werden.

AxisState

MC_ReadAxisInfo

Diese Struktur enthält wichtige Statussignale des i950-Antriebs:

 LimitSwitchPos: Positiver Endschalter hat ausgelöst (d. h. auf L_TF2P_SpeedControl-
Base1.scCtrlBasicMotion.xHWLimitPos)

 LimitSwitchNeg: Negativer Endschalter hat ausgelöst (d. h. auf L_TF2P_SpeedControl-
Base1.scCtrlBasicMotion.xHWLimitNeg)

 Simulation: Achse wird im virtuellen Modus betrieben

Bei einer i950-Achse ist dieses Signal immer FALSE.

 CommunicationReady: Die Motion-Bus-Kommunikationsschnittstelle zwischen Achstreiber (AXIS_REF)
und Motorsteuerung ist in Betrieb

Bei einer i950-Achse ist dieses Signal immer TRUE.

 ReadyForPowerOn: Der Antrieb ist bereit für die Einschaltung (d. h. über das Steuersignal
L_TF2P_SpeedControlBase1.xEnableOperation).

Dieser Signalzustand umfasst die folgenden Zustände:

• Antrieb ist fehlerfrei

• kein STO-Befehl ist aktiv (Safe Torque Off)

• Die Gleichstrom-Busspannung ist eingeschaltet

 PowerOn: i950-Antrieb ist eingeschaltet (gleicher Status wie L_TF2P_SpeedControl-
Base1.xOperationEnabled)

 IsHomed: Die Nullposition des Messsystems des i950-Antriebs ist bekannt

 AxisError: Fehler im Achstreiber (AXIS_REF)

 AxisWarning: Warnung im Achstreiber (AXIS_REF)

 Antriebsfehler: Fehler in der Motorsteuerung des Wechselrichters

 DriveWarning: Warnung in der Motorsteuerung des Umrichters

 SWLimitSwitchPos: Positive Software-Begrenzung wurde ausgelöst

 SWLimitSwitchNeg: Negative Software-Begrenzung ausgelöst

 ReadyForMotion: Antrieb ist bereit für die Entgegennahme von Bewegungsbefehlen

Dieser Signalzustand umfasst die folgenden Zustände:

• Antrieb ist freigegeben

• Antrieb ist fehlerfrei

• eine Motorbremse (falls vorhanden) hat sich geöffnet

 STOActive: STO-Befehl ist aktiv (Safe Torque Off)

 VoltageEnabled: Die Gleichstrom-Busspannung ist eingeschaltet

 MotorMagnetised: Magnetisierung des Motors abgeschlossen

 QSPApplActive: Schnellstoppbefehl des Achsantriebs (AXIS_REF) ist aktiv

 QSPDriveActive: Quickstop-Befehl der Motorsteuerung des Umrichters ist aktiv

Weitere Informationen zu MC_ReadAxisInfo finden Sie in der Online-Hilfe zum »PLC Designer«.


Achtung:

Die oben aufgeführten Variablen sind schreibgeschützt! Ändern Sie niemals eine

dieser Variablen, da dies unvorhersehbare Folgen für die Feldbuskommunikation

und das Verhalten des Antriebs haben kann!

2 Funktionsblöcke
2.2 Funktionsbaustein L_ICIA_PROFIBUS_In

 Automation Building Blocks 2-19

2.2 Funktionsbaustein L_ICIA_PROFIBUS_In

Der Funktionsbaustein L_ICIA_PROFIBUS_In liest 16 Doppelwörter der Feldbus-Eingangsdaten in

das Eingangsdatenarray adwFieldBusIn. Sobald eine gültige GSD/GSE-Konfiguration erkannt wurde

(scStateMachine.xInit = FALSE), werden die Rohdaten des Eingangssignals adwFieldBusIn des Funk-

tionsbausteins L_ICIA_PROFIBUS_In auf …

• Prozessdaten PZD

• Parameterdaten PAR (optional, falls ausgewählt, siehe Kapitel „2.1.2 “)

Prozessdatenkommunikation (PZD)

Prozessdatenkommunikation (PZD) + Parameterkanal (PAR)

Abbildung „14 “: kein Parameterkanal (nur PZD) Abbildung „15 “: mit Parameterkanal (PZD + PAR)


Hinweis:

Das PROFIBUS-Steckmodul i950 verarbeitet bis zu 16 Doppelwörter an Eingangsda-

ten. Der Funktionsbaustein L_ICIA_PROFIBUS_In verarbeitet nur die Doppelwörter 0

bis 7. Die Doppelwörter 8 bis 15 werden bei der Auswertung der Feldbus-Rohdaten

nicht berücksichtigt.

Weisen Sie dem Eingangssignal L_ICIA_PROFIBUS_In.adwFieldBusIn jedoch immer

ein Datenarray ARRAY [0..15] OF DWORD zu.

2 Funktionsblöcke
2.2 Funktionsbaustein L_ICIA_PROFIBUS_In

 Automation Building Blocks 2-20

2.2.1 Prozessdaten (PZD)

Der Prozessdatenaustausch ist in jedem Fall Teil der Feldbuskommunikation. Der Funktionsbau-

stein L_ICIA_PROFIBUS_In verarbeitet die Prozesseingangsdaten des Feldbussystems und wandelt

die auf adwFieldBusIn empfangenen Rohdaten in die aus der Geräteserie 8200/9300 bekannten

Datenstrukturen um.

Abbildung16 : Prinzip der Verarbeitung von Prozesseingangsdaten / detaillierte Signalliste der scControlWords-Schnittstellen des Funktionsblocks L_ICIA_PROFI-

BUS_In

L_ICIA_PROFIBUS_In:

Umwandlung der rohen Prozess-Eingangsdaten adwFieldBusIn in die Datensätze scControlWords1, scControlWords2 und scCon-
trolWords 3
(16 DWORD)

Roh-Eingangsdaten vom
Feldbusmodul
(16 DWORD)

(Motion) Technologieanwendung
unter Verwendung der Legacy-
AIF-Schnittstelle

2 Funktionsblöcke
2.2 Funktionsbaustein L_ICIA_PROFIBUS_In

 Automation Building Blocks 2-21

2.2.2 Drivecom-Zustandsmaschine

Je nach GSD/GSE-Konfiguration wird das erste Prozess-Eingangsdatenwort scControlWords1.wCtrl
über die Drivecom-Zustandsmaschine verarbeitet:

Abbildung17 : Flussdiagramm der Drivecom-Zustandsmaschine (wirkt sich auf das Steuer-/Statuswort 1 aus)

Der aktuelle Zustand der Drivecom-Zustandsmaschine wird in der Variablen scStateMachine.eDri-
vecomState angezeigt.

2 Funktionsblöcke
2.2 Funktionsbaustein L_ICIA_PROFIBUS_In

 Automation Building Blocks 2-22

2.2.3 Inkompatibilitätsliste

Die folgenden Funktionen sind im Funktionsbaustein L_ICIA_PROFIBUS_In nicht implementiert:

• Die Ausgabe scControlWords1.wCtrl.xTripSet findet keine entsprechende Funktion in den

FAST-Technologiemodulen. Der Anwender kann dieses Signal auswerten, um einen benutzer-

definierten Fehler zu setzen.

• Ein Unterspannungszustand während des Antriebsbetriebs führt zu einem Fehler, da die

PLCopen-Zustandsmaschine verletzt wird. Bei 9300 führte ein Unterspannungszustand wäh-

rend des Antriebsbetriebs nur zu einer Meldung.

• Der STO-Befehl von i950 muss freigegeben werden, um das gleiche Verhalten der Drivecom-

Zustandsmaschine wie bei 9300 zu erreichen. Wenn der STO-Befehl von i950 aktiv ist, bleibt

die Drivecom-Zustandsmaschine im Zustand „Switch-On Inhibited” (Einschalten gesperrt).

Bei Verwendung von GSD-Konfigurationen mit Lenze-Gerätesteuerung (AR) hält der STO-Be-

fehl das xDisable-Steuersignal aktiv, sodass der Antrieb nicht aktiviert werden kann.

• Der Funktionsbaustein L_ICIA_PROFIBUS_In unterstützt die folgenden Gerätesteuerungsme-

thoden:

o Drivecom

o Lenze-Gerätesteuerung (AR)

Die PROFIdrive-Steuerungsmethode wird nicht unterstützt.

2 Funktionsblöcke
2.2 Funktionsbaustein L_ICIA_PROFIBUS_In

 Automation Building Blocks 2-23

2.2.4 Schnittstelle

Abbildung18 : Schnittstelle des Funktionsbausteins L_ICIA_PROFIBUS_In

2.2.5 Aufgabeninformation

Aufruf möglich von: Freilauf-Task zeitgesteuerter Auf-
gabe (INTERVAL)

 ereignisgesteuerte
Aufgabe (EVENT)

 Unterbrechungsauf-
gabe


Hinweis:

Stellen Sie sicher, dass Sie die CAA-Speicherbibliothek in Ihr SPS-Projekt aufgenommen

haben, um eine fehlerfreie Erstellung Ihres Codes zu gewährleisten.

2.2.6 Ein- und Ausgänge

Bezeichner

Datentyp

Beschreibung

scStateMachine

L_ICIA_scStateMachine

Daten der Kommunikationszustandsmaschine

Verbinden Sie den entsprechenden Ausgang scStateMachine des Funktionsbausteins L_ICIA_PROFIBUS_Base,
um einen konsistenten Betrieb der PROFIBUS-Funktionsbausteine sicherzustellen. Eine detaillierte Beschreibung
dieser variablen Struktur finden Sie im Kapitel „2.1.8 “.

2.2.7 Eingänge

Kennung

Datentyp

Beschreibung

adwFieldBusIn

ARRAY [0..15] OF DWORD

Eingabe der Feldbus-Rohdaten

Diese Werte können direkt den Eingangsdaten der Feldbus-IO-Schnittstelle zugeordnet werden.

2.2.8 Ausgänge

Kennung

Datentyp

Beschreibung

scControlWords1

L_ICIA_scControlWords1

AIF-Feldbus-Eingangsdaten (erste Gruppe)

Die Werte bestehen aus einer Datenstruktur mit vier Wörtern, die der Struktur des AIF-IN-Systemblocks des Servo-
umrichters 9300 entspricht. Eine detaillierte Beschreibung finden Sie auf der nächsten Seite.

scControlWords2

L_ICIA_scControlWords

AIF-Feldbus-Eingangsdaten (zweite Gruppe)

Die Werte bestehen aus einer Datenstruktur mit vier Wörtern, die der Struktur des AIF-IN-Systemblocks des Servo-
umrichters 9300 ServoPLC folgt. Eine detaillierte Beschreibung finden Sie auf den nächsten Seiten.

scControlWords3

L_ICIA_scControlWords

AIF-Feldbus-Eingangsdaten (dritte Gruppe)

Die Werte umfassen eine Datenstruktur mit vier Wörtern, die der Struktur des AIF-IN-Systemblocks des 9300 Ser-
voPLC-Wechselrichters folgt. Eine detaillierte Beschreibung finden Sie auf den nächsten Seiten.

2 Funktionsblöcke
2.2 Funktionsbaustein L_ICIA_PROFIBUS_In

 Automation Building Blocks 2-24

 Benutzerdefinierte Variablenstruktur L_ICIA_scControlWords1

Diese Struktur implementiert die aus der Servoumrichter-Serie 9300 bekannte AIF-IN-Schnittstelle.

Sie umfasst die folgenden Elemente:

Bezeichner

Datentyp

Beschreibung

xBit00

BIT

Bit 0 des Steuerworts

 FALSE: Steuerfunktion deaktiviert

 TRUE: Steuerfunktion aktiviert

Hinweis: Dieses Bit hat keine feste Bedeutung, kann aber vom Benutzer frei belegt werden.

xBit01

BIT

Bit 1 des Steuerworts

 FALSE: Steuerfunktion deaktiviert

 WAHR: Steuerfunktion aktiviert

Hinweis: Dieses Bit hat keine feste Bedeutung, kann aber vom Benutzer frei belegt werden.

xBit02

BIT

Bit 2 des Steuerworts

 FALSE: Steuerfunktion deaktiviert

 WAHR: Steuerfunktion aktiviert

Hinweis: Dieses Bit hat keine feste Bedeutung, kann aber vom Benutzer frei belegt werden.

xQsp

BIT

Bit 3 des Steuerworts: Schnellstopp aktivieren

 FALSE: Schnellstopp nicht aktiviert

 TRUE: Schnellhalt aktiviert

Hinweis: Dieses Bit muss mit einem Schnellstoppbefehl in der Anwendung verbunden sein (d. h. durch die Funkti-
onsbausteine MC_Stop, L_MC1P_SetQuickStopAppl, … implementiert werden).

xBit04

BIT

Bit 4 des Steuerworts

 FALSE: Steuerfunktion deaktiviert

 TRUE: Steuerfunktion aktiviert

Hinweis: Dieses Bit hat keine feste Bedeutung, kann aber vom Benutzer frei belegt werden.

xBit05

BIT

Bit 5 des Steuerworts

 FALSE: Steuerfunktion deaktiviert

 TRUE: Steuerfunktion aktiviert

Hinweis: Dieses Bit hat keine feste Bedeutung, kann aber vom Benutzer frei belegt werden.

xBit06

BIT

Bit 6 des Steuerworts

 FALSE: Steuerfunktion deaktiviert

 TRUE: Steuerfunktion aktiviert

Hinweis: Dieses Bit hat keine feste Bedeutung, kann aber vom Benutzer frei belegt werden.

xBit07

BIT

Bit 7 des Steuerworts

 FALSE: Steuerfunktion deaktiviert

 TRUE: Steuerfunktion aktiviert

Hinweis: Dieses Bit hat keine feste Bedeutung, kann aber vom Benutzer frei belegt werden.

xDisable

BIT

Bit 08 des Steuerworts: Antrieb deaktivieren

 FALSE: Antrieb nicht deaktivieren (xCInh=FALSE führt zum Einschalten des Laufwerks)

 TRUE: Antrieb deaktivieren (xCInh=FALSE hat keine Auswirkung)

Hinweise:
- Verwenden Sie dieses Bit, um den Betrieb des Antriebs zu sperren. Bei xDisable=TRUE muss der Antrieb ausge-

schaltet bleiben, auch wenn xCInh auf FALSE steht.
- Wenn xDisable auf TRUE gesetzt ist, bleibt der Status „Antrieb bereit” auf FALSE.

xCInh

BIT

Bit 09 des Steuerworts: Sperren des Antriebscontrollers

 FALSE: Antriebssteuerung aktiviert

 TRUE: Antriebssteuerung gesperrt

Hinweise:
- Das Bit wird zum Einschalten des Antriebs verwendet (d. h. mithilfe des Funktionsblocks MC_Power).
- Wenn xDisable auf TRUE gesetzt ist, hat das Steuerbit xCInh keine Wirkung.

2 Funktionsblöcke
2.2 Funktionsbaustein L_ICIA_PROFIBUS_In

 Automation Building Blocks 2-25

Bezeichner

Datentyp

Beschreibung

xTripSet

BIT

Bit 10 des Steuerworts: Benutzerfehler am Antrieb setzen

 FALSCH: Benutzerfehler wird ausgelöst

 WAHR: Es wird kein Benutzerfehler ausgelöst

Hinweis: Da es im Betriebssystem des i950 keine entsprechende Funktion gibt, hat das xTripSet-Bit keine prakti-
sche Bedeutung.

xTripReset

BIT

Bit 11 des Steuerworts: Befehl zum Zurücksetzen des Fehlers

 FALSE=>TRUE Befehl zum Zurücksetzen des Fehlers

Hinweise:
- Das Bit wird verwendet, um einen Fehler am Antrieb zurückzusetzen (d. h. mithilfe des Funktionsblocks MC_Re-

set).
- Das Zurücksetzen eines Fehlers funktioniert nur, wenn die Ursache des Fehlers nicht mehr vorliegt.

xBit12

BIT

Bit 12 des Steuerworts

 FALSE: Steuerfunktion deaktiviert

 TRUE: Steuerfunktion aktiviert

Hinweis: Dieses Bit hat keine feste Bedeutung, kann aber vom Benutzer frei belegt werden.

xBit13

BIT

Bit 13 des Steuerworts

 FALSE: Steuerfunktion deaktiviert

 TRUE: Steuerfunktion aktiviert

Hinweis: Dieses Bit hat keine feste Bedeutung, kann aber vom Benutzer frei belegt werden.

xBit14

BIT

Bit 14 des Steuerworts

 FALSE: Steuerfunktion deaktiviert

 TRUE: Steuerfunktion aktiviert

Hinweis: Dieses Bit hat keine feste Bedeutung, kann aber vom Benutzer frei belegt werden.

xBit15

BIT

Bit 15 des Steuerworts

 FALSE: Steuerfunktion deaktiviert

 TRUE: Steuerfunktion aktiviert

Hinweis: Dieses Bit hat keine feste Bedeutung, kann aber vom Benutzer frei belegt werden.

wCtrl

WORD

Steuerwort

Dieses Steuerwort spiegelt die oben aufgeführten 16 Steuerbits im WORD-Format wider.

wIn1

WORD

Eingabe einer 16-Bit-Ganzzahl

In der Regel wird das zweite WORD in scControlWords1 als Drehzahlsollwert des Antriebs interpretiert, skaliert in
[%] (0 … 16384 = 0,0 … 100,0[%]). Die Definition der Bedeutung in der Anwendung obliegt jedoch dem Anwender.

wIn2

WORD

Eingabe eines freien 16-Bit-WORD-Werts

wIn3

WORD

Eingabe eines freien 16-Bit-WORD-Werts


Tipp:

Möchten Sie scControlWords1.wIn3 zu einem 32-Bit-Wert zusammenführen? Die

Funktion PackWordsToDword6 bietet diese Funktion. Verwenden Sie sie wie folgt:

Abbildung19 : Umwandlung von zwei 16-Bit-WORD-Werten in einen 32-Bit-DWORD-Wert

6 enthalten die CAA-Speicherbibliothek

2 Funktionsblöcke
2.2 Funktionsbaustein L_ICIA_PROFIBUS_In

 Automation Building Blocks 2-26

 Benutzerdefinierte Variablenstruktur L_ICIA_scControlWords

Diese Struktur implementiert die erweiterte AIF-IN-Schnittstelle, die aus der Wechselrichterreihe

9300 ServoPLC bekannt ist. Sie wird auf die Objekte scControlWords2 und scControlWords3 ange-

wendet und umfasst die folgenden Elemente:

Bezeichner

Datentyp

Beschreibung

wIn0

WORD

Eingabe eines freien 16-Bit-WORD-Werts

wIn1

WORD

Eingabe eines freien 16-Bit-WORD-Werts

wIn2

WORD

Eingabe eines freien 16-Bit-WORD-Werts

wIn3

WORD

Eingabe eines freien 16-Bit-WORD-Wertes

2 Funktionsblöcke
2.3 Funktionsbaustein L_ICIA_PROFIBUS_Out

 Automation Building Blocks 2-27

2.3 Funktionsbaustein L_ICIA_PROFIBUS_Out

Der Funktionsbaustein L_ICIA_PROFIBUS_Out liest die aus der Geräteserie 8200/9300 bekannte

AIF-Datenstruktur und überträgt deren Informationen auf die 16 Feldbus-Ausgangs-Doppelwörter

eines Datenarrays. Sobald eine gültige GSD/GSE-Konfiguration erkannt wurde (scStateMa-
chine.xInit = FALSE), werden die folgenden Daten auf das Ausgangs-Datenarray adwFieldBusOut

abgebildet:

• Prozessdaten PZD aus den AIF-OUT-Objekten

• Parameterdaten PAR (optional, falls ausgewählt, siehe Kapitel „2.1.2 ”)

Prozessdatenkommunikation (PZD)

Prozessdatenkommunikation (PZD) + Parameterkanal (PAR)

Abbildung „20 “: kein Parameterkanal (nur PZD) Abbildung „21 “: mit Parameterkanal (PZD + PAR)


Hinweis:

Das PROFIBUS-Steckmodul i950 verarbeitet bis zu 16 Doppelwörter an Ausgangsda-

ten. Der Ausgangsdatenbereich des Funktionsbausteins L_ICIA_PROFIBUS_Out (Aus-

gang adwFieldBusOut) umfasst den gesamten Bereich von 16 Doppelwörtern, auch

wenn nur die Doppelwörter 0 bis 7 verwendet werden.

2 Funktionsblöcke
2.3 Funktionsbaustein L_ICIA_PROFIBUS_Out

 Automation Building Blocks 2-28

2.3.1 Prozessdaten (PZD)

In jedem Fall ist der Prozessdatenaustausch Teil der Feldbuskommunikation. Der Funktionsbaustein

L_ICIA_PROFIBUS_Out generiert die Rohdaten auf adwFieldBusOut aus den aus der Serie

8200/9300 bekannten AIF-OUT-Objekten.

Abbildung22 : Prinzip der Prozessausgangsdatenverarbeitung / detaillierte Signalliste der scStatusWords-Schnittstellen des Funktionsbausteins L_ICIA_PROFI-
BUS_In


Tipp:

Verwenden Sie den benutzerdefinierten Funktionsbaustein L_STAT, um die Statussig-

nale auf L_ICIA_PROFIBUS_Out.xStat1 … L_ICIA_PROFIBUS_Out.xStat8 zu generieren.

(Motion-)Technologieanwendung
unter Verwendung der alten AIF-
Schnittstelle

L_ICIA_PROFIBUS_Out:

Umwandlung des Ausgabedatensatzes scStatusWords1, scStatusWords2 und scStatusWords3 in Rohausgabeprozessdaten adwFieldBusOut
(16 DWORD)

Rohdatenausgabe an das PROFI-
BUS-Modul ???
(16 DWORD)

2 Funktionsblöcke
2.3 Funktionsbaustein L_ICIA_PROFIBUS_Out

 Automation Building Blocks 2-29

2.3.2 Drivecom-Zustandsmaschine

Abhängig von der GSD/GSE-Konfiguration wird das erste Prozessausgangsdatenwort scStatus-
Words1.wStat über die Drivecom-Zustandsmaschine verarbeitet:

Abbildung23 : Flussdiagramm der Drivecom-Zustandsmaschine (wirkt sich auf Steuer-/Statuswort 1 aus)

Der aktuelle Zustand der Drivecom-Zustandsmaschine wird in der Variablen scStateMachine.eDri-
vecomState angezeigt.

2 Funktionsblöcke
2.3 Funktionsbaustein L_ICIA_PROFIBUS_Out

 Automation Building Blocks 2-30

2.3.3 Inkompatibilitätsliste

Die folgenden Funktionen sind im Funktionsbaustein L_ICIA_PROFIBUS_Out nicht implementiert:

• Die Statusbits DCTRL-STAT*1, … DCTRL-STAT*8 umfassen nicht den gesamten Umfang der

9300 Zustände. Die rot markierten Zustände werden nicht unterstützt:

Wert D
C

T
R

L
-S

T
A

T
*8

D
C

T
R

L
-S

T
A

T
*4

D
C

T
R

L
-S

T
A

T
*2

D
C

T
R

L
-S

T
A

T
*1

Anmerkung

0 0 0 0 0 Initialisierung nach dem Anschließen der Versorgungsspannung

1 0 0 0 1 Sperrmodus, Neustartschutz ist aktiv C0142

3 0 0 1 1 Antrieb befindet sich im Controller-Sperrmodus

4 0 1 0 0 Flug-Neustart aktiv

5 0 1 0 1 DC-Bremse aktiv

6 0 1 1 0 Controller aktiviert

7 0 1 1 1 Die Freigabe einer Überwachungsfunktion führte zu einer „Meldung“.

8 1 0 0 0 Die Freigabe einer Überwachungsfunktion führte zu einer „Auslösung“.

10 1 0 1 0 Die Freigabe einer Überwachungsfunktion führte zu einem „FAIL-QSP”.

15 1 1 1 1 Kommunikationsfehler (PROFIBUS-Kommunikationsmodul -Frequen-
zumrichter)

• Gemäß PLCopen führt eine Unterspannung am DC-Bus zu einem Fehler statt zu einer Mel-

dung. Vor dem Neustart des Antriebs muss der Benutzer den Antriebsfehler zurücksetzen.

• Der Funktionsbaustein L_ICIA_PROFIBUS_In unterstützt die folgenden Gerätesteuerungsme-

thoden:

o Drivecom

o Lenze-Gerätesteuerung (AR)

Die Steuerungsmethode PROFIdrve wird nicht unterstützt.

2 Funktionsblöcke
2.3 Funktionsbaustein L_ICIA_PROFIBUS_Out

 Automation Building Blocks 2-31

2.3.4 Schnittstelle

Abbildung24 : Schnittstelle des Funktionsblocks L_ICIA_PROFIBUS_Out

2.3.5 Aufgabeninformation

Aufruf möglich aus: Freilauf-Task zeitgesteuerter Auf-
gabe (INTERVAL)

 ereignisgesteuerte
Aufgabe (EVENT)

 Unterbrechungsauf-
gabe


Hinweis:

Stellen Sie sicher, dass Sie die CAA-Speicherbibliothek in Ihr SPS-Projekt aufgenommen

haben, um eine fehlerfreie Erstellung Ihres Codes zu gewährleisten.

2.3.6 Ein- und Ausgänge

Bezeichner

Datentyp

Beschreibung

scStateMachine

L_ICIA_scStateMachine

Daten der Kommunikationszustandsmaschine

Verbinden Sie den entsprechenden Ausgang scStateMachine des Funktionsblocks L_ICIA_PROFIBUS_Base, um
einen konsistenten Betrieb der AIF-Funktionsblöcke sicherzustellen. Eine detaillierte Beschreibung dieser variablen
Struktur finden Sie im Kapitel „2.1.8 “.

2.3.7 Eingänge

Bezeichner

Datentyp

Beschreibung

scStatusWords1

L_ICIA_scStatusWords1

AIF-Feldbus-Ausgangsdaten (erste Gruppe)

Die Werte bestehen aus einer Datenstruktur mit vier Wörtern, die der Struktur des AIF-OUT-Systemblocks des Ser-
voumrichters 9300 entspricht. Eine detaillierte Beschreibung finden Sie auf der nächsten Seite.

scStatusWords2

L_ICIA_scStatusWords

AIF-Feldbus-Ausgangsdaten (zweite Gruppe)

Die Werte bestehen aus einer Datenstruktur mit vier Wörtern, die der Struktur des AIF-OUT-Systemblocks des 9300
ServoPLC-Umrichters folgt. Eine detaillierte Beschreibung finden Sie auf den nächsten Seiten.

scStatusWords3

L_ICIA_scStatusWords

AIF-Feldbus-Ausgangsdaten (dritte Gruppe)

Die Werte bestehen aus einer Datenstruktur mit vier Wörtern, die der Struktur des AIF-OUT-Systemblocks des 9300
ServoPLC-Wechselrichters folgt. Eine detaillierte Beschreibung finden Sie auf den nächsten Seiten.

2.3.8 Ausgänge

Kennung

Datentyp

Beschreibung

adwFieldBusOut

ARRAY [0..15] OF DWORD

Ausgabe der Feldbus-Rohdaten

Diese Werte können direkt den Ausgabedaten der Feldbus-IO-Schnittstelle zugeordnet werden.

2 Funktionsblöcke
2.3 Funktionsbaustein L_ICIA_PROFIBUS_Out

 Automation Building Blocks 2-32

 Benutzerdefinierte Variablenstruktur scStatusWords1

Diese Struktur implementiert die aus der Servoumrichter-Serie 9300 bekannte Schnittstelle AIF-

OUT1. Sie umfasst die folgenden Elemente:

Bezeichner

Datentyp

Beschreibung

xBit00

BIT

Bit 0 des AIF-OUT-Statusworts

 FALSE: Status inaktiv

 TRUE: Status aktiv

Hinweis: Dieses Bit hat keine feste Bedeutung, kann aber vom Benutzer frei belegt werden.

xImp

BIT

Bit 1 des AIF-OUT-Statusworts: Impulshemmung aktiv

 FALSE: Die Leistungsstufe des Antriebs ist aktiv und versorgt den Motor mit Spannung/Strom.

 TRUE: Die Leistungsstufe des Antriebs ist inaktiv und es wird kein Strom an den Motor angelegt.

Hinweis: Dieses Bit muss mit dem entsprechenden Signal in der Anwendung verbunden sein (z. B. über das Status-
signal xImpActive des Funktionsblocks L_TB2P_AxisInterface).

xBit02

BIT

Bit 2 des AIF-OUT-Statusworts

 FALSE: Status inaktiv

 TRUE: Status aktiv

Hinweis: Dieses Bit hat keine feste Bedeutung, kann aber vom Benutzer frei verbunden werden.

xBit03

BIT

Bit 3 des AIF-OUT-Statusworts

 FALSE: Status inaktiv

 TRUE: Status aktiv

Hinweis: Dieses Bit hat keine feste Bedeutung, kann aber vom Benutzer frei belegt werden.

xBit04

BIT

Bit 4 des AIF-OUT-Statusworts

 FALSE: Status inaktiv

 TRUE: Status aktiv

Hinweis: Dieses Bit hat keine feste Bedeutung, kann aber vom Benutzer frei belegt werden.

xBit05

BIT

Bit 5 des AIF-OUT-Statusworts

 FALSE: Status inaktiv

 TRUE: Status aktiv

Hinweis: Dieses Bit hat keine feste Bedeutung, kann aber vom Benutzer frei verbunden werden.

xNActEqZero

BIT

Bit 6 des AIF-OUT-Statusworts: Antriebsdrehzahlsignal ist Null

 FALSE: Antrieb bewegt sich (absolute Antriebsdrehzahl ist größer als das Drehzahl-Toleranzfenster)

 TRUE: Antrieb steht still (absolute Antriebsgeschwindigkeit unterhalb des Geschwindigkeitstoleranzfens-
ters)

Hinweis: Generieren Sie dieses Signal durch eine geeignete Logik (d. h.
(ABS(MCTRL_nNAct_v)<=scPar.wC0019_Nmin)).

xCInh

BIT

Bit 7 des AIF-OUT-Statusworts: Antriebsregler sind gesperrt

 FALSE: Positions-/Drehzahl-/Stromregelung ist aktiv

 TRUE: Positions-/Drehzahl-/Stromregelung ist zurückgesetzt

Hinweis: Dieses Bit muss mit dem entsprechenden Signal in der Anwendung verbunden sein (z. B. über das Status-
signal Status des Funktionsblocks MC_Power).

xStat1
xStat2
xStat4
xStat8

BIT

Bits 8 bis 11 des AIF-OUT-Statusworts: Anzeige des Antriebszustands

xS
ta

t8

xS
ta

t4

xS
ta

t2

xS
ta

t1

 0 0 0 0 Initialisierung nach Anschluss der Versorgungsspannung

 0 0 1 1 Antrieb befindet sich im Status „Controller inhibit“

 0 1 1 0 Controller ist aktiviert

 0 1 1 1 eine Überwachungsfunktion in einer „Meldung” ausgelöst

 1 0 0 0 Eine Überwachungsfunktion, die bei einem „Fehler“ ausgelöst wird

 1 0 1 0 eine Überwachungsfunktion, die bei einem „FAIL-QSP” ausgelöst wird

Hinweise: Diese Bits müssen mit dem entsprechenden Signal in der Anwendung verbunden sein (z. B. über die Sta-
tussignale des Funktionsblocks L_TB2P_AxisInterface). Einige aus 9300 bekannte Zustände können möglicher-
weise nicht angezeigt werden (siehe Kapitel „2.3.3 “).

2 Funktionsblöcke
2.3 Funktionsbaustein L_ICIA_PROFIBUS_Out

 Automation Building Blocks 2-33

Kennung

Datentyp

Beschreibung

xWarnung

BIT

Bit 12 des AIF-OUT-Statusworts: Warnung aktiv

 FALSE: keine Antriebswarnung aktiv

 TRUE: Eine Antriebswarnung ist aktiv.

Hinweis: Dieses Bit muss mit dem entsprechenden Signal in der Anwendung verbunden sein (z. B. über die Status-
signale des Funktionsbausteins MC_ReadAxisError).

xMessage

BIT

Bit 13 des AIF-OUT-Statusworts: Meldung ist aktiv (d. h. Unter-/Überspannungszustand)

 FALSE: keine Meldung aktiv

 TRUE: eine Meldung ist aktiv (d. h. Unter-/Überspannungszustand)

Hinweis: Dieses Bit muss mit dem entsprechenden Signal in der Anwendung verbunden sein (d. h. über das inver-
tierte Statussignal xVoltageEnabled des Funktionsblocks L_TB2P_AxisInterface).

xBit14

BIT

Bit 14 des AIF-OUT-Statusworts

 FALSE: Status inaktiv

 TRUE: Status aktiv

Hinweis: Dieses Bit hat keine feste Bedeutung, kann aber vom Benutzer frei belegt werden.

xBit15

BIT

Bit 15 des AIF-OUT-Statusworts

 FALSE: Status inaktiv

 TRUE: Status aktiv

Hinweis: Dieses Bit hat keine feste Bedeutung, kann aber vom Benutzer frei verbunden werden.

wStat

WORD

AIF-OUT-Statuswort

Das wStat-Signal ist logisch mit den Bits xBit00 … xBit15 OR-verknüpft. Damit bleibt es dem Anwender überlassen,
ob der Status einzeln über die Booleschen Eingänge xBit00 … xBit15 oder über das wStat-Statuswort zusammenge-
stellt wird.

wOut1

WORD

Ausgabe einer 16-Bit-Ganzzahl

Typischerweise wird das zweite WORD auf AIF-OUT1 als Drehzahlsollwert des Antriebs interpretiert, skaliert in [%]
(0 … 16384 = 0,0 … 100,0[%]). Es bleibt jedoch dem Anwender überlassen, die Bedeutung in der Anwendung zu
definieren.

wOut2

WORD

Ausgabe eines freien 16-Bit-WORD-Werts

wOut3

WORD

Ausgabe eines freien 16-Bit-WORD-Werts


Tipp:

Möchten Sie einen 32-Bit-Wert in zwei 16-Bit-Werte auf scStatusWords1.wOut2 und

ScStatusWords1.wOut3 aufteilen? Der Funktionsblock UnpackDword7 bietet diese

Funktion. Verwenden Sie ihn wie folgt:

Abbildung25 : Umwandlung eines 32-Bit-DWORD-Werts in zwei 16-Bit-WORD-Werte

7 enthält die CAA-Speicherbibliothek

2 Funktionsblöcke
2.3 Funktionsbaustein L_ICIA_PROFIBUS_Out

 Automation Building Blocks 2-34

 Benutzerdefinierte Variablenstruktur L_ICIA_scStatusWords

Diese Struktur implementiert die erweiterte AIF-OUT-Schnittstelle, die aus der Wechselrichter-Serie

9300 ServoPLC bekannt ist. Sie wird auf die Objekte scStatusWords2 und scStatusWords3 angewen-

det und umfasst die folgenden Elemente:

Bezeichner

Datentyp

Beschreibung

wOut0

WORD

Ausgabe eines freien 16-Bit-WORD-Werts

wOut1

WORD

Ausgabe eines freien 16-Bit-WORT-Werts

wOut2

WORD

Ausgabe eines freien 16-Bit-WORT-Werts

wOut3

WORD

Ausgabe eines freien 16-Bit-WORD-Werts

3 Anwendungsbeispiel
3.1 Inbetriebnahme-Sequenz (Motion-Anwendung)

 Automation Building Blocks 3-35

3 Anwendungsbeispiel

3.1 Inbetriebnahme-Sequenz (Motion-Anwendung)

In der Regel wird PROFIBUS in neuen Maschinen nicht verwendet, da es modernere Feldbussysteme

wie EtherCAT oder PROFInet gibt. Der PROFIBUS-Feldbus kommt darüber hinaus in bestehenden

Maschinen zum Einsatz. Dieses Dokument konzentriert sich auf ältere Lenze-Servoumrichter8 , die

nun durch die neueste Gerätegeneration der i950-Antriebe ersetzt werden müssen. Im besten Fall

benötigt das Ersatzgerät i950 einen funktionalen Zwilling des bisherigen Servoumrichters. Anstelle

der bekannten Funktionsblockverbindung des GDC basiert das SPS-Programm des i950 auf den

Technologiemodulen von Lenze mit einigen geringfügigen Erweiterungen, um eine 100-prozentige

Funktionskompatibilität zwischen dem bisherigen und dem aktuellen Antriebssystem zu erreichen.

Das folgende Beispiel zeigt, wie ein 9300-Servoumrichter im Drehzahlregelungs9 us auf einen kom-

patiblen i950-Signalfluss migriert werden kann, wobei das Lenze-Technologiemodul

L_TF2P_SpeedControlBase verwendet wird.

Voraussetzungen:

• »PLC Designer« ist bereits auf Ihrem PC geöffnet10 .

• In »PLC Designer« ist kein Projekt geöffnet.

Erstellen Sie ein neues Projekt in »PLC Designer«:

Abbildung26 : Erstellung eines neuen Projekts in „PLC Designer“

8 insbesondere die Servoumrichter-Serie 9300
9 Grundkonfiguration „Drehzahlregelung über AIF” (C0005/000 = 1003)
10 In diesem Beispiel verwenden wir „PLC Designer“ V4.x.

start

Schritt 1

Klicken Sie auf „Neues
Projekt“ …

… wählen Sie das leere Standardprojekt aus, …

… einen Projektnamen (Dateinamen) vergeben, …

… wählen Sie einen Verzeichnispfad zum Speichern
des Projekts und …

… bestätigen Sie mit
„OK“.

3 Anwendungsbeispiel
3.1 Inbetriebnahme-Sequenz (Motion-Anwendung)

 Automation Building Blocks 3-36

Geben Sie das Zielsystem i950 an:

Abbildung27 : Wählen Sie einen i950 (BS) mit Firmware-Version V1.14 oder höher als Zielsystem aus.

Führen Sie einen Build-Prozess aus, um den Zugriff auf die Inbetriebnahmedialoge zu

ermöglichen:

Abbildung28 : Erstellen Sie das Projekt, um Zugriff auf die Inbetriebnahmedialoge von »PLC Designer« zu erhalten.

Schritt 2

Wählen Sie einen Servoumrichter
i950 (BS) als Zielsystem aus.

Wählen Sie die SPS-Programmiersprache aus, die
Sie in Ihrem Projekt verwenden möchten.

In diesem Beispiel verwenden wir Continuous Func-
tion Chart (CFC).

Behalten Sie das leere Standardprojekt bei.

Schließen Sie den Dialog, indem
Sie auf „OK“ klicken.

Wählen Sie als Firmware die Version V1.14 oder
höher.

Schritt 3

Führen Sie einen Build-Prozess aus.

Sie können auch die Tastenkombination <F11>
verwenden.

3 Anwendungsbeispiel
3.1 Inbetriebnahme-Sequenz (Motion-Anwendung)

 Automation Building Blocks 3-37

Legen Sie die wichtigen Daten in den Inbetriebnahmedialogen des Geräts fest:

Abbildung29 : Grundeinstellungen des i950-Antriebs

• Netzspannung

• Motordaten

• Motorbremse (falls montiert/verdrahtet)

• Motor-Feedbacksystem

• Achsenkinematik (Getriebeübersetzung, Vorschubkonstante, …)

• Schnellstopp-Profilparameter

• Überwachungsfunktionen (Folgefehler, Endschalter, …)


Tipps:

• Verwenden Sie den Motorkatalog von »PLC Designer«, um die Motor-

daten schnell zu finden/einzustellen.

• Die Auto-Tuning-Funktion des i950 ermöglicht es, optimale Reglerein-

stellungen für das dynamische Verhalten des Servoantriebs zu finden.

Schritt 4

Netzversorgungsspan-
nung
Motortyp/Daten

Hilfsmotor-Funktionen

Motor-Feedback-System

Achsenkinematik

Schnellstopp-Profil

Überwachungsfunktio-
nen

3 Anwendungsbeispiel
3.1 Inbetriebnahme-Sequenz (Motion-Anwendung)

 Automation Building Blocks 3-38

Öffnen Sie den Bibliotheks-Manager, um die Bibliothek

L_TF2P_TechModulesFollowingPositioning zu Ihrem Projekt hinzuzufügen:

Abbildung30 : Hinzufügen der Bibliothek „L_TF2P_TechModulesFollowingPositioning“ zu Ihrem Projekt

Fügen Sie auf die gleiche Weise wie in Schritt 5 beschrieben auch die Bibliothek

„L_TB2P_TechModulesBasic“ in den Bibliotheksmanager Ihres Projekts ein.

Doppelklicken Sie auf den Biblio-
theks-Manager, um die Liste der
enthaltenen Bibliotheken zu öffnen.

Markieren Sie die Bibliothek L_TF2P_TechModulesFollowing-
Positioning …

Schritt 5

Klicken Sie auf Bibliothek hinzufügen,
um die gewünschte Bibliothek im Biblio-
theksspeicher zu suchen.

Wenn Sie die ersten Buchstaben des Bibliotheksnamens in das
Suchfenster eingeben, finden Sie ihn leicht in der Auswahlliste
darunter.

… und bestätigen Sie mit
„OK“.

Schritt 6

3 Anwendungsbeispiel
3.1 Inbetriebnahme-Sequenz (Motion-Anwendung)

 Automation Building Blocks 3-39

Öffnen Sie das Programm PLC_PRG und schreiben Sie ein kleines CFC-Programm wie

folgt:

Abbildung31 : Aufruf der Funktionsbausteine L_TF2P_SpeedControlBase1 und L_TB2P_AxisInterface1 in PLC_PRG

Doppelklicken Sie auf PLC_PRG, um
es zu bearbeiten.

Deklarieren Sie Instanzen der Funktionsbausteine
L_TF2P_SpeedControlBase und L_TB2P_AxisInter-
face.

Schritt 7

Rufen Sie zuerst die Funktionsblockinstanz
von L_TF2P_SpeedControlBase auf:

- Aktivieren Sie den Funktionsblock kon-

tinuierlich, indem Sie dem Eingang xE-

nable ein festes TRUE-Signal zuwei-

sen.
- Verbinden Sie die i950 Motion_Axis mit

dem Achseingang der Technologie-

funktion.

Rufen Sie dann die Funktionsblockinstanz
von L_TB2P_AxisInterface auf:

- Verbinden Sie den i950 Motion_Axis

mit dem Axis-Eingang des Funktions-

bausteins.
Der Funktionsbaustein L_TB2P_AxisInter-
face bietet keine zusätzlichen Funktionen
im Programm. Er dient ausschließlich dazu,
wichtige Statusinformationen auszugeben,
die die Feldbus-Schnittstelle bei ihrer spä-
teren Implementierung benötigt (siehe Ka-
pitel „3.2 “).

3 Anwendungsbeispiel
3.1 Inbetriebnahme-Sequenz (Motion-Anwendung)

 Automation Building Blocks 3-40

Fügen Sie ein leeres Visualisierungsfeld ein:

Abbildung32 : Hinzufügen eines Visualisierungsbildschirms zur Bedienung des Funktionsblocks L_TF2P_SpeedControlBase

Klicken Sie mit der rechten Maustaste auf „Anwen-
dung“, um das Kontextmenü zu öffnen …

… und wählen Sie „Objekt
hinzufügen”.

Schritt 8

Wählen Sie ein Visualisierungsobjekt aus und
geben Sie ihm einen eindeutigen Namen, be-
vor Sie es zu Ihrem Projekt hinzufügen

3 Anwendungsbeispiel
3.1 Inbetriebnahme-Sequenz (Motion-Anwendung)

 Automation Building Blocks 3-41

Fügen Sie für einen ersten Test die Visualisierungsvorlage des Technologiemoduls

L_TF2P_SpeedControlBase ein, um es über den Visualisierungsbildschirm zu bedienen:

Abbildung33 : Hinzufügen der Visualisierungsvorlage von L_TF2P_SpeedControlBase

Testen Sie Ihr SPS-Programm:

• Schalten Sie die Netzspannung und die 24-V-Steuerspannung Ihres i950-

Antriebs ein.

• Laden Sie das Projekt auf Ihren i950-Antriebsregler herunter und starten Sie

das SPS-Programm.

• Geben Sie den STO-Befehl auf dem i950-Antrieb frei.

Schritt 9

Öffnen Sie die Visualisierungs-
Toolbox.

Wählen Sie die Bibliothek
L_TF2P aus.

Ziehen Sie die Visualisierungsvorlage von L_TF2P_SpeedControlBase auf
den Visualisierungsbildschirm und legen Sie sie an einer geeigneten Posi-
tion auf dem neuen Visualisierungsbildschirm ab.

Weisen Sie die Funktionsblockinstanz L_TF2P_SpeedControlBase1 im
PLC_PRG-Programm der soeben eingefügten Visualisierungsvorlage zu.

Schritt 10

3 Anwendungsbeispiel
3.1 Inbetriebnahme-Sequenz (Motion-Anwendung)

 Automation Building Blocks 3-42

Bedienen Sie den i950-Antrieb über den Visualisierungsbildschirm in verschiedenen

Betriebsmodi und überprüfen Sie alle Funktionen:

Abbildung34 : Visualisierungsbildschirm von L_TF2P_SpeedControlBase

Schritt 11

Aktivieren Sie die interne Steue-
rung des Funktionsblocks über
den Visualisierungsbildschirm.

Schalten Sie den i950-Antrieb ein,
indem Sie auf EnableOperation
klicken.

Aktivieren Sie den Drehzahlrege-
lungsmodus, indem Sie
SpeedCtrlEnable aktivieren.

Legen Sie im Eingabefeld SetVel
eine Zielgeschwindigkeit fest. Der
Antrieb sollte sich nun in positiver
Richtung drehen.

Wenn Sie möchten, können Sie
auch die Parameter für Beschleu-
nigung, Verzögerung und Ruck
einstellen.

Ende

Nachdem Sie den Antriebsbetrieb
aktiviert haben, können Sie einen
ersten Test durchführen, indem
Sie den Antrieb manuell über die
Tasten JogPos und JogNeg ansto-
ßen.

3 Anwendungsbeispiel
3.2 Inbetriebnahmesequenz (PROFIBUS)

 Automation Building Blocks 3-43

3.2 Inbetriebnahmesequenz (PROFIBUS)

Im folgenden Kapitel wird beschrieben, wie Sie die PROFIBUS-Kommunikation mit Hilfe der Funk-

tionsbausteine L_ICIA_CommunicationInterface in Betrieb nehmen.

Voraussetzungen:

• Das Feldbussystem ist gemäß den PROFIBUS-Spezifikationen verdrahtet.

• Die Logik-SPS (PROFIBUS-Master) sowie alle PROFIBUS-Slave-Geräte werden mit

Steuerspannung (24 VDC) versorgt.

• Das SPS-Programm des i950 ist im »PLC Designer« geöffnet, aber noch nicht on-

line.

• Der Anwendungssignalfluss wurde wie im vorherigen Kapitel „3.1 “ beschrieben

im SPS-Programm des i950 implementiert, beispielsweise bei der Migration von

Bewegungsanwendungen von Mitbewerbern oder älteren Lenze-Geräten.

Öffnen Sie das Bibliotheks-Repository und installieren Sie die Bibliothek
L_ICIA_CommunicationInterface:

 Abbildung35 : Hinzufügen der Bibliothek „L_ICIA_CommunicationInterface“ zum Bibliotheks-Repository

Start

Schritt 1

Im Menü „Tools“ …

Klicken Sie auf „Installieren“, um die Bibliothek „L_I-
CIA_CommunicationInterface“ aus der diesem AKB-Doku-
ment beigefügten Bibliotheksdatei zu suchen.

… öffnen Sie das Bibliotheks-
Repository.

Nach der Installation der Datei „L_ICIA_CommunicationInter-
face.library“ sollte diese im Anwendungspfad des Bibliotheks-
Repositorys angezeigt werden.

Sie können das Bibliotheks-Repository nun
schließen.

3 Anwendungsbeispiel
3.2 Inbetriebnahmesequenz (PROFIBUS)

 Automation Building Blocks 3-44

Öffnen Sie den Bibliotheksmanager, um die Bibliothek
„L_ICIA_CommunicationInterface“ zu Ihrem Projekt hinzuzufügen:

 Abbildung36 : Hinzufügen der Bibliothek „L_ICIA_CommunicationInterface” zu Ihrem Projekt

Fügen Sie wie in Schritt 2 gezeigt auch die folgenden Bibliotheken in den

Bibliotheksmanager Ihres Projekts ein:

• CAA-Speicher (V03.05)

• L_SI9P_IoDrvi900 (V03.33 – Datei im Anhang zum AKB-Dokument

202500431)


Hinweis

Lösen Sie im Library Manager den Platzhalter für die Bibliothek

L_SI9P_IoDrvi900 auf und ändern Sie ihn von einer geräteabhängi-

gen Version in eine feste Version V03.33 oder höher.


Tipp

Um sicherzustellen, dass Sie die richtigen Bibliotheken in Ihrem Pro-

jekt haben, können Sie das Projektarchiv TM_SpeedControl.projectar-
chive öffnen, das dem AKB-Artikel 202500431 beigefügt ist.

Erstellen Sie Ihr Projekt auf der Grundlage dieses Projektarchivs.

Doppelklicken Sie auf den Biblio-
theks-Manager, um die Liste der
enthaltenen Bibliotheken zu öffnen.

Markieren Sie die Bibliothek L_ICIA_Communica-
tionInterface …

Klicken Sie auf „Bibliothek hinzufü-
gen”, um die gewünschte Bibliothek im
Bibliotheksspeicher zu suchen.

Wenn Sie die ersten Buchstaben des Bibliotheksnamens in das
Suchfenster eingeben, können Sie ihn leicht in der Auswahlliste
darunter finden.

… und bestätigen Sie mit
„OK“.

Schritt 2

Schritt 3

3 Anwendungsbeispiel
3.2 Inbetriebnahmesequenz (PROFIBUS)

 Automation Building Blocks 3-45

Deklarieren Sie die folgenden globalen Schnittstellenvariablen-Arrays für die

Feldbuskommunikation in einem separaten GVL-Element TA_IO:

{attribute 'qualified_only'}

VAR_GLOBAL

 adwPROFIBUS_IN: ARRAY [0..15] OF DWORD; // Rohdateneingabe von PROFIBUS

 adwPROFIBUS_OUT: ARRAY [0..15] OF DWORD; // Rohdatenausgabe an PROFIBUS

END_VAR

Ordnen Sie die in Schritt 4 deklarierten Variablen-Arrays wie folgt der Feldbus-

Schnittstelle zu:

Abbildung37 : Zuordnung globaler Variablen-Arrays zur Feldbus-Schnittstelle des i950

Schritt 4

Schritt 5

Ordnen Sie das Eingangsvariablen-Array TA_IO.ad-
wPROFIBUS_IN den Eingangskanälen der Feldbus-
Schnittstelle von i950 zu.

Ordnen Sie das Ausgangs-Variablenarray TA_IO.ad-
wPROFIBUS_OUT den Eingangskanälen der Feldbus-
Schnittstelle von i950 zu.

3 Anwendungsbeispiel
3.2 Inbetriebnahmesequenz (PROFIBUS)

 Automation Building Blocks 3-46

Deklarieren Sie im Bewegungsprogramm PLC_PRG des i950 die folgenden

Funktionsbausteine:

VAR

 L_ICIA_PROFIBUS_Base1:L_ICIA_PROFIBUS_Base; // Handhabung der grundlegenden PROFIBUS-Kommunikation

 L_ICIA_PROFIBUS_In1: L_ICIA_PROFIBUS_In; // Lesen/Verarbeiten von Feldbus-Eingängen an

 // scControlWords

 L_ICIA_PROFIBUS_Out1: L_ICIA_PROFIBUS_Out; // Verarbeitung/Schreiben von Feldbus-Ausgängen aus

 // scStatusWords

 L_STAT1: L_STAT; // Erzeugung des 4-Bit-Musters des Antriebsstatus

 L_MC1A_ZeroDetect1: L_MC1A_ZeroDetect; // Erkennung der Drehrichtung/Nullgeschwindigkeit

END_VAR

Bereiten Sie die Parameterzuordnungsliste „11 ” vor, indem Sie die Deklarationsliste

im Bewegungsprogramm „PLC_PRG” des i950 erweitern:

…

ascParReference: ARRAY [0..15] OF L_ICIA_sc93ParReference; // Parameterreferenzliste

…

Enthält Ihre GSD-Konfiguration einen Drivecom V0-Parameterkanal?

Erweitern Sie die in Schritt 5 begonnene Parameterzuordnungsliste um die

erforderlichen Initialisierungswerte, wie in Kapitel „2.1.2 ” beschrieben:

…

ascParReference: ARRAY [0..15] OF L_ICIA_sc93ParReference; // Parameterreferenzliste

 (wCode:=51, bySubCode:=0, wIndex:=16#606C, bySubIndex:=0, bySize:=4, diNum:=1171875, diDen:=524288),

 (wCode:=53, bySubCode:=0, wIndex:=16#6079, bySubIndex:=0, bySize:=4, diNum:=10, diDen:=1),

 (wCode:=63, bySubCode:=0, wIndex:=16#2D49, bySubIndex:=5, bySize:=2, diNum:=1000, diDen:=1),

 (wCode:=52, bySubCode:=0, wIndex:=16#2D82, bySubIndex:=0, bySize:=4, diNum:=10, diDen:=1),

 (wCode:=54, bySubCode:=0, wIndex:=16#2DD1, bySubIndex:=5, bySize:=4, diNum:=10, diDen:=1),

 (wCode:=61, bySubCode:=0, wIndex:=16#2D84, bySubIndex:=1, bySize:=2, diNum:=10, diDen:=1),

 (wCode:=64, bySubCode:=0, wIndex:=16#2D40, bySubIndex:=7, bySize:=2, diNum:=1, diDen:=1),

 …

 (wCode:=84, bySubCode:=0, wIndex:=16#2C01, bySubIndex:=2, bySize:=4, diNum:=100, diDen:=1),

 (wCode:=85, bySubCode:=0, wIndex:=16#2C01, bySubIndex:=3, bySize:=4, diNum:=10, diDen:=1)];

…

Rufen Sie zunächst den Funktionsblock L_ICIA_PROFIBUS_Base in Ihrem SPS-

Programm auf und verbinden Sie die Variablen wie gezeigt:

Abbildung38 : Aufruf des Funktionsbausteins L_ICIA_PROFIBUS_Base am Anfang des SPS-Programms

11 Wenn kein Parameterkanal verwendet wird, ist die Deklaration dennoch als Dummy-Zuweisung erforderlich.

NO

 10

Schritt 8

Schritt 6

JA

?

Schritt 7

Schritt 9

Verbinden Sie als Achsreferenz den
Antrieb i950 (Motion_Axis).

Die in Schritt 9 deklarierte Variablen-
struktur ascParReference wird dem
entsprechenden Eingang ascParRe-
ference zugewiesen.

3 Anwendungsbeispiel
3.2 Inbetriebnahmesequenz (PROFIBUS)

 Automation Building Blocks 3-47

Rufen Sie den Funktionsbaustein L_ICIA_PROFIBUS_In direkt nach dem

Funktionsbaustein L_ICIA_PROFIBUS_Base in Ihrem SPS-Programm auf und verbinden

Sie die Variablen wie gezeigt:

Abbildung39 : Aufruf des Funktionsblocks L_ICIA_PROFIBUS_In direkt hinter dem Funktionsblock L_ICIA_PROFIBUS_Base

Schritt 10

xBit00

xBit01

xBit02

x sp

xBit04

xBit05

xBit06

xBit0

xDisable

xCInh

xTripSet

xTripReset

xBit12

xBit13

xBit14

xBit15

wCtrl

wIn1

wIn2

wIn3

 I I P O IB In

adwFieldBusIn

scStateMachine

scControl ords1

scControl ords2

scControl ords3

TA_IO.adwPROFIBUS_IN

L_ICIA_PROFIBUS_Base.scStateMachine

L_TF2P_SpeedControlBase.xNegativeDirection

L_TF2P_SpeedControlBase.x SPApplication

L_TF2P_SpeedControlBase.xEnableOperation

L_TF2P_SpeedControlBase.xResetError

L_TF2P_SpeedControlBase.wProfileNumber.0

L_TF2P_SpeedControlBase.wProfileNumber.1

O

s ontrolWor s

Der Funktionsbaustein L_I-
CIA_PROFIBUS_In liest die in
Schritt 2 deklarierten Rohdaten des
Feldbusses.

L_ICIA_PROFIBUS_In interagiert mit L_I-
CIA_PROFIBUS_Base und L_ICIA_PROFI-
BUS_Out, indem es die Variablenstruktur L_I-
CIA_PROFIBUS_Base.scStateMachine ge-
meinsam nutzt.

Bitte verbinden Sie diese entsprechend, um
eine korrekte Funktion sicherzustellen!

Um auf jedes Element der Prozessdaten
von L_ICIA_PROFIBUS_In.scCon-
trolWords1 zuzugreifen, fügen Sie einen Se-
lektor vom Typ scControlWords1 ein.

Rufen Sie den Funktionsbaustein L_I-
CIA_PROFIBUS_In direkt nach dem Funkti-
onsbaustein L_ICIA_PROFIBUS_Base in Ih-
rem SPS-Programm auf.

Verbinden Sie die Signale xDisable und xCInh über
eine ODER-Logik.

Sehen Sie die Signalnegation am OR-Ausgang?
Vergessen Sie nicht, den OR-Ausgang zu invertie-
ren, bevor Sie den Ausgang L_TF2P_SpeedCon-
trolBase.xEnableOperation zuweisen.

Verbinden Sie den Ausgang von scCon-
trolWords1 mit dem Technologiemodul
L_TF2P_SpeedControlBase.

Hinweis:
Bei 9300 wurden xBit00 und xBit01 zur Adres-
sierung fester Drehzahlen verwendet. In
diesem Beispiel bleiben diese Bits unverbun-
den.

3 Anwendungsbeispiel
3.2 Inbetriebnahmesequenz (PROFIBUS)

 Automation Building Blocks 3-48

Lesen Sie den maximalen Drehzahlwert nmax
12 aus den Legacy-Antrieben13 und

wandeln Sie ihn mit Hilfe der kinematischen Parameter der Antriebsachse in eine

Referenzgeschwindigkeit Vmax um.

Beispiel: nmax = 3000[U/min]

Abbildung40 : Kinematische Parameter des i950-Antriebs

𝑉𝑚𝑎𝑥 =
𝑛𝑚𝑎𝑥

60
𝑠

𝑚𝑖𝑛

∙ 𝐹𝑒𝑒𝑑𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 ∙
1

𝑖𝑔𝑒𝑎𝑟
∙

1

𝑖𝑔𝑒𝑎𝑟,𝑎𝑑𝑑
=

=
𝑛𝑚𝑎𝑥

60
𝑠

𝑚𝑖𝑛

∙ 0𝑥500𝐴: 032 ∙
0𝑥500𝐴: 034

0𝑥500𝐴: 033
∙
0𝑥500𝐴: 026

0𝑥500𝐴: 025
=

=
3000

𝑟𝑒𝑣.
𝑚𝑖𝑛

60
𝑠

𝑚𝑖𝑛

∙ 320.0000
𝑢𝑛𝑖𝑡𝑠

𝑟𝑒𝑣.
∙
119

1279
∙
1

1
= 1488.663…

𝑢𝑛𝑖𝑡𝑠

𝑠

Deklarieren Sie eine konstante Variable C_lrMaxVelocity mit einem

Initialisierungswert von V(max) ,wie im vorherigen Schritt berechnet:

VAR CONSTANT

 C_lrMaxVelocity: LREAL := 1488,663; // maximale Antriebsgeschwindigkeit, skaliert in [Ein-

heiten/s]

END_VAR

12 skaliert in [U/min]
13 Bei den älteren Lenze-Geräten wurde die maximale Drehzahl im Code C0011/000 eingestellt.

Schritt 11

Schritt 12

3 Anwendungsbeispiel
3.2 Inbetriebnahmesequenz (PROFIBUS)

 Automation Building Blocks 3-49

Lesen und skalieren Sie den Drehzahlsollwert auf

L_ICIA_PROFIBUS_In.scControlWords1.wIn1 und leiten Sie ihn über den folgenden

Signalfluss an das Drehzahlregelungsmodul L_TF2P_SpeedControlBase weiter. Ändern

Sie Ihr Programm wie folgt:

Abbildung41 : Lesen/Skalieren/Ändern des Sollgeschwindigkeitswerts lrSetVel von L_TF2P_SpeedControlBase

Schritt 13

Im ersten Schritt wird der normierte Eingangswert auf L_ICIA_PROFI-
BUS_In.scControlWord1.wIn1 mit seinem Wertebereich mittels der Funktion
L_TB1A_AnalogInputScaling auf einen Geschwindigkeitsbereich von 0,0 …
C_lrMaxVelocity umskaliert.

Die Funktion L_TB1A_AnalogInputScaling ist in der Exportdatei enthalten, die in
Schritt 1 in das Projekt geladen wurde. Weitere Informationen zu dieser Funktion
finden Sie im PDF-Dokument im AKB-Artikel 202000349.

Das Steuerbit L_ICIA_PROFI-
BUS_In.scControlWords1.xBit04 ermöglicht
das Einfrieren des Rampenfunktionsgene-
rators des Technologiemoduls
L_TF2P_SpeedControlBase.

Da diese Funktion derzeit nicht im Techno-
logiemodul selbst enthalten ist, muss sie
außerhalb des Technologiemoduls mithilfe
eines Selektors (SEL-Operator) program-
miert werden.

Das Steuerbit L_ICIA_PROFIBUS_In.scControlWords1.xBit05 schaltet die Ziel-
geschwindigkeit für das Technologiemodul L_TF2P_SpeedControlBase auf
den ert Null. Diese Funktion hat Vorrang vor der „Freeze”-Funktion.

Da diese Funktion derzeit nicht im Technologiemodul selbst enthalten ist, muss
sie außerhalb des Technologiemoduls mithilfe eines Selektors (SEL-Operator)
programmiert werden.

Der Ausgang des Selektors wird der Zielgeschwindigkeit lrSetVel des Technolo-
giemoduls L_TF2P_SpeedControlBase zugewiesen.

 TB nalogIn ut aling

iIn_a

lrMin

lrMaxC_lrMaxVelocity

0.0

L_ICIA_PROFIBUS_In.scControl ord1.wIn1

L_TF2P_SpeedControlBase.lrSetVelOut

L_ICIA_PROFIBUS_In.scControl ord1.xBit04

0.0

L_ICIA_PROFIBUS_In.scControl ord1.xBit05

L_TF2P_SpeedControlBase.lrSetVel

https://lenzegroup.sharepoint.com/sites/ApplicationKnowledgeBase/Lists/AKB_Intranet/DispForm.aspx?ID=20144

3 Anwendungsbeispiel
3.2 Inbetriebnahmesequenz (PROFIBUS)

 Automation Building Blocks 3-50

Um das Statuswort im Funktionsbaustein L_ICIA_PROFIBUS_Out vorzubereiten, sind

drei Vorbereitungsschritte erforderlich:

Im ersten Schritt deklarieren Sie eine Variable lrZeroSpeedThreshold für ein

Geschwindigkeitstoleranzfenster. Das Toleranzfenster definiert das Verhalten/die

Stabilität des Nullgeschwindigkeitssignals.

…

lrZeroSpeedThreshold: LREAL := 1.0; // Nullgeschwindigkeitstoleranzschwelle, skaliert in [Ein-

heiten/s]

…

Initialisieren Sie die Variable mit einem Schwellenwert für die Geschwindigkeit. Immer

wenn die tatsächliche Geschwindigkeit des Antriebs kleiner/gleich dem Schwellenwert

ist, wird das Statusflag (n=0) auf den Wert TRUE gesetzt.

Rufen Sie im nächsten Schritt den Funktionsblock L_MC1A_ZeroDetect am Ende Ihres

Programms auf und verbinden Sie ihn wie folgt im Signalfluss:

Abbildung42 : Nullgeschwindigkeitserkennung mit dem Funktionsbaustein L_MC1A_ZeroDetect

Rufen Sie am Ende Ihres Programms den Funktionsbaustein L_STAT auf und verbinden

Sie die folgenden Variablen:

Abbildung43 : Generierung der Statusbits bStat1_b … bStat8_b mittels des Funktionsblocks L_STAT

Schritt 14

Rufen Sie den Funktionsblock
L_MC1A_ZeroDetect auf. Der Block ist in
der Exportdatei enthalten, die in Schritt 4
in das Projekt geladen wurde. Weitere In-
formationen zu diesem Funktionsblock fin-
den Sie im PDF-Dokument im AKB-Artikel
202000349.

Schritt 15

Weisen Sie den Eingängen des Funktionsbausteins L_MC1A_ZeroDetect die
folgenden Elementvariablen der Struktur „ Motion_Axis “ zu:

• Motion_Axis.lrActPosition => L_MC1A_ZeroDetect.lrPosIn

• Motion_Axis.eTraversingRange => L_MC1A_ZeroDetect.eTraversingRange

• Motion_Axis.lrCycleLength => L_MC1A_ZeroDetect.lrCycleLength

Multiplizieren Sie den Nullgeschwindigkeitsgrenzwert (lrZe-
roSpeedThreshold) mit der Aufgabenzykluszeit ΔtTaskCycle
(L_MC1A_GetTaskCycle()), um einen Stillstandshystereseab-
stand zu erhalten.

Verbinden Sie das Ergebnis mit dem Eingangssignal
L_MC1A_ZeroDetect.lrStandstillWindow.

Schritt 16

Rufen Sie den Funktionsbaustein L_STAT
am Ende Ihres Programms auf.

Der Funktionsblock L_STAT ist in der Ex-
portdatei enthalten, die in Schritt 4 in das
Projekt geladen wurde.

Bitte beachten Sie die Negationen im Signalfluss bei den
Eingangssignalen L_STAT.bCInh_b und L_STAT.bMes-
sage_b.

 T T

bInit_b

bCInh_b

bTrip_b

bMessage_b

bStat1_b

bStat2_b

bStat4_b

bStat8_bL_TB2P_AxisInterface.xVoltageEnabled

L_TF2P_SpeedControlBase.xError

L_ICIA_PROFIBUS_Base.xInit

L_TF2P_SpeedControlBase.xOperationEnabled

https://lenzegroup.sharepoint.com/sites/ApplicationKnowledgeBase/Lists/AKB_Intranet/DispForm.aspx?ID=20144
https://lenzegroup.sharepoint.com/sites/ApplicationKnowledgeBase/Lists/AKB_Intranet/DispForm.aspx?ID=20144

3 Anwendungsbeispiel
3.2 Inbetriebnahmesequenz (PROFIBUS)

 Automation Building Blocks 3-51

Fügen Sie einen Composer-Block von scStatusWords1 ein und verbinden Sie die

folgenden Signale:

Abbildung44 : Zuordnung von Statussignalen/normalisierter Motordrehzahl zum Composer scStatusWords1

Fügen Sie den Funktionsbaustein L_ICIA_PROFIBUS_Out am Ende Ihres Programms ein,

verbinden Sie den Ausgang des Composers L_ICIA_scStatusWords1 mit dem Eingang

scStatusWords1 des Bausteins L_ICIA_PROFIBUS_Out und weisen Sie die Generierung

des AIF-Statusworts über den Funktionsbaustein L_ICIA_PROFIBUS_Out zu:

Abbildung45 : Aufruf des Funktionsbausteins L_ICIA_PROFIBUS_Out am Programmende und Zuordnung zu den Feldbus-
Ausgangsvariablen

s tatusWor s xBit00

xImp

xBit02

xBit03

xBit04

xBit05

xNActE Zero

xCInh

xStat1

xStat2

xStat4

xStat8

x arning

xMessage

xBit14

xBit15

wStat

wOut1

wOut2

wOut3

 I I P O IB Out

scStatus ords1

scStatus ords2

scStatus ords3

scStateMachine

adwFieldBusOut

L_ICIA_PROFIBUS_Base.scStateMachine

TA_IO.adwPROFIBUS_OUT

Schritt 17

Schritt 18

Fügen Sie den Funktionsbaustein L_ICIA_PROFI-
BUS_Out ein.

Verbinden Sie den Ausgang des Composers scStatusWords1 mit dem
Eingang scStatusWords1 des Blocks L_ICIA_PROFIBUS_Out.

L_ICIA_PROFIBUS_Out interagiert mit L_ICIA_PROFI-
BUS_Base und L_ICIA_PROFIBUS_In, indem es die
Variablenstruktur L_ICIA_PROFIBUS_Base.scStateMa-
chine gemeinsam nutzt.

Bitte verbinden Sie ihn entsprechend, um eine korrekte
Funktion sicherzustellen!

Weisen Sie das Ausgangsarray adwFieldBusOut dem
globalen Variablenarray TA_IO.adwPROFIBUS_OUT
zu, das bereits der Feldbus-Schnittstelle zugeordnet
ist.

Einige (weniger wichtige) Statussignale sind auf den
Lenze-Technologiemodulen noch nicht verfügbar.

Sie können jedoch Workarounds programmieren,
wenn Sie diese Signale bereits benötigen.

Die tatsächliche Geschwindigkeit des Antriebs (0,0 … C_lrMaxVelocity)
wird mit Hilfe der Funktion L_TB1A_AnalogOutputScaling auf ein nor-
miertes Ausgangssignal (0 … 16384) auf L_ICIA_PROFIBUS_Out.scSta-
tusWords1.wOut1 skaliert.

Die Funktion L_TB1A_AnalogOutputScaling ist in der Exportdatei enthal-
ten, die in Schritt 4 in das Projekt geladen wurde. Weitere Informationen zu
dieser Funktion finden Sie im PDF-Dokument im AKB-Artikel 202000349.

L_TB2P_AxisInterface.xImpActive

L_MC1A_ZeroDetect.xStandstill

L_TF2P_SpeedControlBase.xOperationEnabled

L_TF2P_SpeedControlBase.x arning

L_MC1A_ZeroDetect.xNegative

s tatusWor s xBit00

xImp

xBit02

xBit03

xBit04

xBit05

xNActE Zero

xCInh

xStat1

xStat2

xStat4

xStat8

x arning

xMessage

xBit14

xBit15

wStat

wOut1

wOut2

wOut3

L_STAT.bStat1_b

L_STAT.bStat2_b

L_STAT.bStat4_b

L_STAT.bStat8_b

L_TB2P_AxisInterface.xVoltageEnabled

L_TB2P_AxisInterface.xReadyForMotion
 TB nalogOut ut aling

lrIn

lrMin

lrMaxC_lrMaxVelocity

0.0

L_TF2P_SpeedControlBase.lrActVel

https://lenzegroup.sharepoint.com/sites/ApplicationKnowledgeBase/Lists/AKB_Intranet/DispForm.aspx?ID=20144

3 Anwendungsbeispiel
3.2 Inbetriebnahmesequenz (PROFIBUS)

 Automation Building Blocks 3-52

Stellen Sie die PROFIBUS-Stationsadresse des i950 im Index 0x2341:001 ein:

Index Subindex Name Wert Einheit

0x2341 1 PROFIBUS: Stationsadresse 4

Stellen Sie sicher, dass der Index 0x2341:011 auf den Wert 1 („EMF2133IB
(ID:2133)”)14 oder auf den Wert 2 („EMF2131IB (ID:2131)”)15 gesetzt ist.

Index Subindex Name Wert Einheit

0x2341 11 PROFIBUS: Kompatibilitätsmodus EMF2133IB (ID: 0x2133) [1]

Kompilieren, laden und starten Sie das Projekt auf dem i950-Laufwerk. Sie können

nun das i950-Laufwerk auf die gleiche Weise wie das 9300-Laufwerk steuern.


Tipp

Nach dem Herunterladen muss der PROFIBUS-Slave möglicherweise neu gestartet

werden, da sich die Werte in den Indizes 0x2341:001 und 0x2341:011 geändert haben.

Starten Sie die PROFIBUS-Kommunikation mit den aktuellen Einstellungen mit dem

folgenden Befehl neu:

Index Unterind
ex

Name Wert Einhe
it

0x2340 0 PROFIBUS-Kommunikation Neustart mit aktuellen Werten
[1]

14 Diese Einstellung legt fest, welcher Gerätetyp über PROFIBUS an die Logik-SPS gemeldet wird. Eine Einstellung von 0x2341:11=1 lässt die Logik-SPS glauben,
dass es sich bei dem angeschlossenen Gerät um ein 8200/9300 mit einem PROFIBUS-Modul EMF2133IB handelt.
15 Eine Einstellung von 0x2341:11=2 lässt die Logik-SPS glauben, dass es sich bei dem angeschlossenen Gerät um ein 8200/9300 mit einem PROFIBUS-Modul
EMF2131IB handelt.

Ende

Schritt 19

Schritt 20

Schritt 21

keine Aktion / kein Fehler [0]

Neustart mit Standardwerten
 [2]
Kommunikation stoppen [5]
in Bearbeitung [10]
Aktion abgebrochen
 [11]
Fehler [12]

Neustart mit aktuellen Werten
 [1

4 Anhang
4.1 Unterstützte GSD-Konfigurationen

 Automation Building Blocks 4-53

4 Anhang

4.1 Unterstützte GSD-Konfigurationen16

GSD-Konfiguration PROFIBUS-Konfiguration-
swert(e)

Entsprechender Wert in 0x2348:003

1. kein Parameterkanal / Prozessdaten (Drivecom-Steuerung)

1 PZD(1W) 0x70 xx0170

… … … …

12 PZD(12W) 0x7B xx017B

2. Konsistente Drivecom-Parameterkanal-/Prozessdaten (Drivecom-Steuerung)

13 PAR(kons.) + PZD(1W) 0xF3, 0x70 xx02F370

… … … ..

24 PAR(cons.) + PZD(12W) 0xF3, 0x7B xx02F37B

3. Konsistenter Drivecom-Parameterkanal / konsistente Prozessdaten (Drivecom-Steuerung)

25 PAR(cons.) + PZD(1W cons.) 0xF3, 0xF0 xx02F3F0

… … … …

36 PAR(cons.) + PZD(12W cons.) 0xF3, 0xFB xx02F3FB

4. Drivecom-Parameterkanal / Prozessdaten (Drivecom-Steuerung)

37 PAR + PZD(1W) 0x73, 0x70 xx027370

… … … …

48 PAR + PZD(12W) 0x73, 0x7B xx02737B

5. Drivecom-Parameterkanal / konsistente Prozessdaten (Drivecom-Steuerung)

49 PAR + PZD(1W kons.) 0x73, 0xF0 xx0273F0

… … … …

60 PAR + PZD (12 W Verbrauch) 0x73, 0xFB xx0273FB

6. Kein Parameterkanal / konsistente Prozessdaten (Drivecom-Steuerung)

61 PZD(1 W kons.) 0xF0 xx01F0

… … … …

72 PZD (12 W Dauerleistung) 0xFB xx01FB

7. Keine Parameterkanal-/Prozessdaten (Lenze-Gerätesteuerung)

73 PZD(1 W) AR 0x00, 0x00, 0x00, 0x70 xx0400000070

… … … …

84 PZD(12W) AR 0x00, 0x00, 0x00, 0x7B xx040000007B

8. Konsistente Drivecom-Parameterkanal-/Prozessdaten (Lenze-Gerätesteuerung)

85 PAR(kons.) + PZD(1W) AR 0x00, 0x00, 0x00, 0xF3, 0x70 xx05000000F370

… … … …

96 PAR(kons.) + PZD(12W) AR 0x00, 0x00, 0x00, 0xF3, 0x7B xx05000000F37B

9. Konsistenter Drivecom-Parameterkanal / konsistente Prozessdaten (Lenze-Gerätesteuerung)

97 PAR(cons.) + PZD(1W cons.) AR 0x00, 0x00, 0x00, 0xF3, 0xF0 xx05000000F3F0

… … … …

108 PAR(cons.) + PZD(12W cons.) AR 0x00, 0x00, 0x00, 0xF3, 0xFB xx05000000F3FB

10. Drivecom-Parameterkanal / Prozessdaten (Lenze-Gerätesteuerung)

109 PAR + PZD(1W) AR 0x00, 0x00, 0x00, 0x73, 0x70 xx050000007370

… … … …

120 PAR + PZD(12W) AR 0x00, 0x00, 0x00, 0x73, 0x7B xx05000000737B

11. Drivecom-Parameterkanal / konsistente Prozessdaten (Lenze-Gerätesteuerung)

121 PAR + PZD(1W kons.) AR 0x00, 0x00, 0x00, 0x73, 0xF0 xx0500000073F0

… … … …

132 PAR + PZD(12 W cons.) AR 0x00, 0x00, 0x00, 0x73, 0xFB xx0500000073FB

12. Kein Parameterkanal / konsistente Prozessdaten (Lenze-Gerätesteuerung)

133 PZD(1 W kons.) AR 0x00, 0x00, 0x00, 0xF0 xx04000000F0

… … … …

144 PZD(12 W kons.) AR 0x00, 0x00, 0x00, 0xFB xx04000000FB

16 Keine Unterscheidung zwischen inkonsistenter/konsistenter Datenübertragung

4 Anhang
4.2 AIF-IN-Schnittstelle des 9300

 Automation Building Blocks 4-54

4.2 AIF-IN-Schnittstelle des 9300

Abbildung46 : Signalfluss der AIF-IN-Schnittstelle am Servoumrichter 9300 (Auszug aus der GDC-Hilfe)

4 Anhang
4.3 AIF-OUT-Schnittstelle des 9300

 Automation Building Blocks 4-55

4.3 AIF-OUT-Schnittstelle des 9300

Abbildung47 : Signalfluss der AIF-OUT-Schnittstelle am Servoumrichter 9300 (Auszug aus der GDC-Hilfe)

4 Anhang
4.4 Drivecom-Steuerwort

 Automation Building Blocks 4-56

4.4 Drivecom-Steuerwort

Bit Name Bedeutung

0 Einschalten Befehlsbit:

 FALSE Befehle 2, 6, 8 (Controller-Sperre)

 TRUE Befehl 3 (Controller freigeben)

1 Spannungshemmung Befehlsbit: Motor-Spannung deaktivieren/aktivieren

 FALSE Spannung sperren

 TRUE Spannung aktivieren

2 Schnellstopp Befehlsbit: Schnellstopp aktivieren

 FALSE Schnellstopp aktivieren

 TRUE Schnellverschluss

3 Betrieb aktivieren Befehlsbit: Antriebsbetrieb aktivieren

 FALSE Antriebsbetrieb deaktivieren

 TRUE Antriebsbetrieb aktivieren

4 RFG-Sperre Befehlsbit: Schnellstopp der Anwendung (QSP)

 FALSE Anwendungs-Schnellstopp (QSP) aktivieren

 TRUE Anwendungs-Schnellstopp (QSP) freigeben

Hinweis: Das negierte Signal dieses Bits wird direkt auf scControlWords1.xQsp ausgegeben.

5 RFG-Stopp Befehlsbit: Stopp-Rampenfunktionsgenerator

 FALSE Rampenfunktionsgenerator friert ein

Der Antrieb hält die Istgeschwindigkeit aufrecht, auch wenn die Sollgeschwindigkeit auf scCon-
trolWords1.iIn2 noch nicht erreicht ist.

 TRUE Rampenfunktionsgenerator ist aktiv

Der Antrieb beschleunigt/verzögert auf die Zielgeschwindigkeit auf scControlWords1.iIn2.

Hinweise:

• Das negierte Signal dieses Bits wird direkt auf scControlWords1.xBit04 ausgegeben.

• In der Basisanwendung „SpeedControl” hat Bit 5 (RFG Stop) eine geringere Priorität als Bit 6 (RFG Zero).

6 RFG Zero Befehlsbit: Rampenabfahrt, Sollwert auf Null setzen

 FALSE Null-Zielgeschwindigkeit

Der Antrieb fährt auf eine Drehzahl von Null herunter. Der auf scControlWords1.iIn2 empfangene
Wert wird ignoriert.

 TRUE Externe Sollgeschwindigkeit

Der Antrieb folgt der Zielgeschwindigkeit auf scControlWords1.iIn2.

Hinweise:

• Das negierte Signal dieses Bits wird direkt auf scControlWords1.xBit05 ausgegeben.

• In der Basisanwendung „SpeedControl” hat Bit 6 (RFG Zero) Vorrang vor Bit 5 (RFG Stop).

7 Fehlerrücksetzung Befehlsbit: Antriebsfehler zurücksetzen

 FALSE=>TRUE Setzt einen Antriebsfehler zurück

Hinweise:

• Ein Laufwerksfehler kann nur zurückgesetzt werden, wenn die Fehlerursache zuvor beseitigt wurde.

• Dieses Bit wird direkt auf scControlWords1.xTripReset ausgegeben.

8 … 10 (reserviert)

11 Hersteller freies Bit (direkt ausgegeben auf scControlWords1.xBit07)

12 Hersteller freies Bit (direkt ausgegeben auf scControlWords1.xBit12)

13 Hersteller freies Bit (direkt ausgegeben auf scControlWords1.xBit13)

14 Hersteller Freies Bit (direkt ausgegeben auf scControlWords1.xBit14)

15 Hersteller Freies Bit (direkt ausgegeben auf scControlWords1.xBit15)

4 Anhang
4.5 Drivecom-Statuswort

 Automation Building Blocks 4-57

4.5 Drivecom-Statuswort

Bit Name Bedeutung

0 Startbereit Informationen zur Gerätestatusmaschine:

 FALSE Der Gerätestatus ist niedriger als „Bereit zum Starten“.

 TRUE Der Gerätestatus ist mindestens „Bereit zum Starten“.

1 Eingeschaltet Informationen zur Gerätestatusmaschine:

 FALSCH Der Gerätestatus ist niedriger als „Eingeschaltet“.

 TRUE Der Gerätestatus ist mindestens „Eingeschaltet“.

2 Betrieb aktiviert Informationen zur Gerätestatusmaschine:

 FALSCH Der Gerätestatus ist niedriger als „Betrieb aktiviert“.

 TRUE Der Gerätestatus ist mindestens „Betrieb aktiviert“.

3 Fehler Das Gerät befindet sich im Fehlerzustand:

 FALSCH Auf dem Gerät ist kein Fehler aktiv.

 TRUE Auf dem Gerät ist ein Fehler aktiv.

Hinweis: Das Signal wird aus scStatusWords1.xStat8, scStatusWords1.xStat10 und scStatusWords1.xStat11 abge-
leitet.

4 Spannung gesperrt Handshake-Signal: Rückgabe des Steuerbits 1 („Spannungshemmung“)

 FALSE kein Fehler auf dem Gerät aktiv

 TRUE Ein Fehler ist auf dem Gerät aktiv.

Hinweis: Das Signal wird direkt aus Bit 1 des Drivecom-Steuerworts kopiert (siehe vorheriges Kapitel „4.4 “).

5 Quick Stop Handshake-Signal: Rückgabe von Steuerbit 2 (Quick Stop)

 FALSE Schnellstoppbefehl ist auf dem Gerät aktiv

 TRUE Es ist kein Schnellstoppbefehl auf dem Gerät aktiv.

Hinweis: Das Signal wird direkt aus Bit 2 oder Bit 4 des Drivecom-Steuerworts kopiert (siehe vorheriges Kapitel „4.4
“).

6 Einschalten gesperrt Informationen zur Zustandsmaschine des Geräts:

 FALSE Das Gerät befindet sich nicht im Zustand „Einschalten gesperrt“.

 TRUE Das Gerät befindet sich im Zustand „Einschalten gesperrt“.

7 Warnung Das Gerät befindet sich im Warnzustand:

 FALSE Es ist keine Warnung auf dem Gerät aktiv.

 TRUE Eine Warnung ist auf dem Gerät aktiv.

Hinweis: Das Signal dieses Bits wird direkt aus scStatusWords1.xWarning kopiert.

8 Meldung Die Meldung ist auf dem Gerät aktiv:

 FALSE Es ist keine Meldung auf dem Gerät aktiv.

 TRUE Eine Nachricht ist auf dem Gerät aktiv.

Hinweise:

• Ein Nachrichtenstatus tritt typischerweise bei Unterspannung auf (Hauptstrom abgeschaltet).

• Das Signal dieses Bits wird direkt aus scStatusWords1.xMessage kopiert.

9 Fern Feldbus-Zugriffsberechtigung:

 FALSE -

 TRUE (dieses Signal ist im Drivecom-Betriebsmodus immer auf TRUE gesetzt)

10 Sollwert erreicht Status des internen Rampengenerators:

 FALSE Die tatsächliche Antriebsdrehzahl entspricht nicht dem Sollwert.

 TRUE Die tatsächliche Antriebsdrehzahl entspricht dem Sollwert.

Hinweise:

• Bei der Standardgeschwindigkeitsregelung repräsentiert das Signal den Status „Sollwert erreicht” des Geschwin-
digkeitsrampengenerators. In diesem Fall können die folgenden Drivecom-Befehlsbits das Signal „Sollwert er-
reicht” unterdrücken:

− RFG-Sperre (Befehlsbit 4)

− RFG-Stopp (Befehlsbit 5)

− RFG Zero (Befehlsbit 6)

• Im Allgemeinen wird das Signal dieses Bits direkt aus scStatusWords1.xBit04 kopiert.

11 Grenzwert Status der Drivecom-Drehzahlbegrenzung (nicht unterstützt):

 FALSE (dieses Signal ist im Drivecom-Betriebsmodus immer auf FALSE gesetzt)

 TRUE -

12 Hersteller freies Bit (Signal direkt aus scStatusWords1.xBit14 kopiert)

13 Hersteller freies Bit (Signal direkt aus scStatusWords1.xBit03 kopiert)

14 Hersteller freies Bit (Signal direkt aus scStatusWords1.xBit02 kopiert)

15 Hersteller Freies Bit (Signal direkt aus scStatusWords1.xBit05 kopiert)

4 Anhang
4.6 Drivecom DP V0 Parameterkanal (Tx)

 Automation Building Blocks 4-58

4.6 Drivecom DP V0 Parameterkanal (Tx)

Die folgende Tabelle beschreibt die Bedeutung der vom PLC an das Slave-Gerät (Antrieb) gesende-

ten Anforderung des Sendeparameterkanals (8 Byte):

Byte 1 (Dienst) Byte 2 Byte 3 Byte 4 Bytes 5 … 8

7 6 5 4 3 2 1 0 Unterindex Index17
(High-Byte)

Index
(niedriges

Byte)

Daten

Anforderungstyp: 000 = keine Anfrage
 001 = Leseanforderung (Daten vom Gerät lesen)
 010 = Schreibanforderung (Daten auf Gerät schreiben)

(nicht verwendet)

Datenlänge18 : 00 = 1 Byte
 01 = 2 Bytes
 10 = 3 Bytes
 11 = 4 Bytes

Handshake:

• Die SPS ändert dieses Bit (Toggle) bei jeder neuen Anfrage.

• Der Slave spiegelt dieses Bit in seinem Antworttelegramm wider (siehe Kapitel „4.7 “).

(nicht verwendet – auf FALSE-Pegel belassen)

Abbildung „48 “: Struktur des Drivecom DP V0-Parameterkanals Tx-Telegramm am Servoumrichter 9300 (SPS => Antrieb)

17 Die 9300-Indexnummer ergibt sich aus der Subtraktion der 9300-Codenummer von einem festen Wert von 24575 (=0x5FFF).
18 Länge der Daten in Bytes 5 ... 8 (Daten/Fehler 1 ... 4), die in den Slave-Geräteindex gelesen/geschrieben werden sollen

4 Anhang
4.7 Drivecom DP V0-Parameterkanal (Rx)

 Automation Building Blocks 4-59

4.7 Drivecom DP V0-Parameterkanal (Rx)

Die folgende Tabelle beschreibt die Bedeutung der Antwort des Empfangsparameterkanals (8

Byte), die vom Slave-Gerät (Antrieb) an die SPS zurückgegeben wird:

Byte 1 (Dienst) Byte 2 Byte 3 Byte 4 Bytes 5 … 8

7 6 5 4 3 2 1 0 Unterindex Index19
(High-Byte)

Index
(niedriges

Byte)

Daten / Fehlercode

Spiegelung der Anforderungstyp-Bits 0 … 2 (siehe Kapitel „2.1.4 ”)

(nicht verwendet)

Datenlänge20 : 00 = 1 Byte
 01 = 2 Bytes
 10 = 3 Bytes
 11 = 4 Bytes

Spiegelung des Handshake-Bits 6 des Tx-Telegramms (siehe Kapitel 2.2.16):

• Die SPS ändert dieses (Toggle-)Bit bei jeder neuen Anfrage.

• Das Slave-Gerät kopiert das Bit in sein Antworttelegramm.

Statusbit:
Statusinformation vom Slave-Gerät an die SPS beim Senden der Anforderungsbestätigung. Dieses
Bit informiert die Master-SPS darüber, ob die Anforderung fehlerfrei ausgeführt wurde.

 0 = Anfrage ohne Fehler abgeschlossen
(Die Daten der Bytes 5 ... 8 stellen die aus dem Zielindex gelesenen Daten
dar.

 1 = Anfrage nicht abgeschlossen – ein Fehler ist aufgetreten.
(Die Daten der Bytes 5 ... 8 stellen die Fehlernummer dar.)

Die folgenden Fehlercodes werden zurückgegeben, wenn Bit 7 auf TRUE gesetzt ist:

Byte 5 Byte 6 Byte 7 Byte 8 Fehlerbeschreibung

0x00 0x00 0x00 0x08 Innerhalb der Watchdog-Zeit konnte keine Antwort auf eine Anfrage emp-
fangen werden.

0x00 0x00 0x03 0x06 Zugriff auf diesen Parameter nicht zulässig.

0x00 0x00 0x07 0x06 Codenummer existiert nicht in der Parameterreferenzliste

0x00 0x00 0x08 0x06 Datentypen stimmen nicht überein

0x01 0xFE 0x00 0x08 Ungültiger Dienst (keine Lese- oder Schreibanforderung)

0x10 0x00 0x05 0x06 Zielindex-/Unterindexnummer existiert nicht auf dem Gerät

0x11 0x00 0x05 0x06 Die Untercode-Nummer ist in der Parameterreferenzliste nicht vorhanden.

0x12 0x00 0x05 0x06 Die Datenlänge des zu schreibenden Werts ist zu groß.

0x13 0x00 0x05 0x06 Die Datenlänge des zu lesenden Werts ist zu klein.

0x30 0x00 0x00 0x08 Schreibzugriff nicht verweigert, da Laufwerksbetrieb aktiviert ist

0x31 0x00 0x00 0x08 Obergrenze des Parameters nicht erreicht

0x32 0x00 0x00 0x08 Unterer Grenzwert des Parameters wird nicht erreicht

Abbildung49 : Struktur des Drivecom DP V0-Parameterkanals Rx-Telegramm am Servoumrichter 9300 (Antrieb => SPS)

19 Die Indexnummer 9300 ergibt sich aus der Subtraktion der Codenummer 9300 von einem festen Wert von 24575 (=0x5FFF).
20 Länge der Rückgabedaten in Bytes 5 ... 8 (Daten/Fehler 1 ... 4)

	Copyright
	Impressum
	Copyright
	Haftung
	Marken
	1 Funktionsblöcke
	1.1 Dokumenthistorie
	1.2 Über die Automatisierungsbausteine „
	1.3 Verwendete Konventionen
	Variablennamen

	1.4 Systemanforderungen
	Software
	Hardware

	2 Funktionsblöcke
	2.1 Funktionsbaustein L_ICIA_PROFIBUS_Base
	2.1.1 Auswahl des Konfigurationsmodus (GSD/GSE-Konfiguration)
	GSD/GSE-Konfiguration einstellen (BYTE ARRAY[23])

	2.1.2 Parameterhandhabung
	2.1.3 Inkompatibilitätsliste
	2.1.4 Schnittstelle
	2.1.5 Aufgabeninformationen
	2.1.6 Ein- und Ausgänge
	2.1.7 Eingaben „ “
	Benutzerdefinierte Variablenstruktur L_ICIA_sc93ParReference

	2.1.8 Ausgaben
	Benutzerdefinierte Variablenstruktur L_ICIA_scStateMachine

	2.2 Funktionsbaustein L_ICIA_PROFIBUS_In
	2.2.1 Prozessdaten (PZD)
	2.2.2 Drivecom-Zustandsmaschine
	2.2.3 Inkompatibilitätsliste
	2.2.4 Schnittstelle
	2.2.5 Aufgabeninformation
	2.2.6 Ein- und Ausgänge
	2.2.7 Eingänge
	2.2.8 Ausgänge
	Benutzerdefinierte Variablenstruktur L_ICIA_scControlWords1
	Benutzerdefinierte Variablenstruktur L_ICIA_scControlWords

	2.3 Funktionsbaustein L_ICIA_PROFIBUS_Out
	2.3.1 Prozessdaten (PZD)
	2.3.2 Drivecom-Zustandsmaschine
	2.3.3 Inkompatibilitätsliste
	2.3.4 Schnittstelle
	2.3.5 Aufgabeninformation
	2.3.6 Ein- und Ausgänge
	2.3.7 Eingänge
	2.3.8 Ausgänge
	Benutzerdefinierte Variablenstruktur scStatusWords1
	Benutzerdefinierte Variablenstruktur L_ICIA_scStatusWords

	3 Anwendungsbeispiel
	3.1 Inbetriebnahme-Sequenz (Motion-Anwendung)
	3.2 Inbetriebnahmesequenz (PROFIBUS)

	4 Anhang
	4.1 Unterstützte GSD-Konfigurationen
	4.2 AIF-IN-Schnittstelle des 9300
	4.3 AIF-OUT-Schnittstelle des 9300
	4.4 Drivecom-Steuerwort
	4.5 Drivecom-Statuswort
	4.6 Drivecom DP V0 Parameterkanal (Tx)
	4.7 Drivecom DP V0-Parameterkanal (Rx)

