FAST Application Software

IJL\

4
Automation Building Blocks

L ICIA_Communicationinterface Function Blocks Reference Manual

Lenze

Lenze

This manual applies to the Automation Building Blocks £ /C/A COMMUNICATIONINTER-
FACE Function Blocks.

Copyright
© 2025 Lenze SE. All rights reserved.

Imprint

Lenze SE

Hans-Lenze-Strasse 1, D-31855 Aerzen, Germany
Phone: +49 (0)5154 / 82-0

Fax: +49 (0)5154 / 82-2111

E-Mail: Lenze@Lenze.de

Copyright information

All texts, photos and graphics contained in this documentation are subject to copyright
protection. No part of this documentation may be copied or made available to third parties
without the explicit written approval of Lenze SE.

Liability

All information given in this documentation has been carefully selected and tested for
compliance with the hardware and software described. Nevertheless, discrepancies
cannot be ruled out. We do not accept any responsibility or liability for any damage that
may occur. Required correction will be included in updates of this documentation.

Trademarks

Microsoft, Windows and Windows NT are registered trademarks or trademarks of the Mi-
crosoft Corporation in the USA and/or other countries.

Adobe and Reader are registered trademarks or trademarks of Adobe System Incorporated in
the USA and/or other countries.

Any additional trade names given in this documentation are trademarks of their correspond-
ing owners.

Automation Building Blocks

mailto:Lenze@Lenze.de

Contents

Contents
1 Function Blocks 2-1
11 DOCUMENT HISTOIY oot asss s sss s sss s sassasssassssssaens 2-1
1.2 About Automation BUilding BIOCKSccewremieremcenceneeeeeeceneieeeeseneeensennessessesessessessessessessesssseesenns 2-1
1.3 CONVENLIONS USE....oiiuririierecieiricieiseeiseisee ettt ss s ass st sse st ssssssasssssssssssssssssssssssassssssssssenas 2-2
1.4 System Requirements 2-3
2 Function Blocks 2-4
2.1 FunctionBlock L_ICIA_PROFIBUS Base 2-6
211 Configuration Mode Selection (GSD/GSE Configuration)........cccc.oeeeeeeenseenneesecnecenecenes 2-6
212 Parameter HandIiNG. ...ttt ssesssssessessessessens 2-7
213 INCOMPALIDITITY LiST.cucoeeeieieieeciccccccn et ssessessensenas 2-12
214 IO ACE ettt b st ene 2-13
2.1.5 TaSK INFOrMATION ettt st sees 2-13
2.16 INPULS AN OULPULS ...ttt eseesenasessesessesssesessessesse et saessesaseseens 2-13
2.1.7 INPULS o 2-13
218 OULPULS cooeeeeeeeeeeseceesseeeeeesssnsssseseesssssssssssssssssssssssseseesssssssssssseessssssssssessssssssssssssessssssssssseeee 2-16
2.2 Function Block L_ICIA_PROFIBUS IN...cccocoveumrruecmrerrcrnecne ..2-19
221 ProCESS DAta (PZD)ocveeeeeeeeeeteeieeeesiestes s sssasssssassassasssssasssssssssesssssssssssassssasssssassansas 2-20
2.2.2 Drivecom State MaChINe ...ttt ssssse s ssssse st ssssessssnans 2-21
223 INCOMPALIDIITY LiST ..ottt eeseeeseeaesseseeesessessesse et saeeesasesenns 2-22
224 IO ACE ottt s st na 2-23
2.25 TaSK INFOrMATION ettt st seas 2-23
2.2.6 INPULS aNA OULPULS ..ottt s s ssessessensnas 2-23
2.2.7 INPULS oottt bbbt 2-23
2.2.8 OULPULS .ttt b st ssessssssaesessssssnes 2-23
2.3 Function Block L_ICIA_PROFIBUS Out 2-27
231 ProCeSS Data (PZD)ocueeeevereeeecirreeeeiesteseiessesssessesassssesassessesassssesassessesassessesassessesassessesassensns 2-28
2.3.2 Drivecom State MaChine ...ttt tsessee s tesseastsssseasssenes 2-30
233 INCOMPALIDIlILY LiSt...oneiieiiiit s sssens 2-31
234 IO ACE ettt sttt ene 2-32
2.35 TaSK INFOrMATION ettt st sees 2-32
2.3.6 INPULS AN OULPULS ...ttt aeesenasesseasessesetasess s bt sassesasassas 2-32
2.3.7 INPULS e 2-32
2.3.8 OULPULS .t as s sas s aaes 2-32
3 Application Example 3-36
3.1 Commissioning Sequence (Motion ApPlication) ...t esesseesessesseens 3-36
3.2 Commissioning Sequence (PROFIBUS) 3-44
4 Appendix 4-55
4.1 Supported GSD CONTIGUIAtIONSc.eureceeeeeercenieeeeeneeeancnessesenseasesssesseessessssasesssessessssssessessesses 4-55
4.2 AIF-IN INtErface 0f 9300 ..ottt s sas st sssesssastassssasssesssssssssssasssssoes 4-56
4.3 AIF-OUT INTErface 0f 9300 ...ttt sssistessssstessesseesssastssssasesssssssssssssssssssees 4-57
4.4 Drivecom CONTIOl WOId.......erirerieieerieiseisesiseeses et sseastsissastsssssssssssassassssasssssssssssssssssssssoes 4-58
4.5 Drivecom Status Word 4-59
4.6 Drivecom DP VO Parameter Channel (TX)ccoceeerueeeeueeeeeeeieeessiesiesessesesessessesssesassessesassessesassesaens 4-60
4.7 Drivecom DP VO Parameter Channel (RX)cccccuoeueeueeeeuerueeeeresesssesiesessesesessessesssesassessesassessessssessens 4-61

Lenze Automation Building Blocks [

1 Function Blocks

11 Document History
1 Function Blocks
1.1 Document History
Version Desciption

0.1 24/11/2025 LSE first edition
0.2 04/12/2025 LSE update to simplified GSD identification method
1.0 03/02/2026 LSE version V1.0 published

1.2 About Automation Building Blocks

This manual describes a software solution for a partial task.

It is the user’s responsibility to verify if the solution proposed by the software corresponds to his
requirement. If necessary, the solution must be adapted. Physical aspects such as drive design are
not part of this manual.

Note:
1 The terminal connection diagrams appearing in this manual show the wiring required

to operate the software on a sample demo rig.

Lenze Automation Building Blocks 2-1

1 Function Blocks
1.3 Conventions used

1.3 Conventions used

This manual uses the following conventions to distinguish between different types of information:

Type of information ‘ Highlighting Example/notes
Spelling of numbers
Decimal separator Point The decimal point is always used.
For example: 1234.56
Text
Program name » « »PLC Designer« ...
Variable names italic By setting xEnable to TRUE...
Function blocks bold The L_MC1P_AxisBasicControl function block ...
Function libraries The L_TT1P_TechnologyModules function library ...
Buttons ... and confirm by clicking on Continue.
Source code Courier .
dwNumerator =1;
dwDenominator := 1;
Key words Courier ...starts with FUNCTION and ends with END FUNCTION.
bold
Keyboard commands <bold> Press the <F2> key to request input assistance
If a shortcut is required for a command to be executed, a ,+* separates the com-
mands:
Press the <Shift>+<ESC> key to ...

Variable Names

The conventions used by Lenze for the variable names of Lenze system blocks, function blocks and
functions are based on the "Hungarian Notation". This notation makes it possible to identify the
most important properties (e.g. the data type) of the corresponding variable by means of its name,
e.g. XAxisEnabled.

Lenze Automation Building Blocks 2-2

1 Function Blocks
14 System Requirements

14

Lenze

System Requirements

Software
Product Type Version
PLC Designer 4.1 or higher

Hardware
Product Type Hardware Version Firmware Version
i950 I195AExxxF1AV10Z02R | not relevant 1.14 or higher
PROFIBUS slot module I9MAFP0000000S

Automation Building Blocks

2 Function Blocks
14 System Requirements

2 Function Blocks

The function blocks L_ICIA_PROFIBUS_Base, L_ICIA_PROFIBUS_In and L_ICIA_PROFIBUS_Out aim
atreplacement scenarios of the 9300 servo inverter series by Lenze’s latest CbM/DbM systems such

as the i950.

logic PLC

logic PLC
4| (PROFIBUS masten)

4— | (PROFIBUS master)

EMF2133IB
(PROFIBUS slave module)

9300 servo inverter

I9MAFP0000000S
(PROFIBUS slave module)

i950 servo inverter

lllustration 1: 9300 servo inverter with PROFIBUS module! lllustration 2: 1950 servo inverter with PROFIBUS slot module

Note:

]
1 In many cases, a one-to-one replacement might be required, not touching the logic
PLC’s program.

1 For Lenze devices such as 9300, two AIF modules for PROFIBUS were available:
1= EMF2133IB with an extended scope of GSD/GSE configurations (see chapter 4.1)
2 =EMF2131IB with a basic scope of GSD/GSE configurations (only Drivecom drive profile with 1 ... 4 process data)

Lenze Automation Building Blocks 2-4

2 Function Blocks
14 System Requirements

w
=
— 1] _
= - g = n)
=] = N <
L_ICIA_PROFIBUS In:) N ‘ o Y = N L_ICIA_PROFIBUS Out:
fieldbus process data from the P ii 8‘ Ig 8 D fieldbus data process data to the
logic PLC | L = 2 w o4 logic PLC
| j=c =
— L o
(=]
__db T
P -

55 e

Y
LR

\
Y

—J : -
[:‘;1 8 » DRIVECOM Parameter Handling » L;: 5
\ J

Y
L ICIA PROFIBUS Base:
- fieldbus initialization
- request data of the fieldbus DP VO parameter
channel from the logic PLC (optional)
- response data of the fieldbus DP VO parameter
channel to the logic PLC (optional)

Illustration 3: overview on the process data communication (PDO) and parameter channel communication (SDO)

1. Afunction block L_ICIA_PROFIBUS_In to extract the process data control information from the
raw data received on PROFIBUS. The method provides the process data in the form of the AIF_IN
format of the 9300 servo inverter (see chapters 2.2 and 3.2).

2. Afunction block L_ICIA_PROFIBUS_Out to compile the complete fieldbus telegram to be trans-
mitted to the logic PLC. The method reads the process data control information in the form of
the AIF_Out format of the 9300 servo inverter (see chapters 2.3 and 3.2).

3. The function block L_ICIA_PROFIBUS_Base, processing the communication set-up and the DP
V0 parameter channel (see chapter 2.1).

Note:
L
Always declare and call the PROFIBUS function blocks in the following order:

e L_ICIA_PROFIBUS_Base
e L_ICIA_PROFIBUS_In
e L_ICIA_PROFIBUS_Out

Lenze Automation Building Blocks 2-5

2 Function Blocks
21 Function Block L_ICIA_PROFIBUS Base

2.1 Function Block L_/CIA_PROFIBUS Base

The function block L_ICIA_PROFIBUS_Base must always be integrated in the PLC project for correct
initialization of the GSD/GSE configuration. If configured, the block additionally processes the DP
VO parameter channel if selected.

2.1.1 Configuration Mode Selection (GSD/GSE Configuration)

The configuration of the PROFIBUS communication for each slave is defined with the help of the
GSD/GSE file. Typically, the scope of PROFIBUS Tx/Rx data is pre-defined during the programming
the logic PLC. One out of a pool of possible configurations (see chapter 4.1) determines the structure
of the PROFIBUS telegram to a slave device.

During the initialization of PROFIBUS communication, the function block L_ICIA_PROFIBUS_Base
identifies the selected GSD/GSE configuration as listed in the appendix, chapter 4.1. For this pur-
pose, an internal service2 reads the received GSD configuration.

Set GSD/GSE Configuration (BYTE ARRAY[23])

The requested GSD configuration is polled by the function block L_ICIA_PROFIBUS_Base continu-
ously to check for a new GSD/GSE configuration:

[112]3]4]5]6] 7|89 [10[11]12]... [20]21]22]23]

byte length of the new GSD configuration (green-colored part of data)

set GSD configuration (1 ... 5 bytes, according to chapter 4.1)

The active GSD configuration is displayed in index 0x2348:003.

Lenze Automation Building Blocks 2-6

2 Function Blocks
21 Function Block L_ICIA_PROFIBUS Base

2.1.2 Parameter Handling

Parameter communication must be selected via the GSD/GSE configuration from the logic PLC and
is included in the complete Rx/Tx PROFIBUS data. On receiving a valid GSD/GSE configuration (x/nit
=FALSE), an optional parameter channel (DRIVECOM DP VO0) is initialized, if included in the GSD/GSE
configuration.

process data communication (PZD) process data communication (PZD) + parameter channel (PAR)

adwFieldBusinf0] [orv CTRL | .';Mﬁ;;ﬁ PAR IN PAR OUT adwFieldBusOutf0]
adwFieldBusinfi] fi v . fi s i ol Py E> 0 E> Pty adwFieldBusOut{1]
adwFioldBusingz] PLC |:> D L acwFieldBusOut{2)
adwFieldBusinf3]) E:> [P A 1] adwFieidBusOutf3] adwFieldBusin[3]) o) acwFieldBusOut{3]
adwieldBusinfé] adwieldBusOutfd] adhwFieldBusin{4] PLC adwFieldBusOutf4)
adwFieldBusinf5] () ({on) ? Az E> [CLIE E:> i) achwFieldBusOut{5]
atwFieldBusin{6] { seControli¥ords? aowFieldBusQut{s]

adwFieldBusin[7] J o)) sdwFieldBusOut[7]

lllustration 4: no parameter channel (PZD only) lllustration 5: with parameter channel (PZD + PAR)

In case of a parameter channel configured, the lowest 8 bytes of the raw data received on
L ICIA PROFIBUS In.adwFieldBusin [/ transmit on L /CIA PROFIBUS Out.adwFieldBusOut are in-
terpreted as shown in the appendix, chapters 4.6 and 4.7.

adwFieldBusIn[0] PAR IN oS PAR OUT adwFieldBusOut[0]
adwFieldBuslnf1] (8 byte) : : (B bytes) adwFieldBusOut[1]

Illustration 6: DP VO parameter channel data as a part of the complete PROFIBUS telegram

In migration scenarios, the superposed logic PLC might address codes/sub-codes of the Lenze GDC3
devices 8200/9300 (legacy devices), not available on the i950 servo inverter.

3 GDC = Global Drive Control, one of the most successful inverter/servo inverter series of Lenze

Lenze Automation Building Blocks 2-7

2 Function Blocks
21 Function Block L_ICIA_PROFIBUS Base

actual motor speed: actual motor speed:

code number: 51 index number: 0x606C

sub-code number: 0 sub-index number: 0

access: read-only access: read-only

unit: [rpm] unit: [rpm]

size: 4 byte size: 4 byte

scaling factor: 10000 : 1 (FIX324) scaling factor: 231: 480000 (‘_s")
lllustration 7: 9300 servo inverter (legacy product) Illustration 8: 1950 servo inverter (actual product)

Because of the mismatch between the old GDC device’s code list and the current i950’s index list,
an internal re-mapping of codes/sub-codes to current (user-) indexes is required. The correspond-
ence between old GDC codes and the i950 indexes is defined via a mapping table on the input/out-
put ascParReference.

The generation of the mapping list must be done by the user in the following way:

start

Step 1 Define the number of objects in your mapping list: The amount of objects defines on
how many different codes/indexes you would like to get access to.

Example: The logic PLC uses the DP VO parameter channel to read the following codes
from a 9300 servo inverter:

e (C0051/000: actual motor speed, scaled in [rpm]
e (C0053/000: actual DC bus voltage, scaled in [V]
e (C0063/000:; actual motor temperature, scaled in [°C]

In this example, the mapping list requires three entries.

Step 2 In the i950’s PLC program, declare a data array with a corresponding number of
entries of type L /CIA_sc93ParReference as follows:

ascParReference: ARRAY[1..3] OF L_ICIA sc93ParReference; // mapping table

4 The FIX32 format uses a 4-byte data size and a scaling factor of 10000, meaning a value of 10000 represents a physical value of 1.0000{rpm]. This format is also
known as the *_e4’ format in the Lenze terminology.

5 The ‘_s’ scaling was introduced with the Lenze 9400 series and scales the motor speed as a 32-bit value. A raw value of 23! represents a physical value of
480000[rpm].

Lenze Automation Building Blocks 2-8

Function Blocks
Function Block L_ICIA_PROFIBUS Base

Step 4

Lenze

end

Extend the declaration of step 2 by assigning initialization values to the mapping
table’s data array:

ascParReference: ARRAY[1..4] OF L ICIA sc93ParReference := [// mapping table

(wCode:=11,
(wCode:=51,
(wCode:=53,
(wCode:=63,

“~ ,
et
.
=

wSubCode:=0, wIndex:=16#5500, bySubIndex:=1, bySize:=8, diNum:=10000, diDen:=1) ,

wSubCode:=0, wIndex:=16#606C, bySubIndex:=0, bySize:=4, diNum:=1171875, diDen:=524288),
wSubCode:=0, wIndex:=16#6079, bySubIndex:=0, bySize:=4, diNum:=10, diDen:=1),
wSubCode:=0, wIndex:=16#2D49, bySubIndex:=5, bySize:=2, diNum:=1000, diDen:=1)];

How to find the values for the numerator/denominator ratio?

The numerator/denominator scales a raw value of the physical Lenze device
to the raw value of the legacy Lenze device.

Example: The numerator/denominator value for the actual motor speed re-
sults from the scaling ratio of the 1950 servo inverter (0x606C:000) and the
Lenze legacy product (C0051/000):

scaling ratio of the physical Lenze device (i950)

You can look-up the index scaling factors in the
// parameter list's tool tips of »EASY Starter«.
diNum _ 480000[rpm]| {10000 L 4800000000 _ 1171875
diDen 231 1 | 2147483648 524288

\\ scaling ratio of the legacy Lenze device (9300)

You can look-up the code scaling factors in the
9300's reference manual in the attribute table.

‘) use greatest common denominator calculations to shorten the numbers for the numerator/denominator

Assign the mapping table’s data array to the function block L_ICIA_PROFIBUS_Base:

L_ICIA_PROFIBus_Base

=1 Axis scStateMachine —
— eFieldBusType XInit—
<2 ascParReference xError —

f eErrorlD —

Assign the mapping table array ascParReference to the
corresponding input of L_ICIA_PROFIBUS_Base.

-
:
=

Tip:
Call the function block L_ICIA_PROFIBUS_Base in a freewheeling task with
low priority to unload the high-priority motion task.

Still, the function blocks L_ICIA_PROFIBUS_In and L_ICIA_PROFIBUS_Out for
process data may be called in the high-priority motion task.

Automation Building Blocks 2-9

2 Function Blocks
21 Function Block L_ICIA_PROFIBUS Base

Note:

L
In contrary to the 9300 series, i950 allows parameters using a floating-point data type
(LREAL) with 8 bytes data size. Even this i950 parameter type can be handled by the
function block L_ICIA_PROFIBUS_Base.

To receive a data value with four decimal remainder digits on your machine PLC, apply
a numerator/denominator scaling of diNum = 10000 and diDen =1 in the parameter
reference list.

To monitor the parameter channel, the function block L_ICIA_PROFIBUS_Base includes a built-in
visualization screen:

| L_ICIA_PROFIBUS_Base |
| PLC_PRG.L_ICIA_PROFIBUS_Base1
Rx parameter data
service sub-index index data
Init
| Jxin | 7[6[5[A312[1[8) 0 | 24522 | 0 |
PEI{:#?BBL?ETZ‘?;S T 000 =no request 0 | 0 |
] = 001 =read request (read data from device) o | o | o | o |
byfstonﬁg 010 = write request (write data to device)
4
: 00=1byte of datalength
bf/GstiGroup 01=2 bytes of data length
F 11=4b f data length
byPzdSize o h“:’ o “‘ eng
8[byte] - handshake (toggle to trigger new request)
/ | Tx parameter data
You can test the internal function of the parameter | [__Service][sub-index || index I data |
channel by activating the xInternalParChannel 76543210 | 0 | 24522 | 3109050
button in the top left of the visualization screen. -
- . 000 =no request | 47 | 28858
After activation of the internal parameter channel 001 = read request (read data from device) | 0 ‘ a7 ‘ 1132 [70
control, you can use the input fields in the “Rx pa- 010 = write request (write data to device) -
rameter data” block to simulate the parameter | |
channel of the PLC and check the i950’s re- error
sponse telegram for plausibility. g? ;; :ﬁ:szlf:::: :z:g:: | 0
‘ 11 =4 bytes of data length
-—— mirror of handshake bit
———errorflag

Lenze Automation Building Blocks 2-10

2 Function Blocks
21 Function Block L_ICIA_PROFIBUS Base

How to find out about which parameters/indexes are accessed by the logic PLC

L
Sometimes the logic PLC program is not available. In this case the parameters ac-
cessed by the logic PLCs are not known in beforehand and cannot be considered in
the reference list.

An easy way to get an overview is to trace the parameter request telegrams of the
DP VO parameter channel. Proceed as follows:

e Inthe PLC project of the i950 drive, insert a new trace in »PLC Designer«.

e Add the following variables of the parameter channel Rx/Tx telegrams to
the trace:

o Rxindex (L_ICIA_PROFIBUS_Base1.RxParData.windex)
o Rxsub-index (L_ICIA_PROFIBUS_Base1.RxParData.bySubindex)

e Start the trace while the logic PLC tries to access the drive parameters via
the DP VO parameter channel.

e Activate a measuring cursor in the trace: The values measured on the Rx in-
dex and Rx sub-index indicate the drive parameters which the logic PLC
tries to access.

I Index 24522 / sub-index 0 (= C0053/000): DC bus voltage I

I Index 24512 / sub-index 0 (= C0063/000): motor temperature I

I Index 24514 / sub-index 0 (= C0061/000): heatsink temperature I

I Index 24490 / sub-index 0 (= C0085/000): motor leakage inductance I

Trace_Par ‘
V. |]
4 vy | i Configuration
24520 . i] Add varisble
1 | A\ 4 I
e LN pepperey = @ Diagram 1 -
24519: ! I T [1 | ™+ @ == PLC_PRG.L_AIF Basel.RxParData.wIndex
b | | = @ Diagram 2

] @ == PLC_PRG.L_ATF_Base1.RuParData.bySubIndex

24500

LB e e e e

T T LI e o T
1h20s 1h30: 1h40: 1h50s

Illustration 10: example for a trace monitoring the parameter access of the PLC (SDO)

Lenze Automation Building Blocks 2-11

2 Function Blocks
21 Function Block L_ICIA_PROFIBUS Base

2.1.3 Incompatibility List
The following functions are not implemented in the function block L_ICIA_PROFIBUS_Base:
e No PROFlIsafe protocol on i950 PROFIBUS is supported.

e Parameter/index numbers do not match between 9300 and i950. Apply a correspondence list
as a reference between the parameters of a Lenze legacy device and an i950 drive controller
as shown in the previous chapter 2.1.2.

Lenze Automation Building Blocks 2-12

2 Function Blocks
21 Function Block L_ICIA_PROFIBUS Base

2.1.4 Interface

L_ICIA_PROFIBUS Base
= Axis scStateMachine —
— eFieldBusType xInit —
= ascParReference xError —
eErrorlD —

lllustration 11: interface of function block L_ICIA_PROFIBUS_Base

2.1.5 Task Information
Call-up possible from: [X freewheeling task [X] time-controlled task [event-controlled task | [interrupt task
(INTERVAL) (EVENT)
Note:

Make sure to have included the CAA Memory library in your PLC project to get a fault-
free built of your code.

2.1.6 Inputs and Outputs

Identifier Description

Data type
Axis reference to the connected drive axis

AXIS_REF | In case of an i950 application, always assign the Motion_AXxis to this signal.
ascParReference parameter correspondence list

ARRAY ['] OF L_ICIA_sc93ParRef- | This list defines the correspondence between 9300 codes and i950 indexes. As parameter values are stored in in-
erence | dexes, which have different numbers on 9300 and i950, the list allows to ...

e ... link a 9300 code to an i950 index
e ... consider a scaling numerator/denominator factor between the 9300 parameter value and the i950 index value

Find a detailed overview of the structure ascParReference in chapter 2.1.7 (next page).

2.1.7 Inputs
Identifier Description
Data type
eFieldBusType type of fieldbus

L_ICIA_eFieldBusType | In the default, this signal is set to 1 (PROFIBUS_2133")

So far, this variable is not used in the function block L_ICIA_PROFIBUS_Base, as the PROFIBUS function blocks
only support PROFIBUS communication.

Note: In future, the input may allow to support various fieldbus systems Lenze offered on the 9300 series such as
CAN, INTERBUS, ...

Lenze Automation Building Blocks 2-13

2 Function Blocks
21 Function Block L_ICIA_PROFIBUS Base

User-Defined Variable Structure L_/C/IA_sc93ParReference

The structure serves to define the parameter correspondence on the PROFIBUS level and the {950
level. The following elements are part of this variable structure:

Identifier Description
Data type
wCode code number of the 9300 servo drive

WORD | Note: The 9300 code number results from subtracting the index value (byte 3 and 4 of the parameter channel) from
a fixed value of 24575 (Ox5FFF).

bySubCode sub-code number of the 9300 servo drive
BYTE
windex corresponding index number of the i950 servo drive
WORD
bySubindex sub-index number of the 1950 servo drive
BYTE
bySize data size of the i950’s index value

BYTE | Note: This information is required, as the data size of the i950’s index value does not necessarily match the data
size of the 9300 code value.

diNum scaling factor between the 9300 code value and the 950 index value (split to numerator/denominator values)

diDen The values for the scaling numerator/denominator can be obtained as shown on the next page. More details can be
BYTE | found in chapter 2.1.2.

® Note:
An application example is given in the appendix in chapter 2.1.2.

Lenze Automation Building Blocks 2-14

2 Function Blocks
21 Function Block L_ICIA_PROFIBUS Base

Example: calculation of scaling numerator/denominator values:

The actual motor speed 0x606C:000 of the i950 servo drive should be read via parameter channel
and be returned to the PLC in the 9300 format of code C0051/000:

9300: i950:

code/sub-code: C0051/000 code/sub-code: 0x606C:000
sample value: 123[rpm] sample value: 123[rpm]
raw value: 1230000 raw value: 550293

scaling (numerator): 10000
scaling (denominator):

scaling (numerator): 1073741824
scaling (denominator): 1240000

N

lllustration 12: code scaling 9300 ion 13: code scaling i950

From the above example, the total numerator/denominato
lated:

alues diNum and diDen can be calcu-

2400000000 1171875

diDen 110737418241 1073741824 _ 524288
240000 _,

Lenze Automation Building Blocks 2-15

2 Function Blocks
21 Function Block L_ICIA_PROFIBUS Base

2.1.8 Outputs

Identifier Description
Data type
scStateMachine data of the communication state machine

L_ICIA_scStateMachine | This value must be connected to the corresponding input/output variables of the function blocks L_ICIA_PROFI-
BUS_In and L_ICIA_PROFIBUS_Out to ensure consistent operation of the PROFIBUS function blocks. A detailed
description is given on the next page.

xInit status signal: initialization of the GSD/GSE configuration ongoing

BOOL FALSE GSDI/GSE configuration has finished without errors
TRUE GSDI/GSE configuration ongoing/has finished with errors
XError status signal: error during GSD/GSE configuration

BOOL FALSE no error during GSD/GSE configuration.
TRUE An error occurred during GSD/GSE configuration:

o |nitialization sequence cannot be terminated - status signal x/nit remains on TRUE.
o Refer to the wError output for more information.

eErrorlD current error ID:
WORD 0: | no error active
110: | GSD/GSE configuration could not be identified — please select a GSD/GSE configuration as listed
in chapter.4.1
Notes:

Lenze Automation Building Blocks 2-16

2 Function Blocks
21 Function Block L _ICIA_PROFIBUS Base

User-Defined Variable Structure L_/C/IA_scStateMachine

This variable structure comprises general data of the fieldbus communication, depending on the
fieldbus type active:

Identifier Description
Data type

eFieldBusType current error ID:

L_ICIA_eFieldBusType PROFIBUS_2133: | The L_ICIA_PROFIBUS function blocks behave like the EMF2133IB PROFIBUS mod-

ule for 9300.
Notes: So far, only ‘PROFIBUS_2131" and ‘PROFIBUS_2133 are supported.
byGsdConfig number of the active GSD/GSE configuration found during communication initialization
BYTE | A complete overview on all possible GSD/GSE configurations is listed in chapter 4.1.

byGsdGroup group of the active GSD/GSE configuration of the active GSD/GSE configuration, set-up during communication ini-

BYTE | tialization
A complete overview on all possible GSD/GSE configurations is listed in chapter 4.1.

byGsdGroup current error ID:
BYTE 1: | no parameter channel / process data (Drivecom control)
2: | consistent Drivecom parameter channel / process data (Drivecom control)
3: | consistent Drivecom parameter channel / consistent process data (Drivecom control)
4: | Drivecom parameter channel / process data (Drivecom control)
5. | Drivecom parameter channel / consistent process data (Drivecom control)
6: | no parameter channel / consistent process data (Drivecom control)
7: | no parameter channel / process data (Lenze device control)
8: | consistent Drivecom parameter channel / process data (Lenze device control)
9: | consistent Drivecom parameter channel / consistent process data (Lenze device control)
10: | Drivecom parameter channel / process data (Lenze device control)
11: | Drivecom parameter channel / consistent process data (Lenze device control)
12: | no parameter channel / consistent process data (Lenze device control)

Notes: A complete overview on all possible GSD/GSE configurations is listed in chapter 4.1.
byPzdSize size of the process data (PZD), scaled in [byte]

BYTE
wDrivecomCtrl Drivecom control word

BYTE | This variable is only used in a configuration with Drivecom process data communication (byGsdGroup =1 ... 6).
The meaning of each control bit of wDrivecomCirl is explained in the appendix in chapter 4.4.

wDrivecomStat Drivecom status word

BYTE | This variable is only used in a configuration with Drivecom process data communication (byGsdGroup =1 ... 6).
The meaning of each control bit of wDrivecomStat is explained in the appendix in chapter 4.5.

eDrivecomState current state of the Drivecom state machine:
L_ICIA_eDrivecomState 0: | NOT_READY_TO_SWITCH_ON

32: | SWITCH_ON_INHIBIT

1: | READY_TO_SWITCH_ON

3: | SWITCHED_ON

23: | QUICK_STOP_ACTIVE

7. | OPERATION_ENABLED

15: | FAULT_REACTION_ACTIVE

8: | FAULT

Notes: This variable is only used in a configuration with Drivecom process data communication (byGsdGroup = 1
... 6). The Drivecom state machine is shown in chapters 2.2.2 and 2.3.2.

xInit status signal: initialization of the GSD/GSE configuration ongoing

BOOL FALSE GSD/GSE configuration has finished without errors
TRUE GSD/GSE configuration ongoing/has finished with errors
Note: This signal mirrors the output signal L_ICIA_PROFIBUS_Base.xInit.

xError status signal: error during GSD/GSE configuration
BOOL FALSE no error during GSD/GSE configuration.

TRUE An error occurred during GSD/GSE configuration:
o Initialization sequence cannot be terminated — status signal x/nit remains on TRUE.
o Refer to the L_ICIA_PROFIBUS_Base.wError output for more information.

Note: This signal mirrors the output signal L_ICIA_PROFIBUS_Base.xError.

Lenze Automation Building Blocks 2-17

2 Function Blocks

21 Function Block L_ICIA_PROFIBUS Base
Identifier Description
Data type
adwRawDataln raw input data on the fieldbus interface
ARRAY [0..15] OF DWORD | The variable data array is a copy of the fieldbus raw input data in, received on the input adwFieldBusin of function
block L_ICIA_PROFIBUS _In.
adwRawDataOut raw output data on the fieldbus interface
ARRAY [0..15] OF DWORD | The variable data array is a copy of the fieldbus raw output data in, generated on the output adwFieldBusOut of
function block L_ICIA_PROFIBUS_Out.
AxisState This structure includes important status signals of the i950 drive:
MC_ReadAxisInfo LimitSwitchPos: positive limit switch has triggered (i.e. on L_TF2P_SpeedControlBase1.scCtrl-
BasicMotion.xHWLimitPos)
LimitSwitchNeg: negative limit switch has triggered (i.e. on L_TF2P_SpeedControlBase1.scCtrl-
BasicMotion.xHWLimitNeg)
Simulation: axis is operated in the virtual mode
On an i950 axis, this signal is always FALSE.
CommunicationReady. | motion bus communication interface between axis driver (AXIS_REF) and motor
control is in operation
On an 950 axis, this signal is always TRUE.
ReadyForPowerOn: drive is ready for being powered on (i.e. via control signal L_TF2P_SpeedCon-
trolBase1.xEnableOperation).
This signal state comprises the following states:
o drive is fault-free
e no STO command is active (safe torque off)
e DC bus voltage is switched on
PowerOn: i950 drive is powered on (same status as L_TF2P_SpeedControlBase1.xOpera-
tionEnabled)
IsHomed: zero position of the i950 drive’s measuring system is known
AxisError. error in the axis driver (AXIS_REF)
AxisWarning: warning in the axis driver (AXIS_REF)
DriveError. error in the inverter's motor control
DriveWarning: warning in the inverter's motor control
SWLimitSwitchPos: positive software limit has triggered
SWLimitSwitchNeg: negative software limit has triggered
ReadyForMotion: drive is ready for receiving motion commands
This signal state comprises the following states:
e drive is enabled
o drive is fault-free
o amotor brake (if available) has opened
STOActive: STO command is active (safe torque off)
VoltageEnabled: DC bus voltage is switched on
MotorMagnetised: motor is magnetization complete
QSPApplActive: quickstop command of the axis driver (AXIS_REF) is active
QSPDriveActive: quickstop command of the inverter's motor control is active
Find more information about MC_ReadAXxisInfo in the »PLC Designer« online help.

Caution:

The above-listed variables are read-only! Never change any of these variables as this
may have unpredictable consequences in fieldbus communication and drive behav-

iour!

Automation Building Blocks

2-18

2 Function Blocks
2.2 Function Block L_ICIA_PROFIBUS In

2.2 Function Block L _/CIA_PROFIBUS In

The function block L_ICIA_PROFIBUS_In reads 16 double words of the fieldbus input data on the
input data array adwfieldBusin. Once a valid GSD/GSE configuration was detected (scStateMa-
chine.xinit = FALSE), the raw data on the input signal adwfieldBusin of the function block
L_ICIA_PROFIBUS_In are mapped to ...

e process data PZD

process data communication (PZD) process data communication (PZD) + parameter channel (PAR)
adwFieldBusinf0] . E-MM‘?‘ PARIN PAR OUT adwFieldBusOut0]
adwFieldBusin1] fi v . fi s ol Py E> 0 E> Pty adwFieldBusOut{1]
adwFioldBusingz] PLC |:> D L acwFieldBusOut{2)
adwFieldBusinf3]) E:> [P A 1] adwFieidBusOutf3] adwFieldBusin[3]) o) acwFieldBusOut{3]
adwFieldBusinf¢] 0 adwFi PLC adwFieldBusOutf4]
adwFieldBusinf5] () ({on) ? Az E> [CLIE E:> i) achwFieldBusOut{5]
atwFieldBusin{6] { seControli¥ords? aowFieldBusQut{s]
adwFieldBusin[7] J o)) sdwFieldBusOut[7]
Illustration 14: no parameter channel (PZD only) Illustration 15: with parameter channel (PZD + PAR)
Note:

L
The 1950 PROFIBUS slot module handles up to 16 double words of input data. The
function block L_ICIA_PROFIBUS_In only processes the double words 0 to 7. The
double word 8 to 15 are not considered in the evaluation of the fieldbus raw data.

However, always assign a data array ARRAY [0..15] OF DWORD to the input signal
L_ICIA_PROFIBUS._In.adwFieldBusin.

Lenze Automation Building Blocks 2-19

2 Function Blocks
2.2 Function Block L_ICIA_PROFIBUS In

2.2.1 Process Data (PZD)

In any case, process data exchange is part of the fieldbus communication. The function block
L_ICIA_PROFIBUS_In handles the process input data of the fieldbus system and converts the raw
data received on adwfieldBusinto the data structures known from the 8200/9300 device series.

(motion) technology application
using the legacy AIF interface

raw input data from the
fieldbus module
(16 DWORD)

=
8
=
T
[y
= \
=

©

adwFieldBusOut

L_ICIA_PROFIBUS_In

-

3
o
(7}
=
m
[
[=]
&«
o
<
=
|

scControlWords1.W0 ... W3
PLC program

L_ICIA_PROFIBUS In:

L_ICIA_PROFIBUS_IN
TA_10.adwPROFIBUS_IN I— adwFieldBusin scControlWords1 scControlWords1 xBit00 —
L_AIF_Base.scStateMachine Ii scStateMachine scControlWords2 xBit01 —
scControlWords3 xBit02 —
xQsp —
xBit04 —
xBit05 —
xBit06 —
xBit07 —
XDisable —
xClnh —
xTripSet —
xTripReset —
xBit12 —
xBit13 —
xBit14 —
xBit15 —
wCtrl —

win1 —

win2 —

win3 —

L— scControlWords win0 —
win1 —
win2 —
win3 —

scControlWords win0 —
win1 —
win2 —
win3 —

conversion of the of raw input process data adwFieldBusin to the data sets scControlWords1, scControlWords2 and scControlWords 3
(16 DWORD)

lllustration 16: principle of process input data handling / detailed signal list of the scControlWords interfaces of function block L_ICIA_PROFIBUS_In

Lenze Automation Building Blocks 2-20

Function Blocks
Function Block L_ICIA_PROFIBUS In

Drivecom State Machine

Depending on the GSD/GSE configuration, the first process input data word scContro/Words1.wCtrl
is processed via the Drivecom state machine:

Switch on device

|

13
Fault Recognized

FAULT REACTION ACTIVE

Status word xxxx xxxx x0xx 1111

I

automatica

reaction is completed

NOT READY To SWITCH ON

Status word 0o 0o x0xx 0000

FAULT

Status word xxxx xxxx x0xx 1000

when

ed

v

SWITCH-ON

Status word xxxx xxxx x01x 0001

INHIBIT N
" | status word xxxx xxxx x1xx 0000 b 10
:-,‘ hibit Vort ; " Inhibit voltage
nhibit Voltage . OO0 XXXX XXX XXOX
XKXX XXKX XXXX XXOX Standstill
W XXX XXXX 00 X110
7
|READY TO swiTcH ON Quick stop X
Status word xxxx xxxx x01x 0001 XX 000K XXxXX X01x o
8
[y
" 3 6
Standstill Switch on Standstill
XXXX XXXX XXXX
x110 § XXXX 000 XXXX X111 | X000 X006 xxxx x110
SWITCHED ON

3

4
Enable operation
X000 1111

5
Inhibit operation
X000 X 0111

14
Reset fault
XXXX XXKK OXXX XXX

XXKX XK XXX XXX

12
Inhibit voltage

XXXX XXXX XXXX XX0X

or

Quick stop completed

A
OPERATION ENABLED

Status word xxxx xxxx x01x 0111

QUICK STOP ACTIVE

Status word xxxx xxxx x01x 0111

s mapped to

11
Quick stop
XXX 000 XXX X01x

Illustration 17: flow chart of the Drivecom state machine (affecting control/status word 1)

The actual state of the Drivecom state machine is displayed on the variable

chine.eDrivecomState.

Lenze

Automation Building Blocks

scStateMa-

2-21

2 Function Blocks
2.2 Function Block L_ICIA_PROFIBUS In

2.2.3 Incompatibility List
The following functions are not implemented in the function block L_ICIA_PROFIBUS_In:

e The output scContro/Words1.wCtrl.xTripSet does not find a corresponding function in the
FAST technology modules. The user can evaluate this signal to set a user-defined error.

e Facing an undervoltage state during drive operation leads to an error, as the PLCopen state
machine is violated. On 9300 an undervoltage state during drive operating was resultingin a
message only.

e The STO command of i950 must be released to achieve the same behavior of the Drivecom
state machine as on 9300. If the i950’s STO command is active, the Drivecom state machine
remains in the state Switch-On Inhibited.

Using GSD configurations with Lenze device control (AR), the STO command keeps the xDisa-
ble control signal active, meaning the drive cannot be activated.

e The L_ICIA_PROFIBUS_In function block supports the following device control methods:

o Drivecom
o Lenze device control (AR)

The PROFIdrive control method is not supported.

Lenze Automation Building Blocks 2-22

2 Function Blocks
2.2 Function Block L_ICIA_PROFIBUS In

2.2.5

2.2.6

2.2.7

2.2.8

Lenze

Interface

Task Information

L_ICIA_PROFIBUS_In

— adwFieldBusin scControlWords1 —
=1 scStateMachine scControlWords2 —
scControlWords3 —

lllustration 18: interface of function block L_ICIA_PROFIBUS_In

Call-up possible from:

[X] freewheeling task

[J event-controlled task | [interrupt task

(EVENT)

X time-controlled task
(INTERVAL)

Note:

Make sure to have included the CAA Memorylibrary in your PLC project to get a fault-
free built of your code.

Inputs and Outputs
Identifier Description
Data type
scStateMachine data of the communication state machine

L_ICIA_scStateMachine

Connect the corresponding output scStateMachine of function block L_ICIA_PROFIBUS_Base to ensure consistent
operation of the PROFIBUS function blocks. A detailed description of this variable structure is given in chapter
2.18.

Inputs
Identifier Description
Data type
adwFieldBusin input of the fieldbus raw data
ARRAY [0..15] OF DWORD | These values can directly be mapped to the input data of the fieldbus 10 interface.

Outputs
Identifier Description
Data type
scControlWords1 AIF fieldbus input data (first group)

L_ICIA_scControlWords1

The values comprise a four-word data structure, following the structure of the AIF-IN system block of the 9300 servo
inverter. A detailed description is given on the next page.

scControlWords2
L_ICIA_scControlWords

AIF fieldbus input data (second group)

The values comprise a four-word data structure, following the structure of the AIF-IN system block of the 9300 Ser-
voPLC inverter. A detailed description is given on the next pages.

scControlWords3
L_ICIA_scControlWords

AIF fieldbus input data (third group)

The values comprise a four-word data structure, following the structure of the AIF-IN system block of the 9300 Ser-
voPLC inverter. A detailed description is given on the next pages.

Automation Building Blocks 2-23

2 Function Blocks
2.2 Function Block L_ICIA_PROFIBUS_In

User-Defined Variable Structure L_/CIA_scContro/Words1

This structure implements the AIF-IN interface known from the 9300 servo inverter series. It in-
cludes the following elements:

Identifier Description
Data type
XBit00 bit 0 of the control word
BIT FALSE: | control function deactivated
TRUE: control function activated
Note: This bit does not have a fixed meaning but can be connected freely by the user.
xBit01 bit 1 of the control word
BIT FALSE: | control function deactivated
TRUE: control function activated
Note: This bit does not have a fixed meaning but can be connected freely by the user.
xBit02 bit 2 of the control word
BIT FALSE: | control function deactivated
TRUE: control function activated
Note: This bit does not have a fixed meaning but can be connected freely by the user.
xQsp bit 3 of the control word: activate quick stop
BIT FALSE: | quick stop not activated
TRUE: quick stop activated

Note: This bit must be connected to a quick stop command in the application (i.e. implemented by the function blocks
MC_Stop, L_MC1P_SetQuickStopAppl, ...).
xBit04 bit 4 of the control word
BIT FALSE: | control function deactivated
TRUE: control function activated
Note: This bit does not have a fixed meaning but can be connected freely by the user.
XBit05 bit 5 of the control word
BIT FALSE: | control function deactivated
TRUE: control function activated
Note: This bit does not have a fixed meaning but can be connected freely by the user.
XBit06 bit 6 of the control word
BIT FALSE: | control function deactivated
TRUE: control function activated

Note: This bit does not have a fixed meaning but can be connected freely by the user.

xBit07 bit 7 of the control word
BIT FALSE: | control function deactivated
TRUE: control function activated
Note: This bit does not have a fixed meaning but can be connected freely by the user.
xDisable bit 08 of the control word: disable the drive
BIT FALSE: | do not disable drive (xCInh=FALSE leads to power-up the drive)
TRUE: disable drive (xCInh=FALSE has no effect)
Notes:
- Use this bit to interlock enabling the drive’s operation. On xDisable=TRUE, the drive must remain shut-down, even
if xCInh is on FALSE.
- If xDisable is on TRUE, the ‘drive ready’ status remains on FALSE.
xCinh bit 09 of the control word: inhibit the drive controller
BIT FALSE: | drive controller enabled
TRUE: drive controller inhibited
Notes:

- The bitis used to power-up the drive (i.e. by means of the MC_Power function block).
- If xDisable is on TRUE, the xCInh control bit has no effect.

Lenze Automation Building Blocks 2-24

2 Function Blocks

2.2 Function Block L_ICIA_PROFIBUS In
Identifier Description
Data type
XTripSet bit 10 of the control word: set a user error on the drive
BIT FALSE: | user error s triggered
TRUE: no user error is triggered
Note: As there is no corresponding function in the operating system of i950 available, the xTripSet bit has no practi-
cal meaning.
xTripReset bit 11 of the control word: error reset command
BIT FALSE=>TRUE | reset error command
Notes:

- The bitis used to reset an error on the drive (i.e. by means of the MC_Reset function block).
- Resetting an error only works if the cause of the error does not apply any more.
XBit12 bit 12 of the control word

BIT FALSE: | control function deactivated
TRUE: control function activated
Note: This bit does not have a fixed meaning but can be connected freely by the user.
XBit13 bit 13 of the control word

BIT FALSE: | control function deactivated
TRUE: control function activated
Note: This bit does not have a fixed meaning but can be connected freely by the user.
XBit14 bit 14 of the control word

BIT FALSE: | control function deactivated

TRUE: control function activated

Note: This bit does not have a fixed meaning but can be connected freely by the user.
xBit15 bit 15 of the control word
BIT FALSE: | control function deactivated

TRUE: control function activated

Note: This bit does not have a fixed meaning but can be connected freely by the user.
wCtrl Control word

WORD | This control word mirrors the 16 control bits as listed above in a WORD format.
win1 input of a 16 bit integer number

WORD | Typically, the second WORD on scControlWords1 is interpreted as the drive’s speed set value, scaled in [%] (0 ...
16384 =0.0 ... 100.0[%]). However, it is up to the user to define the meaning in the application.

win2 input of a free 16 bit WORD value
WORD

win3 input of a free 16 bit WORD value
WORD

Lo Tip:

Do you need to merge and scContro/Words1.win3to a 32-bit value? The function Pack-
WordsToDword® provides this function. Use it in the following way:

PackWordToDword

L_ICIA_ PROFIBUS In_scControlWords1.win3 — wHighWord ! diControlWords1_D1]
L _ICIA_ PROFIBUS In_scControlWords1.win2 — wLowWord

lllustration 19: conversion of two 16-bit WORD values to a 32-bit DWORD value

8included the CAA Memory library
Lenze Automation Building Blocks 2-25

2 Function Blocks
2.2 Function Block L_ICIA_PROFIBUS In

User-Defined Variable Structure L_/CIA_scContro/Words

This structure implements the extended AIF-IN interface known from the 9300 ServoPLC inverter
series. It is applied on the objects scControlWords2 and scControlWords3, and includes the follow-

ing elements:
Identifier Description
Data type
win0 input of a free 16 bit WORD value
WORD
win1 input of a free 16 bit WORD value
WORD
win2 input of a free 16 bit WORD value
WORD
win3 input of a free 16 bit WORD value
WORD

Lenze Automation Building Blocks 2-26

2 Function Blocks
2.3 Function Block L_ICIA_PROFIBUS Out

2.3 Function Block L_/CIA_PROFIBUS Out

The function block L_ICIA_PROFIBUS_Out reads the AIF data structure known from the 8200/9300
device series and transfers its information to the 16 fieldbus output double-words on a data array.
Once a valid GSD/GSE configuration was detected (scStateMachine.x/nit = FALSE), the following
data are mapped to the output data array adwfieldBusOut:

e process data PZD from the AIF-OUT objects

process data communication (PZD) process data communication (PZD) + parameter channel (PAR)
adwFieldBusinf0] . E-MM‘? PARIN PAR OUT adwFieldBusOut0]
adwFieldBusin1] fi v s';a“':‘”i ol Py E> 0 E> Pty adwFieldBusOut{1]
adwFioldBusingz] PLC |:> D L acwFieldBusOut{2)
adwFieldBusin{3] () E:> program 3 4 words) adwEieldBusOutf3] adwFieldBusinf3]) (o) adwFieldBusOut3]
adwFieldBusinf¢] 0 ad PLC adwFieldBusOutf4]
adwFieldBusinf5] () ({on) ? Az E> [CLIE E:> i) achwFieldBusOut{5]
; atwFieldBusin{6] { seControli¥ords? aowFieldBusQut{s]
adwFieldBusin[7] J o)) sdwFieldBusOut[7]

Illustration 20: no parameter channel (PZD only) Illustration 21: with parameter channel (PZD + PAR)

Note:

The 1950 PROFIBUS slot module handles up to 16 double words of output data. The
output data range of the function block L_ICIA_PROFIBUS_Out (output adw-
FieldBusOut) comprises the full scope of 16 double words, even if only double words
0to 7 arein use.

Lenze Automation Building Blocks 2-27

2 Function Blocks
23 Function Block L_ICIA_PROFIBUS_Out

2.3.1 Process Data (PZD)

In any case, process data exchange is part of the fieldbus communication. The function block
L_ICIA_PROFIBUS_Out generates the raw data on adwFie/dBusOutfrom the AIF-OUT objects known
from the 8200/9300 series.

(motion) technology application
using the legacy AIF interface

_______ ¥
c 2 P2 = raw output data to the PROFIBUS
- 2 g | S = module 77?
- @ § : = I 2 2 3 4| (16 DWORD)
g & . © | B = N
DHo: ¢ ioHd:
L & = | o L= o i
g < g 9 3 Z 3
2 sl g | =] 8
- IRk 3 E
------ 4 bmmm
L_ICIA PROFIBUS Out:
L ICIA_PROFIBUS OUT
— xBit00 scStatusWords1 scStatusWords1 adwFieldBusOut —| TA [0.adwPROFIBUS_OUT |
— xlmp scStatusWords2
— xBit02 scStatusWords3
— xBit03 [L_ICIA_PRCFIBUS_Base scStateMachine |- scStateMachine
— xBit04
— xBit05
— xNActEqZero
— xCInh
— xStat1
— xStat2
— xStat4
—| xStat8
— xWarning
— xMessage
— xBit14
— xBit15
— wStat
— wOut1
— wOut2
— wOut3
— wOut0 scStatusWords
— wOut1
— wOut2
— wOut3
— wOut0 scStatusWords —
— wOut1
— wOut2
— wOut3
conversion of the output data set scStatusWords1, scStatusWords2 and scStatusWords3 to raw output process data adwFieldBusOut
(16 DWORD)

lllustration 22: principle of process output data handling / detailed signal list of the scStatusWords interfaces of function block L_ICIA_PROFIBUS_In

Lenze Automation Building Blocks 2-28

2 Function Blocks
2.3 Function Block L_ICIA_PROFIBUS Out

+ Tip
- = Use the user-defined function block L_STAT to generate the status signals on
= L ICIA_PROFIBUS Out.xStatl... L ICIA PROFIBUS Out.xStat8.

Lenze Automation Building Blocks 2-29

Function Blocks
Function Block L_ICIA_PROFIBUS Out

Drivecom State Machine

Depending on the GSD/GSE configuration, the first process output data word

Words1.wStatis processed via the Driveco

Switch on device

m state machine:

|

13
Fault Recognized

FAULT REACTION ACTIVE

Status word xxxx xxxx x0xx 1111

I

automatica

reaction is completed

NOT READY To SWITCH ON

Status word 0o 0o x0xx 0000

FAULT

Status word xxxx xxxx x0xx 1000

when

ed

v

SWITCH-ON

Status word xxxx xxxx x01x 0001

INHIBIT N
" | status word xxxx xxxx x1xx 0000 b 10
:-,‘ hibit Vort ; " Inhibit voltage
nhibit Voltage . OO0 XXXX XXX XXOX
XKXX XXKX XXXX XXOX Standstill
W XXX XXXX 00 X110
7
|READY TO swiTcH ON Quick stop X
Status word xxxx xxxx x01x 0001 XX 000K XXxXX X01x o
8
[y
" 3 6
Standstill Switch on Standstill
XXXX XXXX XXXX
x110 § XXXX 000 XXXX X111 | X000 X006 xxxx x110
SWITCHED ON

3

4
Enable operation
X000 1111

5
Inhibit operation
X000 X 0111

14
Reset fault
XXXX XXKK OXXX XXX

XXKX XK XXX XXX

12
Inhibit voltage

XXXX XXXX XXXX XX0X

or

Quick stop completed

A
OPERATION ENABLED

Status word xxxx xxxx x01x 0111

QUICK STOP ACTIVE

Status word xxxx xxxx x01x 0111

s mapped to

11
Quick stop
XXX 000 XXX X01x

Illustration 23: flow chart of the Drivecom state machine (affecting control/status word 1)

scStatus-

The actual state of the Drivecom state machine is displayed on the variable scStateMa-

chine.eDrivecomState.

Lenze

Automation Building Blocks

2-30

2 Function Blocks
2.3 Function Block L_ICIA_PROFIBUS Out

2.3.3 Incompatibility List
The following functions are not implemented in the function block L_ICIA_PROFIBUS_Out:

e The status bits DCTRL-STAT1, ... DCTRL-STAT*8 do not comprise the full scope of 9300 states.
The red-marked states are not supported:

I || T
~ ~ ~ ~
=~ -~ =~ -~
kI E|EE
value | | 8 | 8 | 8 | note
0 0 0 0 0 | initialization after the supply voltage has been connected
1 0 0 0 1 lock mode, restart protection is active C0142
3 0 0 1 1 || drive is in controller inhibit mode
4 0 1 0 0 || flying restart active
5 0 1 0 1 || DC brake active
6 0 1 1 0 || controller enabled
7 0 1 1 1 | the release of a monitoring function resulted in a "message”
8 1 0 0 0 | the release of a monitoring function resulted in a "trip"
10 1 0 1 0 | the release of a monitoring function resulted in a "FAIL-QSP"
15 1 1 1 1 | communication fail (PROFIBUS communication module <> inverter)

e Accordingto PLCopen, an undervoltage on the DC bus results in an error instead of a message.
Before restarting the drive, the user must reset the drive error.

e The L_ICIA_PROFIBUS_In function block supports the following device control methods:

o Drivecom
o Lenze device control (AR)

The PROFIdrve control method is not supported.

Lenze Automation Building Blocks 2-31

2.3.5

2.3.6

2.3.7

2.3.8

Lenze

Function Blocks

Function Block L_ICIA_PROFIBUS Out

Interface

Task Information

L ICIA PROFIBUS Qut
— scStatusWords1 adwFieldBusOut —
— scStatusWords?2
— scStatusWords3
=1 scStateMachine

lllustration 24: interface of function block L_ICIA_PROFIBUS_Out

Call-up possible from:

[X freewheeling task

[event-controlled task | [interrupt task

(EVENT)

[X] time-controlled task
(INTERVAL)

Note:

Make sure to have included the CAA Memorylibrary in your PLC project to get a fault-
free built of your code.

Inputs and Outputs
Identifier Description
Data type
scStateMachine data of the communication state machine

L_ICIA_scStateMachine

Connect the corresponding output scStateMachine of function block L_ICIA_PROFIBUS_Base to ensure consistent
operation of the AIF function blocks. A detailed description of this variable structure is given in chapter 2.1.8.

Inputs
Identifier Description
Data type
scStatusWords1 AIF fieldbus output data (first group)

L_ICIA_scStatusWords1

The values comprise a four-word data structure, following the structure of the AIF-OUT system block of the 9300
servo inverter. A detailed description is given on the next page.

scStatusWords2
L_ICIA_scStatusWords

AIF fieldbus output data (second group)

The values comprise a four-word data structure, following the structure of the AIF-OUT system block of the 9300
ServoPLC inverter. A detailed description is given on the next pages.

scStatusWords3
L_ICIA_scStatusWords

AIF fieldbus output data (third group)

The values comprise a four-word data structure, following the structure of the AIF-OUT system block of the 9300
ServoPLC inverter. A detailed description is given on the next pages.

Outputs
Identifier Description
Data type
adwFieldBusOut output of the fieldbus raw data
ARRAY [0..15] OF DWORD | These values can directly be mapped to the output data of the fieldbus 10 interface.

Automation Building Blocks 2-32

2 Function Blocks
23 Function Block L_ICIA_PROFIBUS_Out

User-Defined Variable Structure scStatusWords1

This structure implements the AIF-OUT1 interface known from the 9300 servo inverter series. It in-
cludes the following elements:

Identifier Description
Data type

XBit00 bit 0 of the AIF-OUT status word
BIT FALSE: | status inactive

TRUE: status active

Note: This bit does not have a fixed meaning but can be connected freely by the user.

xImp bit 1 of the AIF-OUT status word: pulse inhibit active
BIT FALSE: | The drive's power stage is active and provides voltage/current to the motor.
TRUE: The drive’s power stage is inactive and no current is applied to the motor.

Note: This bit must be connected to the corresponding signal in the application (i.e. by the status signal xImpActive
of function block L_TB2P_AxisInterface).

XBit02 bit 2 of the AIF-OUT status word

BIT FALSE: status inactive

TRUE: status active

Note: This bit does not have a fixed meaning but can be connected freely by the user.

XBit03 bit 3 of the AIF-OUT status word

BIT FALSE: | status inactive

TRUE: status active

Note: This bit does not have a fixed meaning but can be connected freely by the user.

XBit04 bit 4 of the AIF-OUT status word

BIT FALSE: status inactive

TRUE: status active

Note: This bit does not have a fixed meaning but can be connected freely by the user.

XBit05 bit 5 of the AIF-OUT status word

BIT FALSE: status inactive

TRUE: status active

Note: This bit does not have a fixed meaning but can be connected freely by the user.

XxNActEqZero bit 6 of the AIF-OUT status word: drive speed signal is zero
BIT FALSE: | drive is moving (absolute drive speed is greater than the speed tolerance window)
TRUE: drive is in standstill (absolute drive speed below the speed tolerance window)
Note: Generate this signal by a suitable logic (i.e. (ABS (MCTRL_nNAct_v)<=scPar.wC0019_Nmin)).
xClnh bit 7 of the AIF-OUT status word: drive controllers are inhibited
BIT FALSE: | position/speed/current control is active
TRUE: position/speed/current control is reset

Note: This bit must be connected to the corresponding signal in the application (i.e. by the status signal Status of
function block MC_Power).

xStat1 bits 8 to 11 of the AIF-OUT status word: indication of the drive state
xStat2 o - N —
xStatd 5 5 8 8
xStat8 2 L @
BIT 0| 0| 0| 0 |initialisation after the supply voltage has been connected
0|0 1 1 | drive is in controller inhibit state
0 1 1 0 | controller is enabled
0|1 1 1 | a monitoring function triggered in a "message"
1 0 | 0 [O |amonitoring function triggered in a "fault"
1 0|1 0 | a monitoring function triggered in a "FAIL-QSP"

Notes: These bits must be connected to the corresponding signal in the application (i.e. by the status signals of func-
tion block L_TB2P_AxisInterface). Some states known from 9300 may not be possible to be indicated (see chapter
2.3.3).

Lenze Automation Building Blocks 2-33

2 Function Blocks

2.3 Function Block L_ICIA_PROFIBUS Out
Identifier Description
Data type
xWaming bit 12 of the AIF-OUT status word: waming active
BIT FALSE: | no drive warning is active
TRUE: a drive warning is active

Note: This bit must be connected to the corresponding signal in the application (i.e. by the status signals of function
block MC_ReadAxisError).

xMessage bit 13 of the AIF-OUT status word: message is active (i.e. under-/overvoltage state)
BIT FALSE: | no message is active
TRUE: amessage is active (i.e. under-/overvoltage state)

Note: This bit must be connected to the corresponding signal in the application (i.e. by the inverted status signal
xVoltageEnabled of function block L_TB2P_AxisInterface).

XBit14 bit 14 of the AIF-OUT status word

BIT FALSE: status inactive

TRUE: status active

Note: This bit does not have a fixed meaning but can be connected freely by the user.

xBit15 bit 15 of the AIF-OUT status word

BIT FALSE: status inactive

TRUE: status active

Note: This bit does not have a fixed meaning but can be connected freely by the user.

wStat AIF-OUT status word

WORD | The wStat signal is logically OR-connected with the bits xBit00 ... xBit15. This leaves it up to the user if the status is
compiled indivually via the Boolean inputs xBit00 ... xBit15 or via the wStat status word.

wOut1 output of a 16 bit integer number

WORD | Typically, the second WORD on AIF-OUT1 is interpreted as the drive’s speed set value, scaled in [%] (0 ... 16384 =
0.0 ... 100.0[%]). However, it is up to the user to define the meaning in the application.

wOut2 output of a free 16 bit WORD value
WORD

wOut3 output of a free 16 bit WORD value
WORD

Lo Tip:

1
W
]

Do you need to split a 32-bit value to two 16-bit values on scStatusWordsi.wOut2and
ScStatusWords1.wOut3? The function block UnpackDword? provides this function. Use
itin the following way:

UnpackDword

| diStatusWords1 D1 I— wLowWord — L_ICIA_ PROFIBUS Out_scStatusWords1.wOut2
wHighWord —— L_ICIA_PROFIBUS_Out_scStatusWords1.wOut3

lllustration 25: conversion of a 32-bit DWORD value to two 16-bit WORD values

"included the CAA Memory library
Lenze Automation Building Blocks 2-34

2 Function Blocks
2.3 Function Block L_ICIA_PROFIBUS Out

User-Defined Variable Structure L_/CIA_scStatusWords

This structure implements the extended AIF-OUT interface known from the 9300 ServoPLC inverter
series. It is applied on the objects scStatusWords2 and scStatusWords3, and includes the following

elements:
Identifier Description
Data type
wOut0 output of a free 16 bit WORD value
WORD
wOut1 output of a free 16 bit WORD value
WORD
wOut2 output of a free 16 bit WORD value
WORD
wOut3 output of a free 16 bit WORD value
WORD

Lenze Automation Building Blocks 2-35

Application Example
Commissioning Sequence (Motion Application)

3.1

start

Application Example

Commissioning Sequence (Motion Application)

Typically, PROFIBUS is not used in new machines as there are more advanced fieldbus systems avail-
able such as EtherCAT or PROFInet. The PROFIBUS fieldbus moreover appears in existing machines
in operation. This document focusses on previous Lenze servo inverterss, which now need to be re-
placed by the latest device generation of i950 drives. In the best case, the replacement i950 unit
requires a functional twin of the previous servo inverter. Instead of the well-known function block

connection of the GDC, the PLC program of the

i950 bases on Lenze’s technology modules with

some slight extensions to generate a 100% functional compatibility between the previous and ac-

tual drive system.

The following example shows how to migrate a 9300 servo inverter in speed control® to a compat-
ible i950 signal flow, using the Lenze technology module L_TF2P_SpeedControlBase.

Pre-Requisites:

e »PLC Designer« is already open on your PC20,
¢ No projectis open in »PLC Designer«.

Step 1

, PLC Designer 4.0.0 (Manufacturer license)

File Edit View Project Build Online Debug Tools

] New Project

=

I Categories

Create a new project in »PLC Designer«:

Window Help

i“ 7 B | d A | B

Templates

3 (General)
{23 CoDeSys Automation Alliance
+{_J Libraries
-3 Projects

I Click on New Project ...

[roarcoL |

&

Standard project

... select the empty Standard project, ...

LT

/I ... assign a project name (file name), ...
B E

... select a directory path to store the project and ...

A project containing ong device, one applicajion, and an empty implementation for PLC_PRG

[ereeoid

Name DemoProject]

Location

2%, Devices D POUS

||3 erssﬁ?f—:r?ni—:Llsl‘ \El Messages - Total 0 error{s), 0 warning(s), 0 message(s)

C:\Users'harms\OneDrive - Lenze SE\Dokumente'D5\AutBuldBlocks_32\ XAl | ..

Lastbuid: € 0 @ 0 Precompile

Illustration 26: creation of a new project in »PLC Designer«

8in particular the 9300 servo inverter series
9 basic configuration “speed control via AIF” (C0005/000 = 1003)
10 n this example, we use »PLC Designer« V4 x.

Lenze

Automation Building Blocks

3-36

3 Application Example

31 Commissioning Sequence (Motion Application)

Step 2 Specify the i950 target system:

m Standard Project X
Select a controller Import ESD container

E Please choose a controller from the ist and adjust the settings fo] Select a servo inverter 1950 (BS) as a
@ P target system.
Contraller type: Name endor
- B9 i650 motec EtherCAT (BS-STO) Lenze
- B i650 motec EtherNet IP (85-5T0) Lenze
- @3 {650 motec Modbus TCP (BS-STO) Lenze
' B9 {650 motec PROFINET (BS-5TO) Lenze
~[le ie50 Lenze
[Je ias0 (BS-5T0) Lenze |
'Iﬂmmended for customer spedﬁc dev... Lenze
- Je i950 (ES) Lenze
- [Je 1950 (ES) Extended for customer specific davices._Lenze

As a firmware, choose a version V1.14 or higher.

Information:
~ Select the PLC programming language which you
5:::" would like to use in your project.
Teied In this example, we use Continuous Function Chart
(CFC).
Keep the empty standard project.
Controller Firmware Version v1.14.0.1 hd
Language main program: Continuous Function Char/ v
Project template: [Standard project & v

Cancel

| Close the dialogue by clicking Ok. r

lllustration 27: select an 1950 (BS) with firmware version V1.14 or higher as a target system

Step 3 Execute a Build process to enable access to the commissioning dialogues:

=, DemoProject.project” - PLC Designer 4.0.0 (Manufacturer license) - a x
File Edit View Project | Build | Online Debug Teels Window Help

BEFEE [0~k [T |5 = ew , alo-2- B A== x23
[Generate Code

Clean

Clean all

=53] Demofroject

= [J» [Device (950 (B5-5TOY)

=210 PLC Logic

= £} Application

| - .II Library Manager
PLC_PRG (PRG)

= (&8 Tesk Configuraton Execute a Build process.

=B MainTask

i &) pic_pra You may also use the keyboards shortcut <F11>.

& EtherCAT_Master (EtherCAT Master)

“fle L_i950 (950 Internal Slave (Safety

ParameterEditor (Parameter Editor)

Encader_Axis (Encoder_Axis)

i ” Motion_Axis (Motion_Axis)

- [I$ Digital_1_0 (igital 1/0s 950)

[t analog_1_0 (Analog 105 i950)

It safetyInterface (SafetyInterface)

onboardEtherCAT (onboardEtherCATIN]

¥ FieldBug (FieldbusInterface)

'3 virtuslaxes

sapiadoid EF[xoaqiooLuoneziensiy [El1ogiooL g

S Devices JTD POUs
@ Cross Re‘feren:eust} [EI Messages - Total 0 error(s), 0 warning(s), 3 message(s)

Lastbuld: €30 ® 0 Precomple o G Project user: (nobody))

v lllustration 28: Build the project to allow access to the commissioning dialogues of »PLC Designer«

Lenze Automation Building Blocks 3-37

3 Application Example
3.1 Commissioning Sequence (Motion Application)
Set the important data in the commissioning dialogues of the device:
Step 4
=, DemoProject.project* - PLC Designer 4.0.0 (Manufacturer license) - a X
Eile Edit View Project Build Online Debug Tools Window Help
BE & o=t BEX (A% & 5 om| F B[z =F |»
Devices ¥ 8 X | [Je Device X hd Z
=) Demofroject hd 5
=-flo Device (350 (35-5TO)) B (R & sonc oo Qe
8o B ettt C
mains supply voltage FEmC Sy 5
DT © Select from motor description package =
motor type/data O Entermetornamepiate deta g
T O Manually input g
auxiliary motor functions O Identfication un g
! ®
rameter Editor) motor s
motor feedback system e Metor name [1] mesoecat Select mot £
4 Motor manufacturer |I| Lenze a
axis kinematics]
haiog %s0) B Rated values
uickstop profile aretyInterfacs
g " PP o A;(D"b”’) rCAT| Rated power [1] 025 kW Rated voltage
U ace,
I monitoring functions Fated apeed [0 m Flatad fraqency
Rated motor cument [1] 1300 A Cosine phi
S Devices | [POUs
(B CrossReferencel st [E) Messages - Total 0 errar(s), 0 waming(s), 3 messagels)|
Lastbuild: ©@ 0 H 0 Precompie @ Project user: (nobody) Q
Illustration 29: basic settings of the i950 drive
e mains supply voltage
e motordata
e motor brake (if mounted/wired)
e motor feedback system
e axis kinematics (gearbox ratio, feed constant, ...)
e quickstop profile parameters
e monitoring functions (following error, end switches, ...)
] o
s~ Tips:
. T e Usethe motor catalogue of »PLC Designer« to quickly find/set the mo-
tor data.
e The auto-tuning feature of the i950 allows to find optimum controller
settings for dynamic response of the servo drive.
v
Lenze Automation Building Blocks 3-38

Application Example

Commissioning Sequence (Motion Application)

Open the Library Manager to add the L TF2P TechModulesFollowingPositioning

library to your project:

#, DemoProject.project” - PLC Di

Double-click the Library Manager to
open the list of included libraries.

Eile Edit View Project Libraries [Buil

BEEI& v o § B @R X/

d QOnline

LI I I

Debug Tools

Click on Add Library to browse the re-
quired library in the library repository.

Devices

i Library Mgpeger x

=) Demosroject
= [l Device (i250 {BS-5TOY)
=B PLC Logic

vﬁ x|
~ | \EH Add Library | < Delete Library

Libraries used in

-] When entering the first letters of the library name in the search
window, you can easily find it in the selection list below.

'Devk:e.,_

£ | o

I Mark

&) fFr TM_VisTablePositioning_Para_v2
the library L_TF2P_TechModulesFollowingPositioning ...wlf”""‘ep“f"""f"g-m”*s”"

isTablef _scProfiles

Step 6

Lenze

-0t Analog_1_0 (Analog 1/0s i50)

[t safetyinterface (SafetyInterface)

@ onboardEtherCAT (onboardEtherCAT|
) Fieldsus Feidbusinterface)

% VirtuslAxes

S8 Devices HD POUs

3

[L5
=Ly
B sl

[E CrossReferenceList| [B) Messages - Total 0 error(s), 00

E L_TF2P_TM_VisTablePositioningBase _scProfile
L_TF2P_TM_VisTablePositioningBase_Main
@ L_TF2P_TM_TM_visTablePositioning_Para

+ él: L_TF2P_scSF_TM_TablePositioningBase

@ |_TF2P_scPar_TM_TablePositioningBase

- @$ L_TF2P_scAP_TM_TablePositioningBase
&) L_TF2P_visvirtualMaster_internal

4 L_TF2P_ VirtuaMaster_intemal_Para
E L_TF2P_VisTablePositioningBase_V2

i L_TF2P_TM_virtualMasterBase_Para

L_TF2P_TechModulesFollowingPosit...
L_TF2P_TechModulesFollowingPosit...
L_TF2P_TechModulesFollowingPosit...

1=
= £} Application Neme ' rgd Ubrary/ x 1
(l]) Library Manager #- |8 Bre
PLC_PRG (PRG) ¥ ot | tep
=-{#8 Task Configuration #2108
=-§8 MainTask =B .q Match Library
& pLc_PrG =@ .p E L_TF2P. TtdlModulesFolluwillgPasitinnmgl
S @ EtherCAT_Master EthercAT Master)| | # (0 LT - 8] L_TE#P_TM_VisTablePositioningBase _scProfles_y2 L_TF2P_TechModulesFollowingPosit. .
(o L_i850 (950 Internal Slave (Safe{ | * L LB @ |_THf2P_TM_VisTablePositioningBase_scPrafile_v2 L_TF2P_TechModulesFollowingPasit...
ParameterEditor (Parameter Editor) + Lt_] LM - @] L_JF2P_TM_VisTablePositioningBase_Main_V2 L_TF2P_TechModulesFollowingPosit...

L_TF2P_TechModulesFollowingPosit...
L_TF2P_TechModulesFollowingPosit...
L_TF2P_TechModulesFolowingPosit...
L_TF2P_TechModulesFollowingPosit...
L_TF2P_TechModulesFollowingPosit. .
L_TF2P_TechModulesFollowingPosit. .

L_TF2P_TechModulesFollowingPosit. .

L_TF2P_TechModulesFollowingPosit. .
L_TF2P_TechModulesFollowingPosit...
L_TF2P_TechModulesFollowingPosit...

I|_TFIR TarhMndiscFallnwinaPncit.

@Iand confirm by clicking Ok.

] =

v oTE

[)

lllustration 30: adding the L_TF2P_TechModulesFollowingPositioning library to your project

In the same way as shown in step 5, also include the L 7B2P TechModulesBasiclibrary
in the Library Manager of your project.

Automation Building Blocks

3-39

3 Application Example

3.1 Commissioning Sequence (Motion Application)

Open the PLC_PRG program and write a small CFC program as follows:
Step 7
-, DemoProject.project” - PLC Designer 4.0.0 (Manufacturer license) — [m] X
File Edit View Project CFC Build Online Debug Tof Declare instances of the function blocks L_TF2P_Speed-
: o %%/ M " 9 > || ControlBase and L_TB2P_AxislInterface. 3 -|
I Double-click the PLC_PRG to edit it. IM . - - v g
7 R / |
E— \ + & x| [g PR x_ - %
=3 DemoProject - 1 | proGRAM PLC_PRG J 2|
=-[Je Device (950 (85-5TO)) =l 2 | vAr ;I_:‘
= 3 L _TF2P SpeedControlBasel: L_TF2P_SpeedControlBase; = |
B0 PLC Logic —Eer —TEeE
_ 4 L _TB2P AxisInterfacel: L TB2P AxisInterface; @
= o Application : ‘
s | END VAR =
m Library Manag - o =
% PLC_PRG (PRG) z|
A
= Task Configuration = "§'
= & MainTask] 3
8
4 pLepas L_TF2P_SpeedControlBasel 0] a8
= [EtherCAT_Master (EtherCAT Master) L TF2P S [ﬂi
fJlo L_j950 (950 Internal Slave (Safety STO)) Enable *ReadyForOperation — i
D ParameterEditor (Parameter Editor) 1' Erahl : %O - hlad — é
B Encoder_Axis (Encoder_Axis) Y e xReadyForMotion — 2
~ g Motion_Axis (Motion_Axis) —IxQSPApplication *Emrar— &
- A - —xAbort x\Warning —
Call the function block instance of —xJogPos eEmarD —
L_TF2P_SpeedControlBase first: /-dugmg/' *STOAclive [
X X TIinterfacd | —xHomeExecute xQSPActive —
- Continuously enable the function block By irOverride xAbortBusy —
by assigning a fixed TRUE signal to the —jecCtriBasicMotion *AbortDone —
. —scPar xJoggingBusy—
xEnableinput. i e sHomingBusy -
- Connect the 1950 Motion_Axis to the —lscAccessPoints xHomingDone—
Axis input of the technology function. —feSpeedContol xisHomed =
—xNegativeDirection eTMState —
—IrSetVel scStatusBasicMotion —
—xUseExtAccDeclerk IrActVel —
—IrExtAce IrSetVelQut —
—IrfExtDec IrActPos —
—IrExtlerk IrSetPosOut —
—|IrSetOffsetVel IrActFollowingError —
—xUseProfileVel scSignalflow—
—twProfileNumber xSpeedControlBusy—
xExtAccDecJerkActive —
xOffsetVelActive —
*ProfileVelActive —
wActiveProfile —
L_TB2P_Axislnterface1 e
L_TB2P_Axisinierface
= Axis xReadyForMotion —
Then call the function block instance of —xReleaseBraks ximpActive —
L_TB2P_AxisInterface: e e I
- -)) . —xEnableResetFollowEror xVoltageEnabled—
- Connect the i950 Motion_Axis to the — —xResetSpeedCtriLoad xBrakeReleaseOut—
Axis input of the function block. \W{'ﬂi e
—lIrSpeedPAdapl xTorgueLimitsActive [~
1 —xEnablePosPAdapt xSuspendFollowErrorActive —
The function block L_TB2P_AxisInterface ";EWP“"P‘ M"A"g‘"“"’ r
. i . P —ixEnablelnertiaAdapt IrActualMotorCurrent [~
provides no additional functionality in the rineriaAdapt /DG, BusVotagel-
program. Itis solely used to output im- —xEnableTorqueOffset IrThermallLoadDevice —
portant status information which the —irTorqueAdd I¥ThermalLoadMator [
fieldbus interface requires when implement- g T R el -
. P —pActivateTorqueLimitNeg efusState —
ing itin a later stage (see chapter 3.2). e ——— P —
—|IrTorqueLimitNeg xLimitationSetTorque —
—pxMonitoringActMotorCurrent IrActTorqueScaled —
—xMonitoringDCBusVoltage xCiA402ModesActive —
—xMonitoringThermalLoadDevice Ir_ActSpeed_rpm
—xMonitoring ThermalLoadMotor IrSetTorque —
—[xMonitoringActMotorTemperature
—xMonitoringSetTorque
N+ 0w @
32 Devices ID POUSs
[E Cross Reference L\stl IE Messages - Total 0 error(s), 0 warning(s), 3 message[s)}
Lastbuld: € 0 ® 0 Precompie L] Project user: {(nobody) Q
lllustration 31: calling the function blocks L_TF2P_SpeedControlBase1 and L_TB2P_AxisInterface1 in PLC_PRG
v

Lenze Automation Building Blocks 3-40

3 Application Example

3.1 Commissioning Sequence (Motion Application)

Insert an empty visualization panel:

#, DemoProject.project” - PL{=m—— e = (u] X
— Proi J Click right on Application to open the context menu ... I
e ew roje
B E & o X (M2 MM A0 Gk T e » glo-®-|F @[22 3F | _
Erof o fee [S Y MmN G & ... and select Add Object. I
Devices / -~ 2 x | [g] Pc_PRe -|[&!
=-(5] DemoProject - : PLC_ERG g
= {Js Device (1950 (B5-ST S allz|
= E . TF2P_SpeedControlBasel: _TF2P_SpeedControlBase: =
@g PLC Logic L_TF2F_SpeedControlBasel L_TF2P_SpeedControlB: (=
_.l n licats 4 L_TB2P AxisInterfacel: L_TB2P_AxisInterface; @
m Library % Cut | VAR §
PLCFR{ER Copy Y
- Task Co |-'_: Paste —— — g
- . Delete = =
& ZENE
: F
=8 EtherCAT Masty Refactoring ’ L_TF2P_SpeedControlBase1 (2] rg—
(o Li950 (950 o Manual contral L_TF2P_SpeedControlBase &
. B
D ParsmeterEditor|]—xﬁnahle xReadyForOperation —]
H@ Encoder_axis L= —xEnableCperati xOperationEnabled — E
ion_aus (4 : = — ReadyForMotion [~ z
HgP Motion_Axis (4 2] Add Object » A Alarm Configuration... fmiimn xEr::‘r— &
g: Z@:a"[;%[?:' 2 AddFolder... {8 Communication Manager.., XWarning -
\nal
ot Saﬁeotjl-nt_erfa:e j’ Edit Object &® Data Sources Manager... eEmorlD—
[l onboardEthercA Edit Object With... a,: DUT... xSTOActive —
. xQSPActive —
(i) FieldBus (Fieldbd Refactoring N ErrorManagement-TextList... xAbortBusy
3 virtuala: & Exdernal File.. L
’ e J3 Combine/Separate doubleaxis D ermat e xAbortDone
“ Global Variable List... xJoggingBusy—
G Login @ Global Variable List (tasklocal]... xHomingBusy —
- . xHomingDone[—
Delete application from device B Image Pool... xlsHomed —
=0 Interface... eTMState —
@ Logical Exchange GVL... atusBasicMotion —
@ Logical l/0s... IrActVel —
. . IrSetVelOut —
@ MotionObjects... IrActPos —
“ Network Variable List (Receiver)... IrSetPosOut —
“ Network Variable List (Sender)... ictFollowingError —
T Persistent Variables... scSignalfiow—
yeedControlBusy—
&) pou.. tcDeclerkActive —
&) POU for Implicit Checks... L OffsetVelActive —
X N T X N N ﬂ Recipe Manager... kProfileVelActive —
Pick a Visualization object and give it a unique B2 Symbol Configuration whctiveProfile [
S . H
name before adding it to your project @ TetLi.
&" Trace...
o Unit Conversion...))
. &) Visualization... & [-+[Q) (0w &
‘3 Devices ‘D POUs
Visualization M
IE CrussReferenceLlstl [E Messages - Total 0 error(s), 0 warning(s), 3 |§ule e
:) Lastbuld: @ 0 @ 0 Precomple o+ @§ Projectusen:(obody) @
Illustration 32: adding a visualization screen to operate the function block L_TF2P_SpeedControlBase
v

Lenze Automation Building Blocks 3-41

3 Application Example

3.1 Commissioning Sequence (Motion Application)

. For a first test, insert the visualization template of the L_TF2P_SpeedControlBase
ep technology module to operate it via the visu screen:
I Open the Visualization Toolbox. I\
., DemoProject.project* - PLC Deys = X
Fle Edt View Project] Select the L_TF2P library.
BEES o~ DERX(ANGAMANE z 3
<= s - R W T Rt I e - e e
Devices ~ B X || @) visualization x
=B DemoPrject | ——
= [ls Device (950 (B5-5T0)) Ty
= @ﬂ PLC Logic .JL
= {2 Application == == &
m Library Manager ; -é
B PLc_PrG (PRG) o =
= Task Configuration i Date/Tir1e Controls %
= g MainTask = ImagePc olDialogs ;
-] PLC_PRG —— e B
Visualization Manager .:. VnuD_iTgs‘
@] Visualization 3 - -
= @ EtherCAT_Master (EtherCAT Master) = '5
[]l L_j950 (i950 Internal Slave (Safety STO)) e %
D ParameterEditor (Parameter Editor) a
H@ Encoder_Axis (Encoder_Axis)
~ B Motion_Axis (Motion_Axis)
-[% Digital_1_0 (Digital 1/0s i950)
<01 analog 1 O {Anslog 1/0s i950)
[5 safel Drag the visualization template of L_TF2P_SpeedControlBase to the visu- i
£ >4 alization screen and drop it at a convenient position on the new visualization ==
i Feld L_TF2P_VisVirtualMaster
% Virtu screen. Base
Assign parameters <L_TF2P VisSpeedControlBase=
‘Assign the parameters for the referenced visualization <L _TF 2P _VisSpeedCantrolBase’>. I
L_TF2P_VisTablePosition
Parameter Type Value ingBase
" minput FB L_TF2°_SPEEDCONTROLBASE - PLCPRG.L_TF2P_SpesdControBase |
peed(
Assign the function block instance L_TF2P_SpeedControlBase1 in the
PLC_PRG program to the visualization template you just inserted.
L_TF2P_vVisFollowSetVal
uesBase
22 Devices ID POUs
[E Cross Reference L\st| IE Messages - Total 0 errar(s), 0 warning(s), 3 message{s)} ' ni
Lastbuld: € 0 @ 0 Precompie L] Project user: (nobody) Q
lllustration 33: adding the visualization template of L_TF2P_SpeedControlBase
A4
Step 10 Test your PLC program:

e Switch on mains power and 24V control power on your i950 drive.
e Download the project to your i950 drive controller and start the PLC program.
e Release the STO command on the i950 drive.

Lenze Automation Building Blocks 3-42

3 Application Example

3.1 Commissioning Sequence (Motion Application)

Step 11 By means of the visualization screen, operate the i950 drive in different operation
tep modes and check all functions:
Activate the intgrnal colntrollof the .,|— L TF2P SpeedCo ntrol ‘
function block via the visualization — =
screen. | PLC_PRG.L_TF2P_SpeedControlBase1
| Input | | Qutput |
Foverup v 0 g oy oo | | IR [IRaEsopEen] (speiconenu
ot [peaeopermionyy| [Opsmioncnses | | xtccbecsenncive
ResetError | [[_ReadyForMotion | [OffsetVelActive |
QSPApplication | | Error | | ProfileVelActive |
— : Abort | | Warning | ActiveProfile
After enabling drive operation, you P | 0
can run a first test by manual jog- - JogPos ErrorlD
ging the drive via the buttons Jog- |t JogNeg | DriveError
Pos and JogNeg. HomeExecute [| STOActive |
Override | QSPActive |
Lo | AbortBusy |
CtriBasicMotion | | AbortDone |
Par | | JoggingBusy |
Enable speed control mode by ac- — HominaBus
tivating SpeedCtrlEnable. . | gonsy |
NegativeDirection | | HomingDone |
Define a target speed in the input SetVel | IsHomed |
field SetVel. You now should see | _L—p- 1000.000
the drive rotating in positive direc- - TMState
tion. ——UseExtAccDeclerk | el EE
If you like, you can adjust the ac- | > 1500 000 StatusBasicMotion I
celeration, deceleration and jerk - . ~- ActVel
t Il ’
parameters as we \\ E 1000.221625 [u/s]
1000.000
N SetVelOut
\ ExtJerk 1000.000000 [u/s]
100000.000
ActPos
Se el 168.667603 [u]
0.000
SetPosOut
UseProfileVel | Ll
ProfileNumber ActFollowingError
0 0.002197 [u]
Illustration 34: visualization screen of L_TF2P_SpeedControlBase
end

Lenze Automation Building Blocks 3-43

Application Example

3.2 Commissioning Sequence (PROFIBUS)
3.2 Commissioning Sequence (PROFIBUS)
The following chapter describes how to set the PROFIBUS communication into operation with the
help of the L_ICIA_Communicationinterface function blocks.
Start Pre-Requisites:

e Thefieldbus system is wired according to the PROFIBUS specifications.

e Thelogic PLC (PROFIBUS master) as well as all PROFIBUS slave devices are sup-
plied with control voltage (24Vo().

e ThePLC program of the i950 is open in »PLC Designer« but not yet online.

e The application signal flow has been implemented in the i950’s PLC program as
described in the previous chapter 3.1, for example migrating motion applications
of competitors or Lenze legacy devices.

Step 1 Open the Library Repository and install the L /CIA Communicationinterfacelibrary:
I In the Tools menu ... I
n:, DemoProjectproject” - PLC Designer 4.0.1 (Manufacturer license) \ I ... open the Library Repository. - 0o x
File Edit View Project Libraries Build Online Debug | Tools | Window /He\p
j\ﬂ = = =1 84 »3::: i EASY Package Manager... o 2
@ CODESYSfackage Manager...
Devices ~ 3 x (i) vbrary Mffi] Library Repositery... -
= 1) Demorraject ~| |8 Add Library {0 Device Repository... holders P Library Parameters... =
=- s Device (1950 (B5-5TO)) Libraries usedinal B Visualization Style Repositary... |
7: I?.ﬂg :f\ \:?:krre:--:-s ton - 7 7>< Namespace
I Software Solutions GmbH) BPLog
| . L_ETC
Speicherort System v Bearbeiten. . oStandard
Click Install to browse the L_ICIA_Communicationinterface Lere
— . . X . | enz) L_bco
| | library from the library file attached to this AKB document. Nl e
Firma (Alle Firmen) ~ I— }3.25.0.0 (Lenze) L_IPap
— . sialleren Lenze) L_mC1P
= Application
g ontrolModiesTE7E After installing the L_ICIA_Communicationinterface.library file, you
i t. oK o should see it in the Application path of the Library Repository.
+- [l L_pB2_TechnologyAppliationBasic £ ere N
+ L!L_DCO DriveCommuniction Lemze i L
% (Il L_eaTP \applicationTemplate £ ingPositioning, 3.31.0.26 (Lenze) L_TF2P
£ L!L_EMZP_ achineModuleTemplates Leme Ly
- (M L_ePmp_PhckMLManager Lerze Standard
+ (I L_1aMP_asketManagement ¢
+- M L_ictP_CoglponentDirecory Suchen...
= | L_ICIA_Communicationinterface Leme
PL 3.34.0.0 | Details...
Zertifikat vertrauen
@ Gruppieren nach Kategorie Abhangighsiten. ..
52 Device i
‘|IE Msssi Bibliotheksprofile... /__Schieﬂen ‘ T @ |
I You can now close the Library Repository. I
v Illustration 35: adding the L_ICIA_Communicationinterface library to the Library Repository
Lenze Automation Building Blocks 3-44

3 Application Example
3.2 Commissioning Sequence (PROFIBUS)

Step 2 Open the Library Manager to add the L /C/A Communicationinterface library to your
project:

Double-click the Library Manager to
open the list of included libraries.

#, DemoProject.project” - PLC Des — a %
Eile Edit View Project Libraries J Build QOnline Debug Tools| Clle on Add lerary tO brOWSe the re-
4 S - - a2 - L7 - +. -+ G ,
B HE (& o & B ERXIHS% A A quired library in the library repository. EZE e |8
D“’_;s - fx “.'ﬂ Lbrary HgpdGer X When entering the first letters of the library name in the search
=3 Demofropect =2 i &d Add L\bragl X Delete Library : N fimd : :
= o Devie (250 (5-5T) S — ,.,Z window, you can easily find it in the selection list below.
=& pLc Logic -y — !“zﬁ
= 2 _Application Name Bibliothek hinzpfligen il
(l] Library Manager D 5 |
- @] PLC_PRG (PRG) |

L 100 [c

& 103
[0 L¢ | Ubereinstimmung Bibliothek

) pLc_pRG £ ir L |L_10A_Communicationnterface |
= [EtherCAT Master (therCAT Master)| | # (B L

&
&
= {4 Task Configuration *
&
g
*
o L_i50 (350 Internal Slave (Safef [# [L3
‘
.
&
®
s
&

=-$8 MainTask

—

ParameterEditor (Parameter Editor) By
H@® Encoder_axis (Encoder_axis) By |
BgP Motion_axis (Motion_Axis) & L I
1% Digital_I_0O (Digital 1/Os i950) Lo -
~[f analog_I_0 {analog 1/0s i950) & g
[t safetyinterface (Safetyinterface) LS|

[onboarcEtherCAT (onboardethercar| | (B sta
) FieldBus (FieldbusInterface)
2 VirtualAxes . . .
Mark the library L_ICIA_Communicationinterface ... I
.
I ... and confirm by clicking Ok. |\
28 Devices |ID POUs =
(B Cross ReferenceList] (] Wessages Total 0 emar(s) 0y | Enwetr. Abbrechen

. o L L v v

lllustration 36: adding the L_I/CIA_Communicationinterface library to your project

In the same way as shown in step 2, also include the following libraries in the Library
Step 3 Manager of your project:
o CAA Memory (v03.05)
e L S/9P loDrvi9oo (V03.33 —file attached to AKB document 202500431)
® Note:
In the Library Manager, please resolve the placeholder for the
L _S/9P loDrvi900 library and change it from a device-dependent
version to a fixed version V03.33 or higher.
L Tip:
- @ = To be sure to have the correct libraries in your project, you can open
= the project archive 7M_SpeedControl.projectarchive attached to the
AKB article 202500431.
Create your project on the base of this project archive.
v

Lenze Automation Building Blocks 3-45

3 Application Example
3.2 Commissioning Sequence (PROFIBUS)

Lenze Automation Building Blocks 3-46

3 Application Example
3.2 Commissioning Sequence (PROFIBUS)

Declare the following global interface variable arrays for fieldbus communication in a
separate GVLitem 74 /O

{attribute 'qualified only'}

VAR GLOBAL
adwPROFIBUS_IN: ARRAY [0..15] OF DWORD; // raw data input from PROFIBUS
adwPROFIBUS_OUT: ARRAY [0..15] OF DWORD; // raw data output to PROFIBUS
END_VAR

Step 5 Map the variable arrays declared in step 4 to the fieldbus interface as follows:
ep

=, L_AIF_0040.project - PLC Designer 4.0.0 (Manufacturer license)

(m] X

File Edit View Project Build Online Debug Jools Window

Map the input variable array TA_IO.adwPROFIBUS_IN
D& EX A% RS

to the input channels of the fieldbus interface of i950.

y i |
A [v] / -5
=5 L_AF 0090)) g
2 e Device (950 (55-STO)) Find Filter Show all b E_’
= &0 PLc Logic Variable [4 Mapping Channel Address Defar ﬁ
=0 fwﬁwﬁw * Application. TA_IO.adwPROFIBUS_IN[0] v dwin1 e -
12 01 DataTypes 9 Application. TA_IO.adwPROFIBUS _IN[1] “® | dwin2 = E
D 02 Functg %9 Applcation. TA_I0.adwPROFIBUS_IN[Z] e deins s g
* 12 03_purCtionBlocks *$ Application. TA_I0.adwPROFIBUS _TN[3] ¢ dwind %525 §
"+ 89 Programs *® Application. TA_IO.adwPROFIBUS_IN[4] “w dwins Eee=t] g
=44 05 Globaks |~ * apoicalijy.TA_10.adwPROFTBUS_IN[5] ¢ dwine %D :F
lﬁ A0 I % application. TA_10.30wPROFIEUS _IN[E] W dn? %D [ﬁ
* 1 06 _Visu \ % Application. TA_IO.adwPROFIBUS_IN[7] "¢ |dwlng 2%I820 o
® 2 07_Traces \ 49 Application. TA_IO.adwPROFIBUS_IN[8] | dwine xmao g
) Library Manager \ *$ Application. TA_IO.adwPROFIBUS_IN[3] P dwin0 %P3 E
={ (@ Task Configuration 9 Application. TA_IO.adwPROFIBUS_IN[10] P dwlnin wBR el
= @& MainTask 4% Application. TA_I0.adwPROFIBUS_IN[11] ¢ dwiniz 3uD33
@) peere Application. TA_IO.adwPROFIBUS_IN[12] P deinll D34
8) Testpanel Application, TA_IO.adwPROFIBUS_IN[13] " dwinld %ID35
B Visualisierungsmanager 49 Wpoiication, TA_IO.adwPROFIBUS_IN[14] W owinls %B3%
#- [ftherCAT_Master (EtherCAT Master) *$ Adolication. TA_I0.adwPROFIBUS _IN[15] “® dwlnie D3z
parameterEditor (Parameter Editor) % xDatavaid %IX152.
H@ Encoder_Axis (Encoder_Axis) 15 XSyncPr... %IX152.
Motion_Axis (Motion_Axis) 4y %IX152.
(1% Digital_1_0 (Digital 1/0s i950) 1y . SRIXIS2.
U Analog_I_O (Analog 1/0s 1950) *# Application Y A_IO.adwPROFIBUS_OUT[D]
0] safetyInterface (Safetynterface) “» Am\(ahm&lO.adWRUFl’EUSfCMT[l]

[l onboardEtherCAT onboardEtherCATInterface)

" Application, TA_IO.adwPROFIBUS_OUT[2]
[m FieldBus (FieldbusInterface)

"# Application.TA_I0.adwPROFIBUS_OUT[3]
"# Application. TA_IO.adwPROFIBUS_OUT[4]
"# Application.TA_IO.adwPROFIBUS_OUT[S]
*# Application.TA_I0.adwPROFIBUS_OUT[8]
"#® Application. TA_IO.adwPROFIBUS_OUT[7]

VirtualAxes

R R A s

"o Application. TA_IO.adwPROFIBUS_OUT[S] dwOut9
*# Application.TA_I0.adwPROFIBUS_OUT[S] dwOut10
"# Application. TA_IO.adwPROFIBUS_OUT[10] dwOut11
"# Application. TA_I0.adwPROFIBUS_OUT[11] dwOut12
" Application. TA_IO.adwPROFIBUS_OUT[12] dwOut13
"® Application. TA_IO.adwPROFIBUS_OUT[13] dwOut14
*# Application.TA_IO.adwPROFIBUS_OUT[14] dwOut15
"® Application. TA_IO.adwPROFIBUS_OUT[15] dwOut1s %QD32
4
A
/ Reset Mapping Always update varisbles Enabled 1 (use bus cyde taskif n
__| Map the output variable array TA_/O.adwPROFIBUS_OUT “# = Map to existing varizble
0 to the input channels of the fieldbus interface of i950.
[E Cross Reference List % Messages - Total 0 error(s), 20 warning(s), 0 message(s) |
Lastbuid: @ 0 ® 0 FPrecomple @ 0§ Project user: (nobady) %)

lllustration 37: assignment of global variable arrays to the i950's fieldbus interface

Lenze Automation Building Blocks 3-47

Application Example
3.2 Commissioning Sequence (PROFIBUS)

In the i950 motion program PLC PRG, declare the following function blocks:

VAR

L_ICIA_PROFIBUS_Basel:L_ICIA_PROFIBUS_Base; // handling of basic PROFIBUS communication
L ICIA PROFIBUS Inl: L_ICIA_ PROFIBUS In; // reading/processing fieldbus inputs to
// scControlWords
L_ICIA_PROFIBUS_Outl: L_ICIA_PROFIBUS_Out; // processing/writing fieldbus outputs from
// scStatusWords
L_STAT1: L STAT; // generating the 4-bit pattern of the drive status
L MC1A ZeroDetectl: L_MClA ZeroDetect; // detection of rotation sense/zero speed
END VAR

Prepare the parameter correspondence list1! by extending the declaration list in the

Step 7 i950’s motion program PLC_PRG:

ascParReference: ARRAY [0..15] OF L_ICIA_sc93ParReference; // parameter reference list

Does your GSD configuration include a Drivecom VO parameter channel?

YES

Extend the parameter correspondence list started in step 5 with the necessary

Step 8 initialization values as described in chapter 2.1.2:

ascParReference: ARRAY [0..15] OF L_ICIA sc93ParReference; // parameter reference list
(wCode:=51, bySubCode:=0, wIlndex:=16#606C, bySubIndex:=0, bySize:=4, diNum:=1171875, diDen:=524288),
(wCode:=53, bySubCode:=0, wIndex:=16#6079, bySubIndex:=0, bySize:=4, diNum:=10, diDen:=1) ,
(wCode:=63, bySubCode:=0, wlndex:=16#2D49, bySubIndex:=5, bySize:=2, diNum:=1000, diDen:=1) ,
(wCode:=52, bySubCode:=0, wIndex:=16#2D82, bySubIndex:=0, bySize:=4, diNum:=10, diDen:=1) ,
(wCode:=54, bySubCode:=0, wIlndex:=16#2DD1, bySubIndex:=5, bySize:=4, diNum:=10, diDen:=1) ,
(wCode:=61, bySubCode:=0, wIndex:=16#2D84, bySubIndex:=1, bySize:=2, diNum:=10, diDen:=1) ,
(wCode:=64, bySubCode:=0, wIlndex:=16#2D40, bySubIndex:=7, bySize:=2, diNum:=1, diDen:=1) ,

(wCode:=84, bySubCode:=0, wIndex:=16#2C01, bySubIndex:=2, bySize:=4, diNum:=100, diDen:=1) ,
(wCode:=85, bySubCode:=0, wIndex:=16#2C01, bySubIndex:=3, bySize:=4, diNum:=10, diDen:=1)];

First, call the function block L_ICIA_PROFIBUS_Base in your PLC program and connect

Step 9 the variables as shown:

As an axis reference, connect the L ICIA PROFIBUS Base

i950 drive (Motion_Axis). =] Axis scStateMachine —
—| eFieldBusType xlnit—

The variaple structure ascRarRefer— =>! ascParReference XError —
ence , which was declared in step 9, eErrorlD —

is assigned to the corresponding in-
put ascParReference.

v Illustration 38: call of function block L_ICIA_PROFIBUS_Base at the beginning of the PLC program

" If no parameter channel is used, still the declaration is necessary as a dummy assignment.

Lenze Automation Building Blocks 3-48

Commissioning Sequence (PROFIBUS)

Call the function block L_ICIA_PROFIBUS_In directly after the function block
L_ICIA_PROFIBUS_Base in your PLC program and connect the variables as shown:

To access each element of the process data

Call the function block L_ICIA_PROFIBUS In
directly after the function block L_ICIA_PROFI-

of L_ICIA_PROFIBUS_In.scControlWords1,
insert a selector of type scControlWords1.

BUS_Base in your PLC program.

L_ICIA_PROFIBUS_In

Note:

On 9300, xBit00 and xBit01 were used to ad-
dress fixed speeds. In this example, these bits
are left disconnected.

adwFieldBusin scControlWords1— scControlWords1

cStateMachine scControlWords2

scControlWords3

BUS_In reads the raw fieldbus data

e function block L_ICIA_PROFI-

L_ICIA_PROFIBUS_Base and L_ICIA_PRO-
FIBUS_Out by sharing the variable structure
L_ICIA_PROFIBUS_Base.scStateMachine.

Please connect it accordingly to ensure cor-

J

xBit00
xBit01
xBit02

L_TF2P_SpeedControlBase.xNegativeDirection |
L_TF2P_SpeedControlBase.xQSPApplication |

OR b T TF2P_SpeedControlBase.xEnableOperation |

{ L_TF2P_SpeedControlBase.xResetError |

L_TF2P_SpeedControlBase.wProfileNumber.0

? P4 L_TF2P_SpeedControlBase.wProfileNumber.1

/

Connect the output of scControlWords1 to the
technology module L_TF2P_SpeedControlBase.

Connect the xDisable and xCinh signals via an OR
logic.

Do you see the signal negation at the OR output?
Don't forget to invert the OR output before assign-
ing the output to L_TF2P_SpeedControlBase.xEna-
bleOperation.

Illustration 39: call of function block L_ICIA_PROFIBUS_In directly behind the function block L_ICIA_PROFIBUS_Base

3 Application Example
3.2
Step 10
TA_10.adwPROFIBUS_IN
[L_ICIA_PROFIBUS_Base.sc Jachine
Th
as declared in step 2.
L_ICIA_PROFIBUS_lIn interacts with
rect function!
v
Lenze

Automation Building Blocks

3-49

3 Application Example
3.2 Commissioning Sequence (PROFIBUS)

Step 11 Read the maximum speed value npyax!2 from the legacy drivesi3 and convert it with
the help of the drive axis’ kinematic parameters to a reference velocity Vimax.
Example: nmax = 3000[rpm]
@ mounting direction 1] |cw
| position resolution 1]
2, | EA gear numerator [1]
2, | B gear denominator (1]
| transmission
2, | add. gear numer‘ator [1]
E H add. gear dengminator 1]
add. transmission
total transmission
C) o traversing/range 1] | modulo
@ o feed congtant [1] units/rev
/ e cycle lepgth |I] units/cycle
Illustration 407 kinematic parameters of thie i950 drive
n 1 1
Vinax = ma; IFeedConstantI - - =
60 min lgear| |lgear,add
nmax 4 0x500A4: 034 |0x5004: 026
= 10x500A4: 032 =
60 - 0x500A4:033] |0x500A4: 025
N Y
rev.
_ 30005 units: : 119 units
=————75—:320.0000 ————= 1488.663 ..
60 —— rev. 1279 1
min
A 4
Step 12 Declare a constant variable C /rMaxVelocity with an initialization value of Vmax as
P calculated in the previous step:

VAR CONSTANT
C_lrMaxVelocity: LREAL := 1488.663; // maximum drive velocity, scaled in [units/s]
END VAR

12 scaled in [rpm]
3 In the Lenze legacy devices, the maximum speed was set in code C0011/000.

Lenze Automation Building Blocks 3-50

Application Example
Commissioning Sequence (PROFIBUS)

Lenze

Read and scale the speed setvalueon L _/CIA PROFIBUS In.scContro/lWords1.wini,and
route it via the following signal flow to the speed control technology module
L_TF2P_SpeedControlBase. Modify your program as follows:

In the first step, the normalized input val

the project in step 1. For more informati
document in AKB article 202000349.

Word1.win1 with its value range is rescaled to a velocity range of 0.0 ...
C_IrMaxVelocity by means of the function L_TB1A_AnaloglnputScaling.

The function L_TB1A_AnaloglnputScaling is included in the export file loaded to

lue on L_ICIA_PROFIBUS _In.scControl-

on to this function, please refer to the PDF

B— —

L_ICIA_PROFIBUS_In.scControlWord1.win1 I—

L_TB1A_AnaloglnputScaling
iln_a

00 |

IMin
IMax

C_IMaxVelocity

[L_ICIA_PROFIBUS_In.scControlWord1.xBit04 |

. [L_TF2P_SpeedControBase.IrSetvelOut ——|

The control bit L_ICIA_PROFI-
BUS_In.scControlWords1.xBit04 allows
freezing the ramp function generator of the
L_TF2P_SpeedControlBase technology
module.

As currently this function is not included in
the technology module itself, it must be pro-
grammed outside the technology module by
means of a selector (SEL operator).

erator).

The control bit L_ICIA_PROFIBUS_In.scControlWords1.xBit05 switches the tar-
get velocity for the L_TF2P_SpeedControlBase technology module to a zero
value. The function has priority over the ‘freeze’ function.

As currently this function is not included in the technology module itself, it must
be programmed outside the technology module by means of a selector (SEL op-

The selector’s output is assigned to the target velocity IrSetVel of the technology
module L_TF2P_SpeedControlBase.

Automation Building Blocks

lllustration 41: reading/scaling/modifying the target velocity value IrSetVel of L_TF2P_SpeedControlBase

3-51

https://lenzegroup.sharepoint.com/sites/ApplicationKnowledgeBase/Lists/AKB_Intranet/DispForm.aspx?ID=20144

3 Application Example
3.2 Commissioning Sequence (PROFIBUS)

To prepare the status word on the L_ICIA_PROFIBUS_Out function block, three steps of
preparation work is necessary:

In the first step, declare a variable /rZeroSpeedThreshold for a velocity tolerance
window. The tolerance window defines the behavior/stability of the zero-speed signal.

lrZeroSpeedThreshold: LREAL := 1.0; // zero-speed tolerance threshold, scaled in [units/s]

Initialize the variable with a velocity threshold limit value. Whenever the drive’s actual
velocity is smaller/equal the threshold value, the (n=0) status flag goes to a TRUE level.

Inthe next step, call the function block L_MC1A_ZeroDetect at the end of your program

Step 15 and connect it in the signal flow as follows:

Assign the following element variables of the Motion_Axis structure to the inputs Call the function block L_MC1A_ZeroDe-
of the L_MC1A_ZeroDetect function block: tect. The block is included in the export

e Motion_Axis.IrActPosition =>| MC1A_ZeroDetect.IrPosin file 'O?dfed 0 tth © Ft)fOth.Ct f'n Stf P 4BIFOli

o Motion_Axis.eTraversingRange =>L_MC1A_ZeroDetect.eTraversingRange more Iormation 1o fis function biock,

. . please refer to the PDF document in AKB
o Motion_Axis.IrCycleLength =>L_MC1A_ZeroDetect.IrCycleLength article 202000349

'

L _MC1A ZeroDetect
MUL | Motion_Axis.IrActPosition IrPosIn xZero |—
IrZeroSpeedThreshold | A IrStandstillWindow xZeroCw |—
L_MC1P_GetTaskCycle() | Motion_Axis.eTrayersingRange |— eTraversingRange xZeroCew —
Motion_Axis.IrCycleLength [— IrCycleLength xPositive |—
T xNegative —
Multiply the zero-speed threshold limit (IrZeroSpeedThreshold) with xStandstill [—
the task cycle time Atrascyce (L_MC1A_GetTaskCycle()) to geta
standstill hysteresis distance.
Connect the result to the input signal L_MC1A_ZeroDetect.IrStand-
stillWindow.

lllustration 42: zero speed detection by means of the function block L_MC1A_ZeroDetect

Call the function block L_STAT at the end of your program and connect the following

Step 16 variables:

Call the function block L_STAT at the end of
your program.

- — - - The function block L_STAT is included in the
Please consider the negations in the signal flow on the input export file loaded to the project in step 4.
signals L_STAT.bCInh_b and L_STAT.bMessage_b. l

L_STAT
L_ICIA_PROFIBUS_Base.xInit binit_b bStat1_b |—
L_TF2P_SpeedControlBase.xOperationEnabled bCinh_b bStat2_b —
L_TF2P_SpeedControlBase.xError |—¥ bTrip_b bStat4_b —
L _TB2P A)dslnterface.xVoItaqunM—C bMessage_b bStat8_b —

v Illustration 43: generation of status bits bStat1_b ... bStat8_b by means of the function block L_STAT

Lenze Automation Building Blocks 3-52

https://lenzegroup.sharepoint.com/sites/ApplicationKnowledgeBase/Lists/AKB_Intranet/DispForm.aspx?ID=20144
https://lenzegroup.sharepoint.com/sites/ApplicationKnowledgeBase/Lists/AKB_Intranet/DispForm.aspx?ID=20144

Application Example

Commissioning Sequence (PROFIBUS)

Insert a composer block of scStatusWords1 and connect the following signals:

[L_TB2P_AxisInterface.xImpActive |————

Some (minor important) status signals are not yet
available on the Lenze technology modules.

However, you may program work-arounds if you re-
quire these signals already.

L_TB1A_AnalogOutputScaling
L_TF2P_SpeedControlBase.IrActVel | Irin
00 | IMin
C_ImMaxVelocit IMax

L_TB2P_AxisInterface.xMaxTorqueLimit \
L_TF2P_SpeedControlBase.xAccDecDone —
L_TF2P_SpeedControlBase.xMinVelocity |———

L_MC1A_ZeroDetect.xStandstill ———

L_TF2P_SpeedControlBase.xOperationEnabled |-G

L_STAT.bStat1_b
L_STAT.bStat2_b

L_STAT.bStat4 b

L_STAT .bStat8_b
L_TF2P_SpeedControBase.xWarning ————
L_TB2P_AxisInterface.xVoltageEnabled I—C
L_MC1A_ZeroDetect.xNegative

L_TB2P_AxisInterface.xReadyForMotion————

xBit00
xImp
xBit02
xBit03
xBit04
xBit05
XNActEqZero
xClnh
xStat1
xStat2
xStatd
xStat8
xWarning
xMessage
xBit14
xBit15
wStat
wOut1
wOut2
wOut3

scStatusWords1

The drive’s actual velocity (0.0 ... C_IrMaxVelocity) is scaled to a normal-
ized output signal (0 ... 16384) on L_ICIA_PROFIBUS_Out.scStatus-
Words1.wOut1 by means of the function L_TB1A_AnalogOutputScaling.

The function L_TB1A_AnalogOutputScaling is included in the export file
loaded to the project in step 4. For more information to this function, please
refer to the PDF document in AKB article 202000349.

llustration 44: assignment of status signals/of normalized motor speed to the scStatusWords1 composer

Insert the L_ICIA_PROFIBUS_Out function block at the end of your program, link the

Step 18

Lenze

L ICIA scStatusWordsl composer’s output to the scStatusWordsi input of the
L_ICIA_PROFIBUS_Out block and assign the generation of the AIF status word via
function block L_ICIA_PROFIBUS_Out:

| Insert the function block L_ICIA_PROFIBUS Out. |

Connect the scStatusWords1 composer’s output to the scStatus-
Words1 input of the L_ICIA_PROFIBUS_Out block.

xBit00
xImp
xBit02
xBit03
xBit04
xBit05
xNActEqZero
xClnh
xStat1
xStat2
xStatd
xStat8
xWarning
xMessage
xBit14
xBit15
wStat
wOut1
wOut2
wOut3

scStatusWords1

\

L_ICIA_PROFIBUS_Out

—scStatusWords2
—scStatusWords3

[L_ICIA_PROFIBUS_Base.scStateMachine | —-scStateMachine

scStatusWords1 adwFieldBusOut

— TA_10.adwPROFIBUS_OUT |

!

chine.

L_ICIA_PROFIBUS_Out interacts with L_ICIA_PROFI-
BUS_Base and L_ICIA_PROFIBUS_In by sharing the
variable structure L_ICIA_PROFIBUS_Base.scStateMa-

Please connect it accordingly to ensure correct function!

Assign the adwFieldBusOut output array to the global
variable array TA_IO.adwPROFIBUS_OUT already
mapped to the fieldbus interface.

lllustration 45: call of function block L_ICIA_PROFIBUS_Out at program end and assignment to the fieldbus output variables

Automation Building Blocks

3-53

https://lenzegroup.sharepoint.com/sites/ApplicationKnowledgeBase/Lists/AKB_Intranet/DispForm.aspx?ID=20144

3 Application Example
3.2 Commissioning Sequence (PROFIBUS)

Set the PROFIBUS station address of the i950 in index 0x2341:001:
Step 19 _
Index | Subindex | Name Value Unit
0x2341 1 PROFIBUS: Station address 4
Make sure that index 0x2341:011 is set to a value of 1 (‘EMF2133/B (ID:2133})14 or of
Step 20 2 (‘EMF2131/B (ID:2131))15.
Index | Subindex | Name Value Unit
0x2341 11 PROFIBUS: Compatibility mode EMF2133IB (ID: 0x2133) [1]
A4
Compile, download and start the project to the i950 drive. You are now ready to
Step 21 . A .
control the i950 drive in the same way as the 9300 drive.
end

s~ Tip
. = After downloading, restarting of the PROFIBUS slave might be necessary due to
= changed values in indexes 0x2341:001 and 0x2341:011.

Restart the PROFIBUS communication with the current settings with the following

command:
Index | Sublndex | Name | value Unit
0x2340 0 PROFIBUS communication I no action / no error 0
restart with default values [2]
stop communication [5]
in progress [10]
action cancelled [11]
fault [12]

14 This setting defines which device type is reported via PROFIBUS to the logic PLC. A setting of 0x2341:11=1 makes the logic PLC believe that the connected device
is a 8200/9300 with a PROFIBUS module EMF2133IB.
'5 A setting of 0x2341:11=2 makes the logic PLC believe that the connected device is a 8200/9300 with a PROFIBUS module EMF2131IB.

Lenze Automation Building Blocks 3-54

4 Appendix

4.1 Supported GSD Configurations
4 Appendix
4.1 Supported GSD Configurations®
| GSD configuration | PROFIBUS config value(s) | corresponding value in 0x2348:003
1. no parameter channel / process data (Drivecom control)
1 | PZD(1W) 0x70 xx0170
12 | PZD(12W) 0x7B xx017B
2. consistent Drivecom parameter channel / process data (Drivecom control)
13 | PAR(cons.) + PZD(1W) 0xF3, 0x70 xx02F370
24 | PAR(cons.) + PZD(12W) 0xF3, 0x7B xx02F37B
3. consistent Drivecom parameter channel / consistent process data (Drivecom control)
25 | PAR(cons.) + PZD(1W cons.) 0xF3, 0xFO xx02F3F0
36 | PAR(cons.) + PZD(12W cons.) 0xF3, 0xFB xx02F3FB
4. Drivecom parameter channel / process data (Drivecom control)
37 | PAR+PZD(1W) 0x73, 0x70 xx027370
48 | PAR +PZD(12W) 0x73, 0x7B xx02737B
5. Drivecom parameter channel / consistent process data (Drivecom control)
49 | PAR+PZD(1W cons.) 0x73, 0xFO xx0273F0
60 | PAR+PZD(12W cons.) 0x73, 0xFB xx0273FB
6. no parameter channel / consistent process data (Drivecom control)
61 | PZD(1W cons.) 0xFO xx01F0
72| PZD(12W cons)) 0xFB X01FB
7. no parameter channel / process data (Lenze device control)
73 | PZD(1W) AR 0x00, 0x00, 0x00, 0x70 xx0400000070
84 | PZD(12W) AR 0x00, 0x00, 0x00, 0x7B xx040000007B
8. consistent Drivecom parameter channel / process data (Lenze device control)
85 | PAR(cons.) + PZD(1W) AR 0x00, 0x00, 0x00, 0xF3, 0x70 xx05000000F370
96 | PAR(cons.) + PZD(12W) AR 0x00, 0x00, 0x00, OxF3, 0x7B xx05000000F37B
9. consistent Drivecom parameter channel / consistent process data (Lenze device control)
97 | PAR(cons.) + PZD(1W cons.) AR 0x00, 0x00, 0x00, 0xF3, 0xFO xx05000000F3F0
108 | PAR(cons.) + PZD(12W cons.) AR 0x00, 0x00, 0x00, OxF3, OxFB xx05000000F3FB
10. Drivecom parameter channel / process data (Lenze device control)
109 | PAR +PZD(1W) AR 0x00, 0x00, 0x00, 0x73, 0x70 xx050000007370
120 | PAR + PZD(12W) AR 0x00, 0x00, 0X00, 0x73, 0x7B__| 050000007378
11. Drivecom parameter channel / consistent process data (Lenze device control)
121 | PAR +PZD(1W cons.) AR 0x00, 0x00, 0x00, 0x73, OxFO xx0500000073F0
132 | PAR+PZD(12W cons.) AR 0x00, 0x00, 0x00, 0x73, 0xFB xx0500000073FB
12. no parameter channel / consistent process data (Lenze device control)
133 | PZD(1W cons.) AR 0x00, 0x00, 0x00, 0xFO xx04000000F0
144 | PZD(12W cons.) AR 0x00, 0x00, 0x00, 0xFB xx04000000FB

16 no distinguishing between inconsistent/consistent data transmission

Lenze Automation Building Blocks 4-55

4 Appendix

4.2 AIF-IN Interface of 9300
4.2 AIF-IN Interface of 9300
AIF-IN
]) [DCTRL
AIF-CTRLB3 , fosp |
[AIF-CTRL.B8 | in|SABLE |
AIF-CTRLBY N
AIF-CTRLB10 i 1rip.sET |
AIF-CTRLBA1 , |rrip. RESET]
— | P — |
Bit 0 AIF-CTRLBO |
AIF-CTRLB1 |,
AIF-CTRL.B2
- >0
s AIF-CTRLB4 |
] >
3 o 16 bits AIF-CTRLB5 |
c AIF-CTRLB6
O AIF-CTRLB7 |
AIF-CTRLB12 |, -
AIF-CTRL.B13 |
Bit 15 >0
AIF-CTRLB14 |,
AIF-CTRLB15 |,
=
o o 16 bits . o AIFINWT 1
@ I [C0856/1
16 Bit
LOwword] o AIF-IND2 |,
16 Bit -
HIGl—:Worc
Automation
interface X1 O » 16 bits I ; AIF-IN.W2 >0
—!| 16 bits . AIEINW3 i,
v AIFANBO |
© AIFINB2 I
] 16 binary i
2)
o signals
AIF-IN.B14 |,
AIE-INB15 1
AIFINB16 |,
08557 AIF-INB17 1
¢—»|16 binary H
signals AIE-INB30 |
AIF-IN.B31 |
©
M~
o 16 bits
& »1LOW word
. AIF-IN.D1 "
»/16 bits
HIGH word

Illustration 46: signal flow of the AIF-IN interface on the 9300 servo inverter (excerpt from GDC help)

Lenze Automation Building Blocks 4-56

4 Appendix

4.3 AIF-OUT Interface of 9300
4.3 AIF-OUT Interface of 9300
:
STAT.BO]
OHC0156/1 » 0 i
DCTRL-IMP 1 !
1
CH{Co156/2} STAT.B2 » 2]
(H{CoTser3STAT.B3 P :
HCo156/4] 23;2‘5‘ » 4]
CH{CO0156/5 : > 5 i
JSIEIE DCTRL-NACT=0 | o !
DCTRL-CINH - H
DCTRL-STAT*1
8 .
DCTRL-STAT*2 g 1?3": OOUT
DCTRLSTAT*4 |40 !
DCTRL-STAT'8 .,
> o
DCTRL-WARN 12 5
DCTRL-MESS 13 N
DT@ STAT.B14 »14 E
H{Cotse7—2ATLB15 »{15 5
16 bits Bit 15
Al rorgs AF-OUTD2 |LOW word cossq] BitO
" |18 bits
C1196 HIGH word[] 01
AIF-OUT W1 ™ =
O—+—{C0850/1} ' X >3
C0858/1 > &
085072 — AIF-OUT.W2
TR v Bit 15 Automation
C0858/2 it
AIF-OUT.W3] ;
O——|COBSO.’3| o Bit 0 interface
v [Co852] °'
C0858/3 F X1
N =%y oy o
| [CorTer 200 AN ol 5
! : ! 16 bits g %
| Coi16/16 Egg-ﬁ ; p| OV word g &
, - >
: C0116/1 ; + [= 16 bits
! p i |HIGH word
: ~ FDO-31 L]
1 C0116/82 g C0853
16 bits .
LOW word p 0!
| [s0]
A+ C0851 A'FOLVJTE” > N o~
16 bits g e
C0859 HIGH word > S
Bit 31

Illustration 47: signal flow of the AIF-OUT interface on the 9300 servo inverter (excerpt from GDC help)

Lenze Automation Building Blocks 4-57

4 Appendix

4.4 Drivecom Control Word
4.4 Drivecom Control Word
Bit | Name Meaning
0 Switch On command bit:
FALSE commands 2, 6, 8 (controller inhibit)
TRUE command 3 (controller enable)
1 Voltage Inhibit command bit; disable/enable motor voltage

FALSE inhibit voltage
TRUE enable voltage

2 Quick Stop command bit: activate quick stop
FALSE activate quick stop
TRUE release quick stop

3 Enable Operation command bit: enable drive operation
FALSE disable drive operation
TRUE enable drive operation

4 RFG Inhibit command bit: application quick stop (QSP)

FALSE activate application quick stop (QSP)

TRUE release application quick stop (QSP)

Note: The negated signal of this bit is directly output on scControlWords1.xQsp.

5 RFG Stop command bit: stop ramp function generator

FALSE ramp function generator freezes

The drive maintains the actual speed even if the target speed on scContro/lWords1.iln2 is not
reached yet.

TRUE ramp function generator is active

The drive accelerates/decelerates to the target speed on scControlWords1.iln2.

Notes:

mnegated signal of this bit is directly output on scControlWords1.xBit04.

o In the basic application ‘SpeedControl’, bit 5 (RFG Stop) has minor priority against bit 6 (RFG Zero).

6 RFG Zero command bit: ramp down set speed to zero

FALSE zero target speed

The drive ramps down to a zero speed. The value received on scControlWords1.iln2 is ignored.
TRUE external target speed

The drive follows the target speed on scControlWords1.iln2.

Notes:
o The negated signal of this bit is directly output on scContro/Words1.xBit05.
o |n the basic application ‘SpeedControl’, bit 6 (RFG Zero) has priority over bit 5 (RFG Stop).

7 Error Reset command bit: reset drive error
FALSE=>TRUE resets a drive error
Notes:

o Adrive error can only be reset in case the error cause has been removed before.
o This bit is directly output on scControlWords1.xTripReset.

8...10 | (reserved)

1 Manufacturer free bit (directly output on scControlWords1.xBit07)
12 Manufacturer free bit (directly output on scControlWords1.xBit12)
13 Manufacturer free bit (directly output on scControlWords1.xBit13)
14 Manufacturer free bit (directly output on scControlWords1.xBit14)
15 Manufacturer free bit (directly output on scControlWords1.xBit15)

Lenze Automation Building Blocks 4-58

4 Appendix

45 Drivecom Status Word
4.5 Drivecom Status Word
Bit | Name Meaning
0 Ready To Start device state machine information:

FALSE The device status is lower than Ready To Start.
TRUE The device status is at least Ready To Start.

1 Switched On device state machine information:

FALSE The device status is lower than Switched On.
TRUE The device status is at least Switched On.

vice state machine information:

FALSE The device status is lower than Operation Enabled.
TRUE The device status is at least Operation Enabled.
vice is in error state:

FALSE no error is active on the device

TRUE an error is active on the device

Note: The signal is derived from scStatusWords1.xStat8, scStatusWords1.xStat10 and scStatusWords1.xStat11.
4 Voltage Inhibited handshake signal: retum of control bit 1 (“Voltage Inhibit‘)

FALSE no error is active on the device

TRUE an error is active on the device

Note: The signal is directly copied from bit 1 of the Drivecom control word (see previous chapter 4.4).
5 Quick Stop handshake signal: return of control bit 2 (Quick Stop)

FALSE quick stop command is active on the device

TRUE no quick stop command is active on the device

Note: The signal is directly copied from bit 2 or bit 4 of the Drivecom control word (see previous chapter 4.4).
6 Switch-On Inhibited | device state machine information:

FALSE The device is not in state Switch-On Inhibited.

TRUE The device is in state Switch-On Inhibited.

@

2 Operation Enabled d

3 Fault d

[5)

7 Waming device is in warning state:
FALSE no warning is active on the device
TRUE a warning is active on the device
Note: The signal of this bit is directly copied from scStatusWords1.xWarning.
8 Message message is active on the device:
FALSE no message is active on the device
TRUE a message is active on the device
Notes:

o A message state typically occurs in at an undervoltage state (main power switched off).
o The signal of this bit is directly copied from scStatusWords1.xMessage.

9 Remote fieldbus access authorization:

TRUE (this signal is set always TRUE in Drivecom operation mode)
10 | Set Point Reached status of the internal ramp generator:

FALSE The actual drive speed does not match the target value.
TRUE The actual drive speed matches the target value.

Notes:
o |n default speed control, the signal represents the Set Point Reached status of the speed ramp generator. In this
case, the following Drivecom command bits may suppress the Set Point Reached status signal:
— RFG Inhibit (command bit 4)
— RFG Stop (command bit 5)
— RFG Zero (command bit 6)
o Generally, the signal of this bit is directly copied from scStatusWords1.xBit04.
1 Limit Value Status of the Drivecom speed limitation (not supported):

FALSE (this signal is set always FALSE in Drivecom operation mode)

12 Manufacturer free bit (signal directly copied from scStatusWords1.xBit14)
signal directly copied from scStatusWords1.xBit03)
signal directly copied from scStatusWords1.xBit02)

signal directly copied from scStatusWords1.xBit05)

13 Manufacturer free bit

14 Manufacturer free bit

15 Manufacturer free bit

Lenze Automation Building Blocks 4-59

4 Appendix
4.6 Drivecom DP VO Parameter Channel (Tx)

4.6 Drivecom DP VO Parameter Channel (Tx)

The following chart describes the meaning of the transmit parameter channel request (8 bytes),
sent by the PLC to the slave device (drive):

byte 1 (service) byte 2 byte 3 byte 4 bytes 5...8
subindex index'? index data
7[8[5]4]3[2|1]0 (high byte) (low byte)

T

request type: 000 = no request
001 = read request (read data from device)
010 = write request (write data to device)

(not used)

data length'®; 00 =1 byte
01=2bytes
11 =4 bytes

handshake:
o The PLC changes this (toggle) bit for every new request.
o The slave mirrors this bit into its response telegram (see chapter 4.7).

(not used — keep on FALSE level)

lllustration 48: structure of the Drivecom DP VO parameter channel Tx telegram on the 9300 servo inverter (PLC => drive)

7 The 9300 index number results from subtracting the 9300 code number from a fixed value of 24575 (=0x5FFF).
'8 length of data in bytes 5 ... 8 (datalerror 1 ... 4) to be read/written to the slave device index

Lenze Automation Building Blocks 4-60

4 Appendix
4.7 Drivecom DP VO Parameter Channel (Rx)

4.7 Drivecom DP VO Parameter Channel (Rx)

The following chart describes the meaning of the receive parameter channel response (8 bytes),
returned by the slave device (drive) to the PLC:

byte 1 (service) byte 2 byte 3 byte 4 bytes 5...8
subindex index'® index data / error code
716(5(4|3|2|1/0 (high byte) (low byte)
_E mirror of the request type bits 0 ... 2 (see chapter 2.1.4)

(not used)

data length?; 00 =1 byte
01=2bytes
11 =4 bytes

mirror of handshake bit 6 of the Tx telegram (see chapter 2.2.16):

o The PLC changes this (toggle) bit for every new request.

o The slave device copies the bit into its response telegram.

status bit:

Status information from the slave device to the PLC when sending the request confirmation. This bit
informs the master PLC whether the request has been carried out without any faults.

0 = request completed without fault
(The data of bytes 5 ... 8 represent the data read from the target index.)

1 = request not completed - an error has occurred.
(The data of bytes 5 ... 8 represent the error number.)

The following error codes are returned in case of bit 7 is on TRUE:

byte5 byte6 byte7 byte8 error description

00 00 00 08 no response to a request could be received within the watchdog time
00 00 03 06 access not permitted for this parameter

00 00 07 06 code number does not exist in the parameter reference list

00 00 08 06 datatypes do not correspond

01 FE 00 08 invalid service (no read or write request)

10 00 05 06 target index/sub-index number does not exist on the device

1 00 05 06 sub-code number does not exist in the parameter reference list
12 00 05 06 data length of the value to be written is too large

13 00 05 06 data length of the value to be read is too small

30 00 00 08 write access not denied due to drive operation enabled

31 00 00 08 upper limit value of the parameter is not reached

32 00 00 08 lower limit value of the parameter is not reached

[llustration 49: structure of the Drivecom DP V0 parameter channel Rx telegram on the 9300 servo inverter (drive => PLC)

19 The 9300 index number results from subtracting the 9300 code number from a fixed value of 24575 (=0x5FFF).
2 Jength of the return data in bytes 5 ... 8 (datalerror 1 ... 4)

Lenze Automation Building Blocks 4-61

	Copyright
	Imprint
	Copyright information
	Liability
	Trademarks
	1 Function Blocks
	1.1 Document History
	1.2 About Automation Building Blocks
	1.3 Conventions used
	Variable Names

	1.4 System Requirements
	Software
	Hardware

	2 Function Blocks
	2.1 Function Block L_ICIA_PROFIBUS_Base
	2.1.1 Configuration Mode Selection (GSD/GSE Configuration)
	Set GSD/GSE Configuration (BYTE ARRAY[23])

	2.1.2 Parameter Handling
	2.1.3 Incompatibility List
	2.1.4 Interface
	2.1.5 Task Information
	2.1.6 Inputs and Outputs
	2.1.7 Inputs
	User-Defined Variable Structure L_ICIA_sc93ParReference

	2.1.8 Outputs
	User-Defined Variable Structure L_ICIA_scStateMachine

	2.2 Function Block L_ICIA_PROFIBUS_In
	2.2.1 Process Data (PZD)
	2.2.2 Drivecom State Machine
	2.2.3 Incompatibility List
	2.2.4 Interface
	2.2.5 Task Information
	2.2.6 Inputs and Outputs
	2.2.7 Inputs
	2.2.8 Outputs
	User-Defined Variable Structure L_ICIA_scControlWords1
	User-Defined Variable Structure L_ICIA_scControlWords

	2.3 Function Block L_ICIA_PROFIBUS_Out
	2.3.1 Process Data (PZD)
	2.3.2 Drivecom State Machine
	2.3.3 Incompatibility List
	2.3.4 Interface
	2.3.5 Task Information
	2.3.6 Inputs and Outputs
	2.3.7 Inputs
	2.3.8 Outputs
	User-Defined Variable Structure scStatusWords1
	User-Defined Variable Structure L_ICIA_scStatusWords

	3 Application Example
	3.1 Commissioning Sequence (Motion Application)
	3.2 Commissioning Sequence (PROFIBUS)

	4 Appendix
	4.1 Supported GSD Configurations
	4.2 AIF-IN Interface of 9300
	4.3 AIF-OUT Interface of 9300
	4.4 Drivecom Control Word
	4.5 Drivecom Status Word
	4.6 Drivecom DP V0 Parameter Channel (Tx)
	4.7 Drivecom DP V0 Parameter Channel (Rx)

