
 

 

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  

 

FAST Application Software 

 

Automation Building Blocks 

 L_ICIA_CommunicationInterface Function Blocks Reference Manual        EN 



 

 Automation Building Blocks 

This manual applies to the Automation Building Blocks L_ICIA_COMMUNICATIONINTER-
FACE Function Blocks. 

 Copyright  

© 2025 Lenze SE. All rights reserved.  

 Imprint  

Lenze SE 

Hans-Lenze-Strasse 1, D-31855 Aerzen, Germany  

Phone: +49 (0)5154 / 82-0 

Fax: +49 (0)5154 / 82-2111 

E-Mail: Lenze@Lenze.de 

 Copyright information  

All texts, photos and graphics contained in this documentation are subject to copyright 

protection. No part of this documentation may be copied or made available to third parties 

without the explicit written approval of Lenze SE.  

 Liability  

All information given in this documentation has been carefully selected and tested for 

compliance with the hardware and software described. Nevertheless, discrepancies 

cannot be ruled out. We do not accept any responsibility or liability for any damage that 

may occur. Required correction will be included in updates of this documentation.  

 Trademarks  

Microsoft, Windows and Windows NT are registered trademarks or trademarks of the Mi-

crosoft Corporation in the USA and/or other countries.  

Adobe and Reader are registered trademarks or trademarks of Adobe System Incorporated in 

the USA and/or other countries.  

Any additional trade names given in this documentation are trademarks of their correspond-

ing owners.  

mailto:Lenze@Lenze.de


Contents 
 

 Automation Building Blocks I 

Contents 
 

1 Function Blocks .......................................................................................................................................... 2-1 
1.1 Document History ....................................................................................................................................... 2-1 
1.2 About Automation Building Blocks ........................................................................................................ 2-1 
1.3 Conventions used ........................................................................................................................................ 2-2 
1.4 System Requirements ................................................................................................................................ 2-3 

2 Function Blocks .......................................................................................................................................... 2-4 
2.1 Function Block L_ICIA_PROFIBUS_Base ................................................................................................ 2-6 

2.1.1 Configuration Mode Selection (GSD/GSE Configuration)............................................... 2-6 
2.1.2 Parameter Handling .................................................................................................................. 2-7 
2.1.3 Incompatibility List .................................................................................................................. 2-12 
2.1.4 Interface ..................................................................................................................................... 2-13 
2.1.5 Task Information ..................................................................................................................... 2-13 
2.1.6 Inputs and Outputs ................................................................................................................. 2-13 
2.1.7 Inputs .......................................................................................................................................... 2-13 
2.1.8 Outputs ...................................................................................................................................... 2-16 

2.2 Function Block L_ICIA_PROFIBUS_In .................................................................................................... 2-19 
2.2.1 Process Data (PZD) .................................................................................................................. 2-20 
2.2.2 Drivecom State Machine ....................................................................................................... 2-21 
2.2.3 Incompatibility List .................................................................................................................. 2-22 
2.2.4 Interface ..................................................................................................................................... 2-23 
2.2.5 Task Information ..................................................................................................................... 2-23 
2.2.6 Inputs and Outputs ................................................................................................................. 2-23 
2.2.7 Inputs .......................................................................................................................................... 2-23 
2.2.8 Outputs ...................................................................................................................................... 2-23 

2.3 Function Block L_ICIA_PROFIBUS_Out ................................................................................................ 2-27 
2.3.1 Process Data (PZD) .................................................................................................................. 2-28 
2.3.2 Drivecom State Machine ....................................................................................................... 2-30 
2.3.3 Incompatibility List .................................................................................................................. 2-31 
2.3.4 Interface ..................................................................................................................................... 2-32 
2.3.5 Task Information ..................................................................................................................... 2-32 
2.3.6 Inputs and Outputs ................................................................................................................. 2-32 
2.3.7 Inputs .......................................................................................................................................... 2-32 
2.3.8 Outputs ...................................................................................................................................... 2-32 

3 Application Example ................................................................................................................................ 3-36 
3.1 Commissioning Sequence (Motion Application) .............................................................................. 3-36 
3.2 Commissioning Sequence (PROFIBUS) ................................................................................................ 3-44 

4 Appendix ................................................................................................................................................... 4-55 
4.1 Supported GSD Configurations ............................................................................................................. 4-55 
4.2 AIF-IN Interface of 9300 .......................................................................................................................... 4-56 
4.3 AIF-OUT Interface of 9300 ...................................................................................................................... 4-57 
4.4 Drivecom Control Word ........................................................................................................................... 4-58 
4.5 Drivecom Status Word ............................................................................................................................. 4-59 
4.6 Drivecom DP V0 Parameter Channel (Tx) ........................................................................................... 4-60 
4.7 Drivecom DP V0 Parameter Channel (Rx) ........................................................................................... 4-61 



1  Function Blocks 
1.1  Document History 

 

 Automation Building Blocks 2-1 

 

1 Function Blocks 

1.1 Document History 

Version Desciption 

0.1 24/11/2025 LSE first edition 

0.2 04/12/2025 LSE update to simplified GSD identification method 

1.0 03/02/2026 LSE version V1.0 published 

    

    

    

 

1.2 About Automation Building Blocks 

This manual describes a software solution for a partial task.  

It is the user’s responsibility to verify if the solution proposed by the software corresponds to his 

requirement. If necessary, the solution must be adapted. Physical aspects such as drive design are 

not part of this manual. 

 

 
Note: 

The terminal connection diagrams appearing in this manual show the wiring required 

to operate the software on a sample demo rig. 

 

  



1  Function Blocks 
1.3  Conventions used 

 

 Automation Building Blocks 2-2 

 

1.3 Conventions used 

This manual uses the following conventions to distinguish between different types of information:  

Type of information Highlighting Example/notes 

Spelling of numbers 

Decimal separator  Point The decimal point is always used. 
For example: 1234.56 

Text 

Program name  » « »PLC Designer« ...  

Variable names italic By setting xEnable to TRUE... 

Function blocks bold 

 

The L_MC1P_AxisBasicControl function block ... 

Function libraries The L_TT1P_TechnologyModules function library ... 

Buttons … and confirm by clicking on Continue. 

Source code Courier ... 

dwNumerator   := 1; 

dwDenominator := 1; 

... 

Key words Courier 

bold 
...starts with FUNCTION and ends with END FUNCTION. 

Keyboard commands <bold> Press the <F2> key to request input assistance  

If a shortcut is required for a command to be executed, a „+“ separates the com-
mands:  
Press the <Shift>+<ESC> key to ...  

 

 

 Variable Names 

The conventions used by Lenze for the variable names of Lenze system blocks, function blocks and 

functions are based on the "Hungarian Notation". This notation makes it possible to identify the 

most important properties (e.g. the data type) of the corresponding variable by means of its name, 

e.g. xAxisEnabled. 

 

  



1  Function Blocks 
1.4  System Requirements 

 

 Automation Building Blocks 2-3 

 

1.4 System Requirements 

 Software 

Product Type Version 

PLC Designer  4.1 or higher 

 Hardware 

Product Type Hardware Version Firmware Version 

i950 I95AExxxF1AV10Z02R not relevant 1.14 or higher 

PROFIBUS slot module I9MAFP0000000S  

 

  

 

 

  



2  Function Blocks 
1.4  System Requirements 

 

 Automation Building Blocks 2-4 

 

2 Function Blocks 

The function blocks L_ICIA_PROFIBUS_Base, L_ICIA_PROFIBUS_In and L_ICIA_PROFIBUS_Out aim 

at replacement scenarios of the 9300 servo inverter series by Lenze’s latest CbM/DbM systems such 

as the i950.  

 

  
 

Illustration 1: 9300 servo inverter with PROFIBUS module1 
 

Illustration 2: i950 servo inverter with PROFIBUS slot module  

 

 


Note:  

In many cases, a one-to-one replacement might be required, not touching the logic 

PLC’s program.  

 

  

 
1 For Lenze devices such as 9300, two AIF modules for PROFIBUS were available:  

1 = EMF2133IB with an extended scope of GSD/GSE configurations (see chapter 4.1) 
2 = EMF2131IB with a basic scope of GSD/GSE configurations (only Drivecom drive profile with 1 … 4 process data) 

logic PLC 

(PROFIBUS master) 

logic PLC 

(PROFIBUS master) 

9300 servo inverter 

EMF2133IB 

(PROFIBUS slave module) 

i950 servo inverter 

I9MAFP0000000S 

(PROFIBUS slave module) 



2  Function Blocks 
1.4  System Requirements 

 

 Automation Building Blocks 2-5 

 

Three function blocks exist, splitting the AIF fieldbus communication into three sub-functions: 

 

 
 

 
 
 
 
 
 
 
 
 

Illustration 3: overview on the process data communication (PDO) and parameter channel communication (SDO) 

 

 

1. A function block L_ICIA_PROFIBUS_In to extract the process data control information from the 

raw data received on PROFIBUS. The method provides the process data in the form of the AIF_IN 

format of the 9300 servo inverter (see chapters 2.2 and 3.2). 

2. A function block L_ICIA_PROFIBUS_Out to compile the complete fieldbus telegram to be trans-

mitted to the logic PLC. The method reads the process data control information in the form of 

the AIF_Out format of the 9300 servo inverter (see chapters 2.3 and 3.2). 

3. The function block L_ICIA_PROFIBUS_Base, processing the communication set-up and the DP 

V0 parameter channel (see chapter 2.1). 

 

 


Note:  

Always declare and call the PROFIBUS function blocks in the following order: 

• L_ICIA_PROFIBUS_Base  

• L_ICIA_PROFIBUS_In  

• L_ICIA_PROFIBUS_Out  

 

  

L_ICIA_PROFIBUS_In: 

fieldbus process data from the 
logic PLC 

L_ICIA_PROFIBUS_Base: 

- fieldbus initialization 

- request data of the fieldbus DP V0 parameter 

channel from the logic PLC (optional) 

- response data of the fieldbus DP V0 parameter 

channel to the logic PLC (optional) 

L_ICIA_PROFIBUS_Out: 

fieldbus data process data to the 
logic PLC 



2  Function Blocks 
2.1  Function Block L_ICIA_PROFIBUS_Base 

 

 Automation Building Blocks 2-6 

 

2.1 Function Block L_ICIA_PROFIBUS_Base 

The function block L_ICIA_PROFIBUS_Base must always be integrated in the PLC project for correct 

initialization of the GSD/GSE configuration. If configured, the block additionally processes the DP 

V0 parameter channel if selected. 

 

2.1.1 Configuration Mode Selection (GSD/GSE Configuration) 

The configuration of the PROFIBUS communication for each slave is defined with the help of the 

GSD/GSE file. Typically, the scope of PROFIBUS Tx/Rx data is pre-defined during the programming 

the logic PLC. One out of a pool of possible configurations (see chapter 4.1) determines the structure 

of the PROFIBUS telegram to a slave device. 

During the initialization of PROFIBUS communication, the function block L_ICIA_PROFIBUS_Base 

identifies the selected GSD/GSE configuration as listed in the appendix, chapter 4.1. For this pur-

pose, an internal service2 reads the received GSD configuration. 

 

 Set GSD/GSE Configuration  (BYTE ARRAY[23]) 

The requested GSD configuration is polled by the function block L_ICIA_PROFIBUS_Base continu-

ously to check for a new GSD/GSE configuration: 

 

 
 

byte length of the new GSD configuration (green-colored part of data) 

set GSD configuration (1 … 5 bytes, according to chapter 4.1) 

 

The active GSD configuration is displayed in index 0x2348:003. 

 

 

  

 
2  



2  Function Blocks 
2.1  Function Block L_ICIA_PROFIBUS_Base 

 

 Automation Building Blocks 2-7 

 

2.1.2 Parameter Handling 

Parameter communication must be selected via the GSD/GSE configuration from the logic PLC and 

is included in the complete Rx/Tx PROFIBUS data. On receiving a valid GSD/GSE configuration (xInit 

= FALSE), an optional parameter channel (DRIVECOM DP V0) is initialized, if included in the GSD/GSE 

configuration.  

 
process data communication (PZD) 

 

process data communication (PZD) + parameter channel (PAR) 

 

Illustration 4: no parameter channel (PZD only) Illustration 5: with parameter channel (PZD + PAR) 

 

 

In case of a parameter channel configured, the lowest 8 bytes of the raw data received on 

L_ICIA_PROFIBUS_In.adwFieldBusIn / transmit on L_ICIA_PROFIBUS_Out.adwFieldBusOut are in-

terpreted as shown in the appendix, chapters 4.6 and 4.7. 

 
 

 
 

Illustration 6: DP V0 parameter channel data as a part of the complete PROFIBUS telegram  
 

 

In migration scenarios, the superposed logic PLC might address codes/sub-codes of the Lenze GDC3 

devices 8200/9300 (legacy devices), not available on the i950 servo inverter.  

 

  

 
3 GDC = Global Drive Control, one of the most successful inverter/servo inverter series of Lenze 



2  Function Blocks 
2.1  Function Block L_ICIA_PROFIBUS_Base 

 

 Automation Building Blocks 2-8 

 

Example:  

 

 
actual motor speed: 
code number: 51 
sub-code number: 0 
access:  read-only 
unit:  [rpm] 
size:  4 byte 
scaling factor: 10000 : 1 (FIX324) 

 

 
actual motor speed: 
index number: 0x606C 
sub-index number: 0 
access:  read-only 
unit:  [rpm] 
size:  4 byte 
scaling factor: 231 : 480000 (‘_s’5) 

 
Illustration 7: 9300 servo inverter (legacy product) 

 
Illustration 8: i950 servo inverter (actual product) 

 

Because of the mismatch between the old GDC device’s code list and the current i950’s index list, 

an internal re-mapping of codes/sub-codes to current (user-) indexes is required. The correspond-

ence between old GDC codes and the i950 indexes is defined via a mapping table on the input/out-

put ascParReference. 

 

 

The generation of the mapping list must be done by the user in the following way: 

  
 

 

Define the number of objects in your mapping list: The amount of objects defines on 

how many different codes/indexes you would like to get access to. 

 

Example: The logic PLC uses the DP V0 parameter channel to read the following codes 

from a 9300 servo inverter: 

• C0051/000: actual motor speed, scaled in [rpm] 

• C0053/000: actual DC bus voltage, scaled in [V] 

• C0063/000: actual motor temperature, scaled in [°C] 

In this example, the mapping list requires three entries.  

 

 

In the i950’s PLC program, declare a data array with a corresponding number of 

entries of type L_ICIA_sc93ParReference as follows: 

ascParReference: ARRAY[1..3] OF L_ICIA_sc93ParReference;  // mapping table 

 
 

 

  

 
4 The FIX32 format uses a 4-byte data size and a scaling factor of 10000, meaning a value of 10000 represents a physical value of 1.0000[rpm]. This format is also 
known as the ‘_e4’ format in the Lenze terminology. 
5 The ‘_s’ scaling was introduced with the Lenze 9400 series and scales the motor speed as a 32-bit value. A raw value of 231 represents a physical value of 
480000[rpm].  

start 

Step 1 

Step 2 



2  Function Blocks 
2.1  Function Block L_ICIA_PROFIBUS_Base 

 

 Automation Building Blocks 2-9 

 

Extend the declaration of step 2 by assigning initialization values to the mapping 

table’s data array: 

ascParReference: ARRAY[1..4] OF L_ICIA_sc93ParReference  := [  // mapping table 

 (wCode:=11, wSubCode:=0, wIndex:=16#5500, bySubIndex:=1, bySize:=8, diNum:=10000,   diDen:=1), 

 (wCode:=51, wSubCode:=0, wIndex:=16#606C, bySubIndex:=0, bySize:=4, diNum:=1171875, diDen:=524288), 

 (wCode:=53, wSubCode:=0, wIndex:=16#6079, bySubIndex:=0, bySize:=4, diNum:=10,      diDen:=1), 

 (wCode:=63, wSubCode:=0, wIndex:=16#2D49, bySubIndex:=5, bySize:=2, diNum:=1000,    diDen:=1)]; 

 

 

 

 


How to find the values for the numerator/denominator ratio?  

The numerator/denominator scales a raw value of the physical Lenze device 

to the raw value of the legacy Lenze device. 

Example: The numerator/denominator value for the actual motor speed re-

sults from the scaling ratio of the i950 servo inverter (0x606C:000) and the 

Lenze legacy product (C0051/000): 

 

 

 

 
𝑑𝑖𝑁𝑢𝑚

𝑑𝑖𝐷𝑒𝑛
=
480000[𝑟𝑝𝑚]

231
∙
10000

1
=
4800000000

2147483648
=
1171875

524288
 

 

 

 
*) use greatest common denominator calculations to shorten the numbers for the numerator/denominator 

 

 

Assign the mapping table’s data array to the function block L_ICIA_PROFIBUS_Base: 

 

  

 

 

 

 

 

 

 


Tip:  

Call the function block L_ICIA_PROFIBUS_Base in a freewheeling task with 

low priority to unload the high-priority motion task. 

Still, the function blocks L_ICIA_PROFIBUS_In and L_ICIA_PROFIBUS_Out for 

process data may be called in the high-priority motion task. 

 

 

 

end 

Step 4 

scaling ratio of the physical Lenze device (i950) 

You can look-up the index scaling factors in the 
parameter list’s tool tips of »EASY Starter«. 

scaling ratio of the legacy Lenze device (9300) 

You can look-up the code scaling factors in the 
9300’s reference manual in the attribute table. 

Step 3 

Assign the mapping table array ascParReference to the 
corresponding input of L_ICIA_PROFIBUS_Base. 



2  Function Blocks 
2.1  Function Block L_ICIA_PROFIBUS_Base 

 

 Automation Building Blocks 2-10 

 


Note:  

In contrary to the 9300 series, i950 allows parameters using a floating-point data type 

(LREAL) with 8 bytes data size. Even this i950 parameter type can be handled by the 

function block L_ICIA_PROFIBUS_Base.  

To receive a data value with four decimal remainder digits on your machine PLC, apply 

a numerator/denominator scaling of diNum = 10000 and diDen = 1 in the parameter 

reference list. 

 

 

 

 

To monitor the parameter channel, the function block L_ICIA_PROFIBUS_Base includes a built-in 

visualization screen:  

 

Illustration 9: built-in visualization screen of function block L_ICIA_PROFIBUS_Base 

 

 

  

You can test the internal function of the parameter 
channel by activating the xInternalParChannel 
button in the top left of the visualization screen.  

After activation of the internal parameter channel 
control, you can use the input fields in the “Rx pa-
rameter data” block to simulate the parameter 
channel of the PLC and check the i950’s re-
sponse telegram for plausibility. 

PLC_PRG.L_ICIA_PROFIBUS_Base1 



2  Function Blocks 
2.1  Function Block L_ICIA_PROFIBUS_Base 

 

 Automation Building Blocks 2-11 

 


How to find out about which parameters/indexes are accessed by the logic PLC  

Sometimes the logic PLC program is not available. In this case the parameters ac-

cessed by the logic PLCs are not known in beforehand and cannot be considered in 

the reference list. 

 

An easy way to get an overview is to trace the parameter request telegrams of the 

DP V0 parameter channel. Proceed as follows: 

• In the PLC project of the i950 drive, insert a new trace in »PLC Designer«. 

• Add the following variables of the parameter channel Rx/Tx telegrams to 

the trace: 

o Rx index                (L_ICIA_PROFIBUS_Base1.RxParData.wIndex) 

o Rx sub-index         (L_ICIA_PROFIBUS_Base1.RxParData.bySubIndex) 

• Start the trace while the logic PLC tries to access the drive parameters via 

the DP V0 parameter channel. 

• Activate a measuring cursor in the trace: The values measured on the Rx in-

dex and Rx sub-index indicate the drive parameters which the logic PLC 

tries to access. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Illustration 10: example for a trace monitoring the parameter access of the PLC (SDO) 

 
 

  

Index 24522 / sub-index 0 (= C0053/000): DC bus voltage 

Index 24512 / sub-index 0 (= C0063/000): motor temperature 

Index 24514 / sub-index 0 (= C0061/000): heatsink temperature 

Index 24490 / sub-index 0 (= C0085/000): motor leakage inductance 



2  Function Blocks 
2.1  Function Block L_ICIA_PROFIBUS_Base 

 

 Automation Building Blocks 2-12 

 

2.1.3 Incompatibility List 

The following functions are not implemented in the function block L_ICIA_PROFIBUS_Base: 

• No PROFIsafe protocol on i950 PROFIBUS is supported. 

• Parameter/index numbers do not match between 9300 and i950.  Apply a correspondence list 

as a reference between the parameters of a Lenze legacy device and an i950 drive controller 

as shown in the previous chapter 2.1.2. 

  



2  Function Blocks 
2.1  Function Block L_ICIA_PROFIBUS_Base 

 

 Automation Building Blocks 2-13 

 

2.1.4 Interface 

 

Illustration 11: interface of function block L_ICIA_PROFIBUS_Base 

 

2.1.5 Task Information 

Call-up possible from:  freewheeling task  time-controlled task 
(INTERVAL) 

 event-controlled task 
(EVENT) 

 interrupt task 

 

 


Note:  

Make sure to have included the CAA Memory library in your PLC project to get a fault-

free built of your code. 

 

 

2.1.6 Inputs and Outputs 

Identifier 

Data type 

Description 

Axis 

AXIS_REF 

reference to the connected drive axis 

In case of an i950 application, always assign the Motion_Axis to this signal. 

ascParReference 

ARRAY [*] OF L_ICIA_sc93ParRef-
erence 

parameter correspondence list 

This list defines the correspondence between 9300 codes and i950 indexes. As parameter values are stored in in-
dexes, which have different numbers on 9300 and i950, the list allows to … 

• … link a 9300 code to an i950 index 

• … consider a scaling numerator/denominator factor between the 9300 parameter value and the i950 index value 

Find a detailed overview of the structure ascParReference in chapter 2.1.7 (next page). 

 

 

2.1.7 Inputs  

Identifier 

Data type 

Description 

eFieldBusType 

L_ICIA_eFieldBusType 

type of fieldbus 

In the default, this signal is set to 1 (‘PROFIBUS_2133’) 

So far, this variable is not used in the function block L_ICIA_PROFIBUS_Base, as the PROFIBUS function blocks 
only support PROFIBUS communication.  

Note: In future, the input may allow to support various fieldbus systems Lenze offered on the 9300 series such as 
CAN, INTERBUS, … 

  



2  Function Blocks 
2.1  Function Block L_ICIA_PROFIBUS_Base 

 

 Automation Building Blocks 2-14 

 

 User-Defined Variable Structure L_ICIA_sc93ParReference 

The structure serves to define the parameter correspondence on the PROFIBUS level and the i950 

level. The following elements are part of this variable structure: 

 
Identifier 

Data type 

Description 

wCode 

WORD 

code number of the 9300 servo drive 

Note: The 9300 code number results from subtracting the index value (byte 3 and 4 of the parameter channel) from 
a fixed value of 24575 (0x5FFF). 

bySubCode 

BYTE 

sub-code number of the 9300 servo drive 

wIndex 

WORD 

corresponding index number of the i950 servo drive 

bySubIndex 

BYTE 

sub-index number of the i950 servo drive 

bySize 

BYTE 

data size of the i950’s index value 

Note: This information is required, as the data size of the i950’s index value does not necessarily match the data 
size of the 9300 code value.  

diNum 
diDen 

BYTE 

scaling factor between the 9300 code value and the i950 index value (split to numerator/denominator values) 

The values for the scaling numerator/denominator can be obtained as shown on the next page. More details can be 
found in chapter 2.1.2. 

 

 

 

 

 Note:  

An application example is given in the appendix in chapter 2.1.2. 

 

  



2  Function Blocks 
2.1  Function Block L_ICIA_PROFIBUS_Base 

 

 Automation Building Blocks 2-15 

 

Example: calculation of scaling numerator/denominator values: 

The actual motor speed 0x606C:000 of the i950 servo drive should be read via parameter channel 

and be returned to the PLC in the 9300 format of code C0051/000: 

 

 

 

9300: 

 
code/sub-code: C0051/000 
sample value: 123[rpm] 
raw value: 1230000 
scaling (numerator): 10000 
scaling (denominator): 1 
 

 

 

 

i950: 

 
code/sub-code: 0x606C:000 
sample value: 123[rpm] 
raw value: 550293 
scaling (numerator): 1073741824 
scaling (denominator): 240000 

 

Illustration 12: code scaling 9300  Illustration 13: code scaling i950 

 

From the above example, the total numerator/denominator values diNum and diDen can be calcu-

lated: 

𝑑𝑖𝑁𝑢𝑚

𝑑𝑖𝐷𝑒𝑛
=

10000
1

1073741824
240000

=
2400000000

1073741824
=
1171875

524288
 

 
 

 
 
 

  



2  Function Blocks 
2.1  Function Block L_ICIA_PROFIBUS_Base 

 

 Automation Building Blocks 2-16 

 

2.1.8 Outputs  

Identifier 

Data type 

Description 

scStateMachine 

L_ICIA_scStateMachine 

data of the communication state machine 

This value must be connected to the corresponding input/output variables of the function blocks L_ICIA_PROFI-
BUS_In and L_ICIA_PROFIBUS_Out to ensure consistent operation of the PROFIBUS function blocks. A detailed 
description is given on the next page. 

xInit 

BOOL 

status signal: initialization of the GSD/GSE configuration ongoing 

 FALSE GSD/GSE configuration has finished without errors 

 TRUE GSD/GSE configuration ongoing/has finished with errors 

xError 

BOOL 

status signal: error during GSD/GSE configuration 

 FALSE no error during GSD/GSE configuration. 

 TRUE An error occurred during GSD/GSE configuration: 

• Initialization sequence cannot be terminated – status signal xInit remains on TRUE. 

• Refer to the wError output for more information. 

eErrorID 

WORD 

current error ID:  

 0: no error active 

 110: GSD/GSE configuration could not be identified – please select a GSD/GSE configuration as listed 
in chapter.4.1 

Notes: 
-  

  



2  Function Blocks 
2.1  Function Block L_ICIA_PROFIBUS_Base 

 

 Automation Building Blocks 2-17 

 

 User-Defined Variable Structure L_ICIA_scStateMachine 

This variable structure comprises general data of the fieldbus communication, depending on the 

fieldbus type active: 

 
Identifier 

Data type 

Description 

eFieldBusType 

L_ICIA_eFieldBusType 

current error ID:  

 PROFIBUS_2133: The L_ICIA_PROFIBUS function blocks behave like the EMF2133IB PROFIBUS mod-
ule for 9300. 

Notes: So far, only ‘PROFIBUS_2131’  and ‘PROFIBUS_2133’ are supported. 

byGsdConfig 

BYTE 

number of the active GSD/GSE configuration found during communication initialization 

A complete overview on all possible GSD/GSE configurations is listed in chapter 4.1. 

byGsdGroup 

BYTE 

group of the active GSD/GSE configuration of the active GSD/GSE configuration, set-up during communication ini-
tialization 

A complete overview on all possible GSD/GSE configurations is listed in chapter 4.1. 

byGsdGroup 

BYTE 

current error ID:  

 1: no parameter channel / process data (Drivecom control) 

 2: consistent Drivecom parameter channel / process data (Drivecom control) 

 3: consistent Drivecom parameter channel / consistent process data (Drivecom control) 

 4: Drivecom parameter channel / process data (Drivecom control) 

 5: Drivecom parameter channel / consistent process data (Drivecom control) 

 6: no parameter channel / consistent process data (Drivecom control) 

 7: no parameter channel / process data (Lenze device control) 

 8: consistent Drivecom parameter channel / process data (Lenze device control) 

 9: consistent Drivecom parameter channel / consistent process data (Lenze device control) 

 10: Drivecom parameter channel / process data (Lenze device control) 

 11: Drivecom parameter channel / consistent process data (Lenze device control) 

 12: no parameter channel / consistent process data (Lenze device control) 

Notes: A complete overview on all possible GSD/GSE configurations is listed in chapter 4.1. 

byPzdSize 

BYTE 

size of the process data (PZD), scaled in [byte] 

wDrivecomCtrl 

BYTE 

Drivecom control word  

This variable is only used in a configuration with Drivecom process data communication (byGsdGroup = 1 … 6). 
The meaning of each control bit of wDrivecomCtrl is explained in the appendix in chapter 4.4. 

wDrivecomStat 

BYTE 

Drivecom status word  

This variable is only used in a configuration with Drivecom process data communication (byGsdGroup = 1 … 6). 
The meaning of each control bit of wDrivecomStat is explained in the appendix in chapter 4.5. 

eDrivecomState 

L_ICIA_eDrivecomState 

current state of the Drivecom state machine:  

 0: NOT_READY_TO_SWITCH_ON 

 32: SWITCH_ON_INHIBIT 

 1: READY_TO_SWITCH_ON 

 3: SWITCHED_ON 

 23: QUICK_STOP_ACTIVE 

 7: OPERATION_ENABLED 

 15: FAULT_REACTION_ACTIVE 

 8: FAULT 

Notes: This variable is only used in a configuration with Drivecom process data communication (byGsdGroup = 1 
… 6). The Drivecom state machine is shown in chapters 2.2.2 and 2.3.2. 

xInit 

BOOL 

status signal: initialization of the GSD/GSE configuration ongoing 

 FALSE GSD/GSE configuration has finished without errors 

 TRUE GSD/GSE configuration ongoing/has finished with errors 

Note: This signal mirrors the output signal L_ICIA_PROFIBUS_Base.xInit. 

xError 

BOOL 

status signal: error during GSD/GSE configuration 

 FALSE no error during GSD/GSE configuration. 

 TRUE An error occurred during GSD/GSE configuration: 

• Initialization sequence cannot be terminated – status signal xInit remains on TRUE. 

• Refer to the L_ICIA_PROFIBUS_Base.wError output for more information. 

Note: This signal mirrors the output signal L_ICIA_PROFIBUS_Base.xError. 

 



2  Function Blocks 
2.1  Function Block L_ICIA_PROFIBUS_Base 

 

 Automation Building Blocks 2-18 

 

Identifier 

Data type 

Description 

adwRawDataIn 

ARRAY [0..15] OF DWORD 

raw input data on the fieldbus interface 

The variable data array is a copy of the fieldbus raw input data in, received on the input adwFieldBusIn of function 
block L_ICIA_PROFIBUS_In. 

adwRawDataOut 

ARRAY [0..15] OF DWORD 

raw output data on the fieldbus interface 

The variable data array is a copy of the fieldbus raw output data in, generated on the output adwFieldBusOut of 
function block L_ICIA_PROFIBUS_Out. 

AxisState 

MC_ReadAxisInfo 

This structure includes important status signals of the i950 drive:  

 LimitSwitchPos: positive limit switch has triggered (i.e. on L_TF2P_SpeedControlBase1.scCtrl-
BasicMotion.xHWLimitPos)  

 LimitSwitchNeg: negative limit switch has triggered (i.e. on L_TF2P_SpeedControlBase1.scCtrl-
BasicMotion.xHWLimitNeg)  

 Simulation: axis is operated in the virtual mode 

On an i950 axis, this signal is always FALSE. 

 CommunicationReady: motion bus communication interface between axis driver (AXIS_REF) and motor 
control is in operation 

On an i950 axis, this signal is always TRUE. 

 ReadyForPowerOn: drive is ready for being powered on (i.e. via control signal L_TF2P_SpeedCon-
trolBase1.xEnableOperation).  

This signal state comprises the following states: 

• drive is fault-free 

• no STO command is active (safe torque off) 

• DC bus voltage is switched on 

 PowerOn: i950 drive is powered on (same status as L_TF2P_SpeedControlBase1.xOpera-
tionEnabled)  

 IsHomed: zero position of the i950 drive’s measuring system is known 

 AxisError: error in the axis driver (AXIS_REF) 

 AxisWarning: warning in the axis driver (AXIS_REF) 

 DriveError: error in the inverter’s motor control 

 DriveWarning: warning in the inverter’s motor control 

 SWLimitSwitchPos: positive software limit has triggered 

 SWLimitSwitchNeg: negative software limit has triggered 

 ReadyForMotion: drive is ready for receiving motion commands  

This signal state comprises the following states: 

• drive is enabled 

• drive is fault-free 

• a motor brake (if available) has opened 

 STOActive: STO command is active (safe torque off) 

 VoltageEnabled: DC bus voltage is switched on 

 MotorMagnetised: motor is magnetization complete 

 QSPApplActive: quickstop command of the axis driver (AXIS_REF) is active  

 QSPDriveActive: quickstop command of the inverter’s motor control is active  

Find more information about MC_ReadAxisInfo in the »PLC Designer« online help. 

 

 


Caution:  

The above-listed variables are read-only! Never change any of these variables as this 

may have unpredictable consequences in fieldbus communication and drive behav-

iour! 

 

 

 

 

  



2  Function Blocks 
2.2  Function Block L_ICIA_PROFIBUS_In 

 

 Automation Building Blocks 2-19 

 

2.2 Function Block L_ICIA_PROFIBUS_In 

The function block L_ICIA_PROFIBUS_In reads 16 double words of the fieldbus input data on the 

input data array adwFieldBusIn. Once a valid GSD/GSE configuration was detected (scStateMa-
chine.xInit = FALSE), the raw data on the input signal adwFieldBusIn of the function block 

L_ICIA_PROFIBUS_In are mapped to … 

 

• process data PZD  

• parameter data PAR (optional, if selected, see chapter 2.1.2) 

 
process data communication (PZD) 

 

process data communication (PZD) + parameter channel (PAR) 

 

Illustration 14: no parameter channel (PZD only) Illustration 15: with parameter channel (PZD + PAR) 

 

 


Note:  

The i950 PROFIBUS slot module handles up to 16 double words of input data. The 

function block L_ICIA_PROFIBUS_In only processes the double words 0 to 7. The 

double word 8 to 15 are not considered in the evaluation of the fieldbus raw data. 

However, always assign a data array ARRAY [0..15] OF DWORD  to the input signal 

L_ICIA_PROFIBUS_In.adwFieldBusIn. 

  



2  Function Blocks 
2.2  Function Block L_ICIA_PROFIBUS_In 

 

 Automation Building Blocks 2-20 

 

2.2.1 Process Data (PZD) 

In any case, process data exchange is part of the fieldbus communication. The function block 

L_ICIA_PROFIBUS_In handles the process input data of the fieldbus system and converts the raw 

data received on adwFieldBusIn to the data structures known from the 8200/9300 device series.  

 

 

 

 

 

 

 

 

 

  

 

  

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Illustration 16: principle of process input data handling / detailed signal list of the scControlWords interfaces of function block L_ICIA_PROFIBUS_In 

 

 

  

L_ICIA_PROFIBUS_In: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

conversion of the of raw input process data adwFieldBusIn to the data sets scControlWords1, scControlWords2 and scControlWords 3  
(16 DWORD) 

raw input data from the 
fieldbus module  
(16 DWORD) 

(motion) technology application 
using the legacy AIF interface 



2  Function Blocks 
2.2  Function Block L_ICIA_PROFIBUS_In 

 

 Automation Building Blocks 2-21 

 

2.2.2 Drivecom State Machine 

Depending on the GSD/GSE configuration, the first process input data word scControlWords1.wCtrl 
is processed via the Drivecom state machine: 

 

 
Illustration 17: flow chart of the Drivecom state machine (affecting control/status word 1) 

 

The actual state of the Drivecom state machine is displayed on the variable scStateMa-
chine.eDrivecomState.  

 

  

 

 

  



2  Function Blocks 
2.2  Function Block L_ICIA_PROFIBUS_In 

 

 Automation Building Blocks 2-22 

 

2.2.3 Incompatibility List 

The following functions are not implemented in the function block L_ICIA_PROFIBUS_In: 

• The output scControlWords1.wCtrl.xTripSet does not find a corresponding function in the 

FAST technology modules. The user can evaluate this signal to set a user-defined error. 

• Facing an undervoltage state during drive operation leads to an error, as the PLCopen state 

machine is violated. On 9300 an undervoltage state during drive operating was resulting in a 

message only.  

• The STO command of i950 must be released to achieve the same behavior of the Drivecom 

state machine as on 9300. If the i950’s STO command is active, the Drivecom state machine 

remains in the state Switch-On Inhibited. 

Using GSD configurations with Lenze device control (AR), the STO command keeps the xDisa-
ble control signal active, meaning the drive cannot be activated.  

• The L_ICIA_PROFIBUS_In function block supports the following device control methods: 

o Drivecom 

o Lenze device control (AR) 

The PROFIdrive control method is not supported. 

 

 

 

  



2  Function Blocks 
2.2  Function Block L_ICIA_PROFIBUS_In 

 

 Automation Building Blocks 2-23 

 

2.2.4 Interface 

 

Illustration 18: interface of function block L_ICIA_PROFIBUS_In 

 

2.2.5 Task Information 

Call-up possible from:  freewheeling task  time-controlled task 
(INTERVAL) 

 event-controlled task 
(EVENT) 

 interrupt task 

 


Note:  

Make sure to have included the CAA Memory library in your PLC project to get a fault-

free built of your code. 

 

 

 

2.2.6 Inputs and Outputs 

Identifier 

Data type 

Description 

scStateMachine 

L_ICIA_scStateMachine 

data of the communication state machine 

Connect the corresponding output scStateMachine of function block L_ICIA_PROFIBUS_Base to ensure consistent 
operation of the PROFIBUS function blocks. A detailed description of this variable structure is given in chapter 
2.1.8. 

 

2.2.7 Inputs  

Identifier 

Data type 

Description 

adwFieldBusIn 

ARRAY [0..15] OF DWORD 

input of the fieldbus raw data 

These values can directly be mapped to the input data of the fieldbus IO interface. 

 

2.2.8 Outputs  

Identifier 

Data type 

Description 

scControlWords1 

L_ICIA_scControlWords1 

AIF fieldbus input data (first group) 

The values comprise a four-word data structure, following the structure of the AIF-IN system block of the 9300 servo 
inverter. A detailed description is given on the next page. 

scControlWords2 

L_ICIA_scControlWords 

AIF fieldbus input data (second group) 

The values comprise a four-word data structure, following the structure of the AIF-IN system block of the 9300 Ser-
voPLC inverter. A detailed description is given on the next pages. 

scControlWords3 

L_ICIA_scControlWords 

AIF fieldbus input data (third group) 

The values comprise a four-word data structure, following the structure of the AIF-IN system block of the 9300 Ser-
voPLC inverter. A detailed description is given on the next pages. 

  



2  Function Blocks 
2.2  Function Block L_ICIA_PROFIBUS_In 

 

 Automation Building Blocks 2-24 

 

 User-Defined Variable Structure L_ICIA_scControlWords1  

This structure implements the AIF-IN interface known from the 9300 servo inverter series. It in-

cludes the following elements: 

 
Identifier 

Data type 

Description 

xBit00 

BIT 

bit 0 of the control word  

 FALSE: control function deactivated 

 TRUE: control function activated 

Note: This bit does not have a fixed meaning but can be connected freely by the user. 

xBit01 

BIT 

bit 1 of the control word  

 FALSE: control function deactivated 

 TRUE: control function activated 

Note: This bit does not have a fixed meaning but can be connected freely by the user. 

xBit02 

BIT 

bit 2 of the control word  

 FALSE: control function deactivated 

 TRUE: control function activated 

Note: This bit does not have a fixed meaning but can be connected freely by the user. 

xQsp 

BIT 

bit 3 of the control word: activate quick stop 

 FALSE: quick stop not activated 

 TRUE: quick stop activated 

Note: This bit must be connected to a quick stop command in the application (i.e. implemented by the function blocks 
MC_Stop, L_MC1P_SetQuickStopAppl, …). 

xBit04 

BIT 

bit 4 of the control word  

 FALSE: control function deactivated 

 TRUE: control function activated 

Note: This bit does not have a fixed meaning but can be connected freely by the user. 

xBit05 

BIT 

bit 5 of the control word  

 FALSE: control function deactivated 

 TRUE: control function activated 

Note: This bit does not have a fixed meaning but can be connected freely by the user. 

xBit06 

BIT 

bit 6 of the control word  

 FALSE: control function deactivated 

 TRUE: control function activated 

Note: This bit does not have a fixed meaning but can be connected freely by the user. 

xBit07 

BIT 

bit 7 of the control word  

 FALSE: control function deactivated 

 TRUE: control function activated 

Note: This bit does not have a fixed meaning but can be connected freely by the user. 

xDisable 

BIT 

bit 08 of the control word: disable the drive 

 FALSE: do not disable drive  (xCInh=FALSE leads to power-up the drive) 

 TRUE: disable drive  (xCInh=FALSE has no effect) 

Notes:  
- Use this bit to interlock enabling the drive’s operation. On xDisable=TRUE, the drive must remain shut-down, even 

if xCInh is on FALSE. 
- If xDisable is on TRUE, the ‘drive ready’ status remains on FALSE. 

xCInh 

BIT 

bit 09 of the control word: inhibit the drive controller  

 FALSE: drive controller enabled 

 TRUE: drive controller inhibited 

Notes:  
- The bit is used to power-up the drive (i.e. by means of the MC_Power function block). 
- If xDisable is on TRUE, the xCInh control bit has no effect. 

 
  



2  Function Blocks 
2.2  Function Block L_ICIA_PROFIBUS_In 

 

 Automation Building Blocks 2-25 

 

Identifier 

Data type 

Description 

xTripSet 

BIT 

bit 10 of the control word: set a user error on the drive 

 FALSE: user error is triggered 

 TRUE: no user error is triggered 

Note: As there is no corresponding function in the operating system of i950 available, the xTripSet bit has no practi-
cal meaning.  

xTripReset 

BIT 

bit 11 of the control word: error reset command 

 FALSE=>TRUE reset error command 

Notes:  
- The bit is used to reset an error on the drive (i.e. by means of the MC_Reset function block). 
- Resetting an error only works if the cause of the error does not apply any more. 

xBit12 

BIT 

bit 12 of the control word  

 FALSE: control function deactivated 

 TRUE: control function activated 

Note: This bit does not have a fixed meaning but can be connected freely by the user. 

xBit13 

BIT 

bit 13 of the control word  

 FALSE: control function deactivated 

 TRUE: control function activated 

Note: This bit does not have a fixed meaning but can be connected freely by the user. 

xBit14 

BIT 

bit 14 of the control word  

 FALSE: control function deactivated 

 TRUE: control function activated 

Note: This bit does not have a fixed meaning but can be connected freely by the user. 

xBit15 

BIT 

bit 15 of the control word  

 FALSE: control function deactivated 

 TRUE: control function activated 

Note: This bit does not have a fixed meaning but can be connected freely by the user. 

wCtrl 

WORD 

Control word 

This control word mirrors the 16 control bits as listed above in a WORD format. 

wIn1 

WORD 

input of a 16 bit integer number  

Typically, the second WORD on scControlWords1 is interpreted as the drive’s speed set value, scaled in [%] (0 … 
16384 = 0.0 … 100.0[%]). However, it is up to the user to define the meaning in the application .  

wIn2 

WORD 

input of a free 16 bit WORD value 

 

wIn3 

WORD 

input of a free 16 bit WORD value 

 

 

 


Tip:  

Do you need to merge and scControlWords1.wIn3 to a 32-bit value? The function Pack-

WordsToDword6 provides this function. Use it in the following way: 

Illustration 19: conversion of two 16-bit WORD values to a 32-bit DWORD value 

 

 

  

 
6 included the CAA Memory library 



2  Function Blocks 
2.2  Function Block L_ICIA_PROFIBUS_In 

 

 Automation Building Blocks 2-26 

 

 User-Defined Variable Structure L_ICIA_scControlWords 

This structure implements the extended AIF-IN interface known from the 9300 ServoPLC inverter 

series. It is applied on the objects scControlWords2 and scControlWords3, and includes the follow-

ing elements: 

 
Identifier 

Data type 

Description 

wIn0 

WORD 

input of a free 16 bit WORD value 

 

wIn1 

WORD 

input of a free 16 bit WORD value 

 

wIn2 

WORD 

input of a free 16 bit WORD value 

 

wIn3 

WORD 

input of a free 16 bit WORD value 

 

 

 

  



2  Function Blocks 
2.3  Function Block L_ICIA_PROFIBUS_Out 

 

 Automation Building Blocks 2-27 

 

2.3 Function Block L_ICIA_PROFIBUS_Out 

The function block L_ICIA_PROFIBUS_Out reads the AIF data structure known from the 8200/9300 

device series and transfers its information to the 16 fieldbus output double-words on a data array. 

Once a valid GSD/GSE configuration was detected (scStateMachine.xInit = FALSE), the following 

data are mapped to the output data array adwFieldBusOut: 

 

• process data PZD from the AIF-OUT objects 

• parameter data PAR (optional, if selected, see chapter 2.1.2) 

 
process data communication (PZD) 

 

process data communication (PZD) + parameter channel (PAR) 

 

Illustration 20: no parameter channel (PZD only) Illustration 21: with parameter channel (PZD + PAR) 

 

 

 

 

 


Note:  

The i950 PROFIBUS slot module handles up to 16 double words of output data. The 

output data range of the function block L_ICIA_PROFIBUS_Out (output adw-
FieldBusOut) comprises the full scope of 16 double words, even if only double words 

0 to 7 are in use. 

  



2  Function Blocks 
2.3  Function Block L_ICIA_PROFIBUS_Out 

 

 Automation Building Blocks 2-28 

 

2.3.1 Process Data (PZD) 

In any case, process data exchange is part of the fieldbus communication. The function block 

L_ICIA_PROFIBUS_Out generates the raw data on adwFieldBusOut from the AIF-OUT objects known 

from the 8200/9300 series.  

 

 

 

 

 

 

  

 

  

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Illustration 22: principle of process output data handling / detailed signal list of the scStatusWords interfaces of function block L_ICIA_PROFIBUS_In 

 

  

(motion) technology application 
using the legacy AIF interface 

L_ICIA_PROFIBUS_Out: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

conversion of the output data set scStatusWords1, scStatusWords2 and scStatusWords3 to raw output process data adwFieldBusOut 

(16 DWORD) 

 

raw output data to the PROFIBUS 
module ??? 
(16 DWORD) 



2  Function Blocks 
2.3  Function Block L_ICIA_PROFIBUS_Out 

 

 Automation Building Blocks 2-29 

 


Tip:  

Use the user-defined function block L_STAT to generate the status signals on 

L_ICIA_PROFIBUS_Out.xStat1 … L_ICIA_PROFIBUS_Out.xStat8. 

 

 

 

 

  



2  Function Blocks 
2.3  Function Block L_ICIA_PROFIBUS_Out 

 

 Automation Building Blocks 2-30 

 

2.3.2 Drivecom State Machine 

Depending on the GSD/GSE configuration, the first process output data word scStatus-
Words1.wStat is processed via the Drivecom state machine: 

 

 
Illustration 23: flow chart of the Drivecom state machine (affecting control/status word 1) 

 

The actual state of the Drivecom state machine is displayed on the variable scStateMa-
chine.eDrivecomState.  

 

 

  



2  Function Blocks 
2.3  Function Block L_ICIA_PROFIBUS_Out 

 

 Automation Building Blocks 2-31 

 

2.3.3 Incompatibility List 

The following functions are not implemented in the function block L_ICIA_PROFIBUS_Out: 

• The status bits DCTRL-STAT*1, … DCTRL-STAT*8  do not comprise the full scope of 9300 states. 

The red-marked states are not supported: 

value D
C

T
R

L
-S

T
A

T
*8

 

D
C

T
R

L
-S

T
A

T
*4

 

D
C

T
R

L
-S

T
A

T
*2

 

D
C

T
R

L
-S

T
A

T
*1

 
note 

0 0 0 0 0 initialization after the supply voltage has been connected 

1 0 0 0 1 lock mode, restart protection is active C0142 

3 0 0 1 1 drive is in controller inhibit mode 

4 0 1 0 0 flying restart active 

5 0 1 0 1 DC brake active 

6 0 1 1 0 controller enabled 

7 0 1 1 1 the release of a monitoring function resulted in a "message" 

8 1 0 0 0 the release of a monitoring function resulted in a "trip" 

10 1 0 1 0 the release of a monitoring function resulted in a "FAIL-QSP" 

15 1 1 1 1 communication fail (PROFIBUS communication module  inverter) 

 

• According to PLCopen, an undervoltage on the DC bus results in an error instead of a message. 

Before restarting the drive, the user must reset the drive error. 

• The L_ICIA_PROFIBUS_In function block supports the following device control methods: 

o Drivecom 

o Lenze device control (AR) 

The PROFIdrve control method is not supported. 

 

 

  



2  Function Blocks 
2.3  Function Block L_ICIA_PROFIBUS_Out 

 

 Automation Building Blocks 2-32 

 

2.3.4 Interface 

 

Illustration 24: interface of function block L_ICIA_PROFIBUS_Out 

 

2.3.5 Task Information 

Call-up possible from:  freewheeling task  time-controlled task 
(INTERVAL) 

 event-controlled task 
(EVENT) 

 interrupt task 

 


Note:  

Make sure to have included the CAA Memory library in your PLC project to get a fault-

free built of your code. 

 

 

 

2.3.6 Inputs and Outputs 

Identifier 

Data type 

Description 

scStateMachine 

L_ICIA_scStateMachine 

data of the communication state machine 

Connect the corresponding output scStateMachine of function block L_ICIA_PROFIBUS_Base to ensure consistent 
operation of the AIF function blocks. A detailed description of this variable structure is given in chapter 2.1.8. 

 

2.3.7 Inputs  

Identifier 

Data type 

Description 

scStatusWords1 

L_ICIA_scStatusWords1 

AIF fieldbus output data (first group) 

The values comprise a four-word data structure, following the structure of the AIF-OUT system block of the 9300 
servo inverter. A detailed description is given on the next page. 

scStatusWords2 

L_ICIA_scStatusWords 

AIF fieldbus output data (second group) 

The values comprise a four-word data structure, following the structure of the AIF-OUT system block of the 9300 
ServoPLC inverter. A detailed description is given on the next pages. 

scStatusWords3 

L_ICIA_scStatusWords 

AIF fieldbus output data (third group) 

The values comprise a four-word data structure, following the structure of the AIF-OUT system block of the 9300 
ServoPLC inverter. A detailed description is given on the next pages. 

 

2.3.8 Outputs  

Identifier 

Data type 

Description 

adwFieldBusOut 

ARRAY [0..15] OF DWORD 

output of the fieldbus raw data 

These values can directly be mapped to the output data of the fieldbus IO interface. 

 

  



2  Function Blocks 
2.3  Function Block L_ICIA_PROFIBUS_Out 

 

 Automation Building Blocks 2-33 

 

 User-Defined Variable Structure scStatusWords1  

This structure implements the AIF-OUT1 interface known from the 9300 servo inverter series. It in-

cludes the following elements: 

 
Identifier 

Data type 

Description 

xBit00 

BIT 

bit 0 of the AIF-OUT status word  

 FALSE: status inactive  

 TRUE: status active 

Note: This bit does not have a fixed meaning but can be connected freely by the user. 

xImp 

BIT 

bit 1 of the AIF-OUT status word: pulse inhibit active 

 FALSE: The drive’s power stage is active and provides voltage/current to the motor. 

 TRUE: The drive’s power stage is inactive and no current is applied to the motor. 

Note: This bit must be connected to the corresponding signal in the application (i.e. by the status signal xImpActive 
of function block L_TB2P_AxisInterface). 

xBit02 

BIT 

bit 2 of the AIF-OUT status word  

 FALSE: status inactive  

 TRUE: status active 

Note: This bit does not have a fixed meaning but can be connected freely by the user. 

xBit03 

BIT 

bit 3 of the AIF-OUT status word  

 FALSE: status inactive  

 TRUE: status active 

Note: This bit does not have a fixed meaning but can be connected freely by the user. 

xBit04 

BIT 

bit 4 of the AIF-OUT status word  

 FALSE: status inactive  

 TRUE: status active 

Note: This bit does not have a fixed meaning but can be connected freely by the user. 

xBit05 

BIT 

bit 5 of the AIF-OUT status word  

 FALSE: status inactive  

 TRUE: status active 

Note: This bit does not have a fixed meaning but can be connected freely by the user. 

xNActEqZero 

BIT 

bit 6 of the AIF-OUT status word: drive speed signal is zero 

 FALSE: drive is moving (absolute drive speed is greater than the speed tolerance window)   

 TRUE: drive is in standstill (absolute drive speed below the speed tolerance window)   

Note: Generate this signal by a suitable logic (i.e. (ABS(MCTRL_nNAct_v)<=scPar.wC0019_Nmin)). 

xCInh 

BIT 

bit 7 of the AIF-OUT status word: drive controllers are inhibited 

 FALSE: position/speed/current control is active   

 TRUE: position/speed/current control is reset   

Note: This bit must be connected to the corresponding signal in the application (i.e. by the status signal Status of 
function block MC_Power). 

xStat1 
xStat2 
xStat4 
xStat8 

BIT 

bits 8 to 11 of the AIF-OUT status word: indication of the drive state 

 

xS
ta

t8
 

xS
ta

t4
 

xS
ta

t2
 

xS
ta

t1
  

 0 0 0 0 initialisation after the supply voltage has been connected 

 0 0 1 1 drive is in controller inhibit state 

 0 1 1 0 controller is enabled 

 0 1 1 1 a monitoring function triggered in a "message" 

 1 0 0 0 a monitoring function triggered in a "fault" 

 1 0 1 0 a monitoring function triggered in a "FAIL-QSP" 

Notes: These bits must be connected to the corresponding signal in the application (i.e. by the status signals of func-
tion block L_TB2P_AxisInterface). Some states known from 9300 may not be possible to be indicated (see chapter 
2.3.3). 

 

 

 

 



2  Function Blocks 
2.3  Function Block L_ICIA_PROFIBUS_Out 

 

 Automation Building Blocks 2-34 

 

 
Identifier 

Data type 

Description 

xWarning 

BIT 

bit 12 of the AIF-OUT status word: warning active 

 FALSE: no drive warning is active  

 TRUE: a drive warning is active 

Note: This bit must be connected to the corresponding signal in the application (i.e. by the status signals of function 
block MC_ReadAxisError). 

xMessage 

BIT 

bit 13 of the AIF-OUT status word: message is active (i.e. under-/overvoltage state) 

 FALSE: no message is active 

 TRUE: a message is active (i.e. under-/overvoltage state) 

Note: This bit must be connected to the corresponding signal in the application (i.e. by the inverted status signal 
xVoltageEnabled of function block L_TB2P_AxisInterface). 

xBit14 

BIT 

bit 14 of the AIF-OUT status word  

 FALSE: status inactive  

 TRUE: status active 

Note: This bit does not have a fixed meaning but can be connected freely by the user. 

xBit15 

BIT 

bit 15 of the AIF-OUT status word  

 FALSE: status inactive  

 TRUE: status active 

Note: This bit does not have a fixed meaning but can be connected freely by the user. 

wStat 

WORD 

AIF-OUT status word 

The wStat signal is logically OR-connected with the bits xBit00 … xBit15. This leaves it up to the user if the status is 
compiled indivually via the Boolean inputs xBit00 … xBit15 or via the wStat status word. 

wOut1 

WORD 

output of a 16 bit integer number  

Typically, the second WORD on AIF-OUT1 is interpreted as the drive’s speed set value, scaled in [%] (0 … 16384 = 
0.0 … 100.0[%]). However, it is up to the user to define the meaning in the application.  

wOut2 

WORD 

output of a free 16 bit WORD value 

 

wOut3 

WORD 

output of a free 16 bit WORD value 

 

 

 


Tip:  

Do you need to split a 32-bit value to two 16-bit values on scStatusWords1.wOut2 and 

ScStatusWords1.wOut3? The function block UnpackDword7 provides this function. Use 

it in the following way: 

 

Illustration 25: conversion of a 32-bit DWORD value to two 16-bit WORD values 
 

 

  

 
7 included the CAA Memory library 



2  Function Blocks 
2.3  Function Block L_ICIA_PROFIBUS_Out 

 

 Automation Building Blocks 2-35 

 

 User-Defined Variable Structure L_ICIA_scStatusWords 

This structure implements the extended AIF-OUT interface known from the 9300 ServoPLC inverter 

series. It is applied on the objects scStatusWords2 and scStatusWords3, and includes the following 

elements: 

 
Identifier 

Data type 

Description 

wOut0 

WORD 

output of a free 16 bit WORD value 

 

wOut1 

WORD 

output of a free 16 bit WORD value 

 

wOut2 

WORD 

output of a free 16 bit WORD value 

 

wOut3 

WORD 

output of a free 16 bit WORD value 

 

 

  



3  Application Example 
3.1  Commissioning Sequence (Motion Application) 

 

 Automation Building Blocks 3-36 

 

3 Application Example 

3.1 Commissioning Sequence (Motion Application) 

Typically, PROFIBUS is not used in new machines as there are more advanced fieldbus systems avail-

able such as EtherCAT or PROFInet. The PROFIBUS fieldbus moreover appears in existing machines 

in operation. This document focusses on previous Lenze servo inverters8, which now need to be re-

placed by the latest device generation of i950 drives. In the best case, the replacement i950 unit 

requires a functional twin of the previous servo inverter. Instead of the well-known function block 

connection of the GDC, the PLC program of the i950 bases on Lenze’s technology modules with 

some slight extensions to generate a 100% functional compatibility between the previous and ac-

tual drive system. 

The following example shows how to migrate a 9300 servo inverter in speed control9 to a compat-

ible i950 signal flow, using the Lenze technology module L_TF2P_SpeedControlBase.  

 

Pre-Requisites: 

• »PLC Designer« is already open on your PC10.  

• No project is open in »PLC Designer«. 
 

 

 
 

 

Create a new project in »PLC Designer«: 

 

Illustration 26: creation of a new project in »PLC Designer« 

  

 
8 in particular the 9300 servo inverter series 
9 basic configuration “speed control via AIF” (C0005/000 = 1003) 
10 In this example, we use »PLC Designer« V4.x. 

start 

Step 1 

Click on New Project … 

… select the empty Standard project, … 

… assign a project name (file name), … 

… select a directory path to store the project and … 

… confirm by clicking Ok. 



3  Application Example 
3.1  Commissioning Sequence (Motion Application) 

 

 Automation Building Blocks 3-37 

 

 

Specify the i950 target system: 

 

 

Illustration 27: select an i950 (BS) with firmware version V1.14 or higher as a target system 
 

 

 

Execute a Build process to enable access to the commissioning dialogues: 

 

Illustration 28: Build the project to allow access to the commissioning dialogues of »PLC Designer« 

 

  

Step 2 

Select a servo inverter i950 (BS) as a 
target system. 

Select the PLC programming language which you 
would like to use in your project. 

In this example, we use Continuous Function Chart 
(CFC). 

Keep the empty standard project. 

Close the dialogue by clicking Ok. 

As a firmware, choose a version V1.14 or higher. 

Step 3 

Execute a Build process.  

You may also use the keyboards shortcut <F11>. 



3  Application Example 
3.1  Commissioning Sequence (Motion Application) 

 

 Automation Building Blocks 3-38 

 

Set the important data in the commissioning dialogues of the device: 

 

Illustration 29: basic settings of the i950 drive 

 

• mains supply voltage 

• motor data  

• motor brake (if mounted/wired) 

• motor feedback system 

• axis kinematics (gearbox ratio, feed constant, …) 

• quickstop profile parameters 

• monitoring functions (following error, end switches, …) 
 

 

 

 


Tips:  

• Use the motor catalogue of »PLC Designer« to quickly find/set the mo-

tor data. 

• The auto-tuning feature of the i950 allows to find optimum controller 

settings for dynamic response of the servo drive. 

 

  

Step 4 

mains supply voltage 

motor type/data 

auxiliary motor functions 

motor feedback system 

axis kinematics 

quickstop profile 

monitoring functions 
 



3  Application Example 
3.1  Commissioning Sequence (Motion Application) 

 

 Automation Building Blocks 3-39 

 

Open the Library Manager to add the L_TF2P_TechModulesFollowingPositioning 

library to your project: 

 

 

Illustration 30: adding the L_TF2P_TechModulesFollowingPositioning library to your project 

 

 

 

 

In the same way as shown in step 5, also include the L_TB2P_TechModulesBasic library 

in the Library Manager of your project. 

 

 

 

 

  

Double-click the Library Manager to 
open the list of included libraries. 

Mark the library L_TF2P_TechModulesFollowingPositioning …  

Step 5 

Click on Add Library to browse the re-
quired library in the library repository. 

When entering the first letters of the library name in the search 
window, you can easily find it in the selection list below. 

… and confirm by clicking Ok.  

Step 6 



3  Application Example 
3.1  Commissioning Sequence (Motion Application) 

 

 Automation Building Blocks 3-40 

 

Open the PLC_PRG program and write a small CFC program as follows: 

 

Illustration 31: calling the function blocks L_TF2P_SpeedControlBase1 and L_TB2P_AxisInterface1 in PLC_PRG 

 

 

  

Double-click the PLC_PRG to edit it. 

Declare instances of the function blocks L_TF2P_Speed-
ControlBase and L_TB2P_AxisInterface. 

Step 7 

Call the function block instance of 
L_TF2P_SpeedControlBase first: 

- Continuously enable the function block 

by assigning a fixed TRUE signal to the 

xEnable input. 
- Connect the i950 Motion_Axis to the 

Axis input of the technology function. 

Then call the function block instance of 
L_TB2P_AxisInterface: 

- Connect the i950 Motion_Axis to the 

Axis input of the function block. 

The function block L_TB2P_AxisInterface 
provides no additional functionality in the 
program. It is solely used to output im-
portant status information which the 
fieldbus interface requires when implement-
ing it in a later stage (see chapter 3.2). 



3  Application Example 
3.1  Commissioning Sequence (Motion Application) 

 

 Automation Building Blocks 3-41 

 

Insert an empty visualization panel: 

 

Illustration 32: adding a visualization screen to operate the function block L_TF2P_SpeedControlBase 

 

 

 

 

 

  

Click right on Application to open the context menu … 

… and select Add Object. 

Step 8 

Pick a Visualization object and give it a unique 
name before adding it to your project 



3  Application Example 
3.1  Commissioning Sequence (Motion Application) 

 

 Automation Building Blocks 3-42 

 

For a first test, insert the visualization template of the L_TF2P_SpeedControlBase 

technology module to operate it via the visu screen: 

 

 

Illustration 33: adding the visualization template of L_TF2P_SpeedControlBase 

 

 

 

 

Test your PLC program: 

• Switch on mains power and 24V control power on your i950 drive. 

• Download the project to your i950 drive controller and start the PLC program. 

• Release the STO command on the i950 drive. 

 

  

Step 9 

Open the Visualization Toolbox. 

Select the L_TF2P library. 

Drag the visualization template of L_TF2P_SpeedControlBase to the visu-
alization screen and drop it at a convenient position on the new visualization 
screen. 
 
 
 
 
 
 
 

 
 
Assign the function block instance L_TF2P_SpeedControlBase1 in the 
PLC_PRG program to the visualization template you just inserted. 

Step 10 



3  Application Example 
3.1  Commissioning Sequence (Motion Application) 

 

 Automation Building Blocks 3-43 

 

By means of the visualization screen, operate the i950 drive in different operation 

modes and check all functions: 

 

 

Illustration 34: visualization screen of L_TF2P_SpeedControlBase 

 

 

 

 
 
 

  

Step 11 

Activate the internal control of the 
function block via the visualization 
screen. 

Power-up the i950 drive by click-
ing on EnableOperation. 

Enable speed control mode by ac-
tivating SpeedCtrlEnable. 

Define a target speed in the input 
field SetVel. You now should see 
the drive rotating in positive direc-
tion. 

If you like, you can adjust the ac-
celeration, deceleration and jerk 
parameters as well. 

end 

After enabling drive operation, you 
can run a first test by manual jog-
ging the drive via the buttons Jog-
Pos and JogNeg. 



3  Application Example 
3.2  Commissioning Sequence (PROFIBUS) 

 

 Automation Building Blocks 3-44 

 

3.2 Commissioning Sequence (PROFIBUS) 

The following chapter describes how to set the PROFIBUS communication into operation with the 

help of the L_ICIA_CommunicationInterface function blocks.  

 

Pre-Requisites: 

• The fieldbus system is wired according to the PROFIBUS specifications. 

• The logic PLC (PROFIBUS master) as well as all PROFIBUS slave devices are sup-

plied with control voltage (24VDC). 

• The PLC program of the i950 is open in »PLC Designer« but not yet online. 

• The application signal flow has been implemented in the i950’s PLC program as 

described in the previous chapter 3.1, for example migrating motion applications 

of competitors or Lenze legacy devices. 
 

 

 
 

 

Open the Library Repository and install the L_ICIA_CommunicationInterface library: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 

 Illustration 35: adding the L_ICIA_CommunicationInterface library to the Library Repository 

 

 

  

Start 

Step 1 
In the Tools menu … 

Click Install to browse the L_ICIA_CommunicationInterface 
library from the library file attached to this AKB document. 

… open the Library Repository. 

After installing the L_ICIA_CommunicationInterface.library file, you 
should see it in the Application path of the Library Repository. 

You can now close the Library Repository. 



3  Application Example 
3.2  Commissioning Sequence (PROFIBUS) 

 

 Automation Building Blocks 3-45 

 

 

Open the Library Manager to add the L_ICIA_CommunicationInterface library to your 

project: 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Illustration 36: adding the L_ICIA_CommunicationInterface library to your project 

 

 

 

In the same way as shown in step 2, also include the following libraries in the Library 

Manager of your project: 

• CAA Memory  (V03.05) 

• L_SI9P_IoDrvi900 (V03.33 – file attached to AKB document 202500431) 

 


Note:  

In the Library Manager, please resolve the placeholder for the 

L_SI9P_IoDrvi900 library and change it from a device-dependent 

version to a fixed version V03.33 or higher.  

 


Tip:  

To be sure to have the correct libraries in your project, you can open 

the project archive TM_SpeedControl.projectarchive attached to the 

AKB article 202500431. 

Create your project on the base of this project archive.  

 

 

Double-click the Library Manager to 
open the list of included libraries. 

Mark the library L_ICIA_CommunicationInterface …  

Click on Add Library to browse the re-
quired library in the library repository. 

When entering the first letters of the library name in the search 
window, you can easily find it in the selection list below. 

… and confirm by clicking Ok.  

Step 2 

Step 3 



3  Application Example 
3.2  Commissioning Sequence (PROFIBUS) 

 

 Automation Building Blocks 3-46 

 

  



3  Application Example 
3.2  Commissioning Sequence (PROFIBUS) 

 

 Automation Building Blocks 3-47 

 

Declare the following global interface variable arrays for fieldbus communication in a 

separate GVL item TA_IO: 

{attribute 'qualified_only'} 

VAR_GLOBAL 

 adwPROFIBUS_IN:  ARRAY [0..15] OF DWORD;  // raw data input from PROFIBUS 

 adwPROFIBUS_OUT:  ARRAY [0..15] OF DWORD;  // raw data output to PROFIBUS 

END_VAR 

 

 

 

 

Map the variable arrays declared in step 4 to the fieldbus interface as follows: 

 

Illustration 37: assignment of global variable arrays to the i950’s fieldbus interface 
 

  

Step 4 

Step 5 

Map the input variable array TA_IO.adwPROFIBUS_IN 
to the input channels of the fieldbus interface of i950. 

Map the output variable array TA_IO.adwPROFIBUS_OUT 
to the input channels of the fieldbus interface of i950. 



3  Application Example 
3.2  Commissioning Sequence (PROFIBUS) 

 

 Automation Building Blocks 3-48 

 

In the i950 motion program PLC_PRG, declare the following function blocks: 

VAR 

 L_ICIA_PROFIBUS_Base1:L_ICIA_PROFIBUS_Base; // handling of basic PROFIBUS communication  

 L_ICIA_PROFIBUS_In1: L_ICIA_PROFIBUS_In; // reading/processing fieldbus inputs to  

   // scControlWords 

 L_ICIA_PROFIBUS_Out1: L_ICIA_PROFIBUS_Out; // processing/writing fieldbus outputs from  

   // scStatusWords 

 L_STAT1: L_STAT; // generating the 4-bit pattern of the drive status 

 L_MC1A_ZeroDetect1: L_MC1A_ZeroDetect; // detection of rotation sense/zero speed 

END_VAR 

 

 
 

 

Prepare the parameter correspondence list11 by extending the declaration list in the 

i950’s motion program PLC_PRG: 

… 

ascParReference: ARRAY [0..15] OF L_ICIA_sc93ParReference; // parameter reference list  

… 

 

 

 

 

Does your GSD configuration include a Drivecom V0 parameter channel? 

 

 

 

Extend the parameter correspondence list started in step 5 with the necessary 

initialization values as described in chapter 2.1.2: 

… 

ascParReference: ARRAY [0..15] OF L_ICIA_sc93ParReference;  // parameter reference list  

 (wCode:=51, bySubCode:=0, wIndex:=16#606C, bySubIndex:=0, bySize:=4, diNum:=1171875, diDen:=524288), 

 (wCode:=53, bySubCode:=0, wIndex:=16#6079, bySubIndex:=0, bySize:=4, diNum:=10,      diDen:=1), 

 (wCode:=63, bySubCode:=0, wIndex:=16#2D49, bySubIndex:=5, bySize:=2, diNum:=1000,    diDen:=1), 

 (wCode:=52, bySubCode:=0, wIndex:=16#2D82, bySubIndex:=0,  bySize:=4, diNum:=10,      diDen:=1), 

 (wCode:=54, bySubCode:=0, wIndex:=16#2DD1, bySubIndex:=5, bySize:=4, diNum:=10,      diDen:=1), 

 (wCode:=61, bySubCode:=0, wIndex:=16#2D84, bySubIndex:=1,  bySize:=2, diNum:=10,      diDen:=1), 

 (wCode:=64, bySubCode:=0, wIndex:=16#2D40, bySubIndex:=7, bySize:=2, diNum:=1,       diDen:=1), 

  … 

 (wCode:=84, bySubCode:=0, wIndex:=16#2C01, bySubIndex:=2, bySize:=4, diNum:=100,     diDen:=1), 

 (wCode:=85, bySubCode:=0, wIndex:=16#2C01, bySubIndex:=3,  bySize:=4, diNum:=10,      diDen:=1)]; 

… 

 

 

 

First, call the function block L_ICIA_PROFIBUS_Base in your PLC program and connect 

the variables as shown:  

 

 

 

 

 

 

Illustration 38: call of function block L_ICIA_PROFIBUS_Base at the beginning of the PLC program 

  

 
11 If no parameter channel is used, still the declaration is necessary as a dummy assignment.  

NO  

 10 

Step 8 

Step 6 

YES 

? 

Step 7 

Step 9 

As an axis reference, connect the 
i950 drive (Motion_Axis). 

The variable structure ascParRefer-
ence , which was declared in step 9, 
is assigned to the corresponding in-
put ascParReference. 



3  Application Example 
3.2  Commissioning Sequence (PROFIBUS) 

 

 Automation Building Blocks 3-49 

 

Call the function block L_ICIA_PROFIBUS_In directly after the function block 

L_ICIA_PROFIBUS_Base in your PLC program and connect the variables as shown: 

 

 

 

 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Illustration 39: call of function block L_ICIA_PROFIBUS_In directly behind the function block L_ICIA_PROFIBUS_Base 

 

 

  

Step 10 

xBit00

xBit01

xBit0 

x sp

xBit04

xBit05

xBit06

xBit0 

xDisable

xCInh

xTripSet

xTripReset

xBit1 

xBit13

xBit14

xBit15

wCtrl

wIn1

wIn 

wIn3

                  

adwFieldBusIn

scState achine

scControl ords1

scControl ords 

scControl ords3

TA_IO.adwPROFIBUS_IN

L_ICIA_PROFIBUS_Base.scState achine

L_TF P_SpeedControlBase.xNegativeDirection

L_TF P_SpeedControlBase.x SPApplication

L_TF P_SpeedControlBase.xEnableOperation

L_TF P_SpeedControlBase.xResetError

L_TF P_SpeedControlBase.wProfileNumber.0

L_TF P_SpeedControlBase.wProfileNumber.1

  

               

The function block L_ICIA_PROFI-
BUS_In reads the raw fieldbus data 
as declared in step 2. 

L_ICIA_PROFIBUS_In interacts with 
L_ICIA_PROFIBUS_Base and L_ICIA_PRO-
FIBUS_Out by sharing the variable structure 
L_ICIA_PROFIBUS_Base.scStateMachine.  

Please connect it accordingly to ensure cor-
rect function! 

To access each element of the process data 
of L_ICIA_PROFIBUS_In.scControlWords1, 
insert a selector of type scControlWords1. Call the function block L_ICIA_PROFIBUS_In 

directly after the function block L_ICIA_PROFI-
BUS_Base in your PLC program. 

Connect the xDisable and xCInh signals via an OR 
logic. 

Do you see the signal negation at the OR output? 
Don’t forget to invert the OR output before assign-
ing the output to L_TF2P_SpeedControlBase.xEna-
bleOperation. 

Connect the output of scControlWords1 to the 
technology module L_TF2P_SpeedControlBase. 

Note: 
On 9300, xBit00 and xBit01 were used to ad-
dress fixed speeds. In this example, these bits 
are left disconnected. 



3  Application Example 
3.2  Commissioning Sequence (PROFIBUS) 

 

 Automation Building Blocks 3-50 

 

Read the maximum speed value nmax
12 from the legacy drives13 and convert it with 

the help of the drive axis’ kinematic parameters to a reference velocity Vmax. 

 

Example: nmax = 3000[rpm] 

 

Illustration 40: kinematic parameters of the i950 drive 

 

 

𝑉𝑚𝑎𝑥 =
𝑛𝑚𝑎𝑥

60
𝑠

𝑚𝑖𝑛

∙ 𝐹𝑒𝑒𝑑𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 ∙
1

𝑖𝑔𝑒𝑎𝑟
∙

1

𝑖𝑔𝑒𝑎𝑟,𝑎𝑑𝑑
= 

 

=
𝑛𝑚𝑎𝑥

60
𝑠

𝑚𝑖𝑛

∙ 0𝑥500𝐴: 032 ∙
0𝑥500𝐴: 034

0𝑥500𝐴: 033
∙
0𝑥500𝐴: 026

0𝑥500𝐴: 025
= 

 

=
3000

𝑟𝑒𝑣.
𝑚𝑖𝑛

60
𝑠

𝑚𝑖𝑛

∙ 320.0000
𝑢𝑛𝑖𝑡𝑠

𝑟𝑒𝑣.
∙
119

1279
∙
1

1
= 1488.663…

𝑢𝑛𝑖𝑡𝑠

𝑠
 

 

 

 

 

Declare a constant variable C_lrMaxVelocity with an initialization value of Vmax as 

calculated in the previous step:  

VAR CONSTANT 

 C_lrMaxVelocity:  LREAL := 1488.663;  // maximum drive velocity, scaled in [units/s]  

END_VAR 

 

  

 
12 scaled in [rpm] 
13 In the Lenze legacy devices, the maximum speed was set in code C0011/000.  

Step 11 

 
  

 
  

 

 

 

   

Step 12 



3  Application Example 
3.2  Commissioning Sequence (PROFIBUS) 

 

 Automation Building Blocks 3-51 

 

Read and scale the speed set value on L_ICIA_PROFIBUS_In.scControlWords1.wIn1, and 

route it via the following signal flow to the speed control technology module 

L_TF2P_SpeedControlBase. Modify your program as follows: 

 

 

 

 

 

 
 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Illustration 41: reading/scaling/modifying the target velocity value lrSetVel of L_TF2P_SpeedControlBase  

 

 

 

  

Step 13 

 

In the first step, the normalized input value on L_ICIA_PROFIBUS_In.scControl-
Word1.wIn1 with its value range is rescaled to a velocity range of 0.0 … 
C_lrMaxVelocity by means of the function L_TB1A_AnalogInputScaling. 

The function L_TB1A_AnalogInputScaling is included in the export file loaded to 
the project in step 1. For more information to this function, please refer to the PDF 
document in AKB article 202000349. 

 

The control bit L_ICIA_PROFI-
BUS_In.scControlWords1.xBit04 allows 
freezing the ramp function generator of the 
L_TF2P_SpeedControlBase technology 
module. 

As currently this function is not included in 
the technology module itself, it must be pro-
grammed outside the technology module by 
means of a selector (SEL operator). 

 

The control bit L_ICIA_PROFIBUS_In.scControlWords1.xBit05 switches the tar-
get velocity for the L_TF2P_SpeedControlBase technology module to a zero 
value. The function has priority over the ‘freeze’ function. 

As currently this function is not included in the technology module itself, it must 
be programmed outside the technology module by means of a selector (SEL op-
erator).  

The selector’s output is assigned to the target velocity lrSetVel of the technology 
module L_TF2P_SpeedControlBase. 

                         

iIn_a

lr in

lr axC_lr ax elocity

0.0

L_ICIA_PROFIBUS_In.scControl ord1.wIn1 

   

L_TF P_SpeedControlBase.lrSet elOut

L_ICIA_PROFIBUS_In.scControl ord1.xBit04

   

0.0

L_ICIA_PROFIBUS_In.scControl ord1.xBit05

L_TF P_SpeedControlBase.lrSet el

https://lenzegroup.sharepoint.com/sites/ApplicationKnowledgeBase/Lists/AKB_Intranet/DispForm.aspx?ID=20144


3  Application Example 
3.2  Commissioning Sequence (PROFIBUS) 

 

 Automation Building Blocks 3-52 

 

To prepare the status word on the L_ICIA_PROFIBUS_Out function block, three steps of 

preparation work is necessary: 

In the first step, declare a variable lrZeroSpeedThreshold for a velocity tolerance 

window. The tolerance window defines the behavior/stability of the zero-speed signal.  

… 

lrZeroSpeedThreshold: LREAL := 1.0; // zero-speed tolerance threshold, scaled in [units/s]  

… 

 
 

Initialize the variable with a velocity threshold limit value. Whenever the drive’s actual 

velocity is smaller/equal the threshold value, the (n=0) status flag goes to a TRUE level. 

 

 

In the next step, call the function block L_MC1A_ZeroDetect at the end of your program 

and connect it in the signal flow as follows: 

 

 

 

 

 

 

 

 

Illustration 42: zero speed detection by means of the function block L_MC1A_ZeroDetect  

 

 

 

Call the function block L_STAT at the end of your program and connect the following 

variables: 

 

 

 

 

 

 

 
 
 
 

Illustration 43: generation of status bits bStat1_b … bStat8_b by means of the function block L_STAT  

  

 

Step 14 

Call the function block L_MC1A_ZeroDe-
tect. The block is included in the export 
file loaded to the project in step 4. For 
more information to this function block, 
please refer to the PDF document in AKB 
article 202000349. 

Step 15 

Assign the following element variables of the Motion_Axis structure to the inputs 
of the L_MC1A_ZeroDetect function block: 

• Motion_Axis.lrActPosition => L_MC1A_ZeroDetect.lrPosIn 

• Motion_Axis.eTraversingRange => L_MC1A_ZeroDetect.eTraversingRange 

• Motion_Axis.lrCycleLength => L_MC1A_ZeroDetect.lrCycleLength 

Multiply the zero-speed threshold limit (lrZeroSpeedThreshold) with 
the task cycle time ΔtTaskCycle (L_MC1A_GetTaskCycle()) to get a 
standstill hysteresis distance.  

Connect the result to the input signal L_MC1A_ZeroDetect.lrStand-
stillWindow. 

Step 16 

Call the function block L_STAT at the end of 
your program. 

The function block L_STAT is included in the 
export file loaded to the project in step 4.  Please consider the negations in the signal flow on the input 

signals L_STAT.bCInh_b and L_STAT.bMessage_b. 

      

bInit_b

bCInh_b

bTrip_b

b essage_b

bStat1_b

bStat _b

bStat4_b

bStat8_bL_TB P_AxisInterface.x oltageEnabled

L_TF P_SpeedControlBase.xError

L_ICIA_PROFIBUS_Base.xInit

L_TF P_SpeedControlBase.xOperationEnabled

https://lenzegroup.sharepoint.com/sites/ApplicationKnowledgeBase/Lists/AKB_Intranet/DispForm.aspx?ID=20144
https://lenzegroup.sharepoint.com/sites/ApplicationKnowledgeBase/Lists/AKB_Intranet/DispForm.aspx?ID=20144


3  Application Example 
3.2  Commissioning Sequence (PROFIBUS) 

 

 Automation Building Blocks 3-53 

 

Insert a composer block of scStatusWords1 and connect the following signals: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Illustration 44: assignment of status signals/of normalized motor speed to the scStatusWords1 composer  

 

Insert the L_ICIA_PROFIBUS_Out function block at the end of your program, link the 

L_ICIA_scStatusWords1 composer’s output to the scStatusWords1 input of the 

L_ICIA_PROFIBUS_Out block and assign the generation of the AIF status word via 

function block L_ICIA_PROFIBUS_Out: 

 

 

Illustration 45: call of function block L_ICIA_PROFIBUS_Out at program end and assignment to the fieldbus output variables 

  

              xBit00

xImp

xBit0 

xBit03

xBit04

xBit05

xNActEq ero

xCInh

xStat1

xStat 

xStat4

xStat8

x arning

x essage

xBit14

xBit15

wStat

wOut1

wOut 

wOut3

                   

scStatus ords1 

scStatus ords  

scStatus ords3 

scState achine

adwFieldBusOut

L_ICIA_PROFIBUS_Base.scState achine

TA_IO.adwPROFIBUS_OUT

Step 17 

Step 18 

Insert the function block L_ICIA_PROFIBUS_Out. 

Connect the scStatusWords1 composer’s output to the scStatus-
Words1 input of the L_ICIA_PROFIBUS_Out block. 

L_ICIA_PROFIBUS_Out interacts with L_ICIA_PROFI-
BUS_Base and L_ICIA_PROFIBUS_In by sharing the 
variable structure L_ICIA_PROFIBUS_Base.scStateMa-
chine.  

Please connect it accordingly to ensure correct function! 
. 

Assign the adwFieldBusOut output array to the global 
variable array TA_IO.adwPROFIBUS_OUT already 
mapped to the fieldbus interface. 

 

Some (minor important) status signals are not yet 
available on the Lenze technology modules. 

However, you may program work-arounds if you re-
quire these signals already. 

The drive’s actual velocity (0.0 … C_lrMaxVelocity) is scaled to a normal-
ized output signal (0 … 16384) on L_ICIA_PROFIBUS_Out.scStatus-
Words1.wOut1 by means of the function L_TB1A_AnalogOutputScaling. 

The function L_TB1A_AnalogOutputScaling is included in the export file 
loaded to the project in step 4. For more information to this function, please 
refer to the PDF document in AKB article 202000349. 

L_TB P_AxisInterface.xImpActive

L_ C1A_ eroDetect.xStandstill

L_TF P_SpeedControlBase.xOperationEnabled

L_TF P_SpeedControlBase.x arning

L_ C1A_ eroDetect.xNegative

              xBit00

xImp

xBit0 

xBit03

xBit04

xBit05

xNActEq ero

xCInh

xStat1

xStat 

xStat4

xStat8

x arning

x essage

xBit14

xBit15

wStat

wOut1

wOut 

wOut3

L_STAT.bStat1_b

L_STAT.bStat _b

L_STAT.bStat4_b

L_STAT.bStat8_b

L_TB P_AxisInterface.x oltageEnabled

L_TB P_AxisInterface.xReadyFor otion
                          

lrIn

lr in

lr axC_lr ax elocity

0.0

L_TF P_SpeedControlBase.lrAct el

https://lenzegroup.sharepoint.com/sites/ApplicationKnowledgeBase/Lists/AKB_Intranet/DispForm.aspx?ID=20144


3  Application Example 
3.2  Commissioning Sequence (PROFIBUS) 

 

 Automation Building Blocks 3-54 

 

 

Set the PROFIBUS station address of the i950 in index 0x2341:001: 

Index SubIndex Name Value Unit 

0x2341 1 PROFIBUS: Station address 4  
 

 
 

Make sure that index 0x2341:011 is set to a value of 1 (‘EMF2133IB (ID:2133)’)14 or of 

2 (‘EMF2131IB (ID:2131)’)15. 

Index SubIndex Name Value Unit 

0x2341 11 PROFIBUS: Compatibility mode EMF2133IB (ID: 0x2133) [1]  
 

 

 

Compile, download and start the project to the i950 drive. You are now ready to 

control the i950 drive in the same way as the 9300 drive. 

 

 

 

 

 

 

 

 


Tip:  

After downloading, restarting of the PROFIBUS slave might be necessary due to 

changed values in indexes 0x2341:001 and 0x2341:011. 

Restart the PROFIBUS communication with the current settings with the following 

command: 

Index SubIndex Name Value Unit 

0x2340 0 PROFIBUS communication restart with current values [1]  
 

 

 

 

 

 

 

  

 
14 This setting defines which device type is reported via PROFIBUS to the logic PLC. A setting of 0x2341:11=1 makes the logic PLC believe that the connected device 
is a 8200/9300 with a PROFIBUS module EMF2133IB. 
15 A setting of 0x2341:11=2 makes the logic PLC believe that the connected device is a 8200/9300 with a PROFIBUS module EMF2131IB. 

end 

Step 19 

Step 20 

Step 21 

no action / no error  [0] 
 
restart with default values  [2] 
stop communication  [5] 
in progress   [10] 
action cancelled  [11] 
fault   [12] 

restart with current values  [1] 



4  Appendix 
4.1  Supported GSD Configurations 

 

 Automation Building Blocks 4-55 

 

4 Appendix 

4.1 Supported GSD Configurations16 

# GSD configuration PROFIBUS config value(s) corresponding value in 0x2348:003 

1. no parameter channel / process data (Drivecom control) 

1 PZD(  1W) 0x70 xx0170 

…    …   … … 

12 PZD(12W) 0x7B xx017B 

2. consistent Drivecom parameter channel / process data (Drivecom control) 

13 PAR(cons.) + PZD(  1W) 0xF3, 0x70 xx02F370 

…    …   … .. 

24 PAR(cons.) + PZD(12W) 0xF3, 0x7B xx02F37B 

3. consistent Drivecom parameter channel / consistent process data (Drivecom control) 

25 PAR(cons.) + PZD(  1W cons.) 0xF3, 0xF0 xx02F3F0 

…    …   … … 

36 PAR(cons.) + PZD(12W cons.) 0xF3, 0xFB xx02F3FB 

4. Drivecom parameter channel / process data (Drivecom control) 

37 PAR + PZD(  1W) 0x73, 0x70 xx027370 

…    …   … … 

48 PAR + PZD(12W) 0x73, 0x7B xx02737B 

5. Drivecom parameter channel / consistent process data (Drivecom control) 

49 PAR + PZD(  1W cons.) 0x73, 0xF0 xx0273F0 

…    …   … … 

60 PAR + PZD(12W cons.) 0x73, 0xFB xx0273FB 

6. no parameter channel / consistent process data (Drivecom control) 

61 PZD(  1W cons.) 0xF0 xx01F0 

…    …   … … 

72 PZD(12W cons.) 0xFB xx01FB 

7. no parameter channel / process data (Lenze device control) 

73 PZD(  1W) AR 0x00, 0x00, 0x00, 0x70 xx0400000070 

…    …   … … 

84 PZD(12W) AR 0x00, 0x00, 0x00, 0x7B xx040000007B 

8. consistent Drivecom parameter channel / process data (Lenze device control) 

85 PAR(cons.) + PZD(  1W) AR 0x00, 0x00, 0x00, 0xF3, 0x70 xx05000000F370 

…    …   … … 

96 PAR(cons.) + PZD(12W) AR 0x00, 0x00, 0x00, 0xF3, 0x7B xx05000000F37B 

9. consistent Drivecom parameter channel / consistent process data (Lenze device control) 

97 PAR(cons.) + PZD(  1W cons.) AR 0x00, 0x00, 0x00, 0xF3, 0xF0 xx05000000F3F0 

…    …   … … 

108 PAR(cons.) + PZD(12W cons.) AR 0x00, 0x00, 0x00, 0xF3, 0xFB xx05000000F3FB 

10. Drivecom parameter channel / process data (Lenze device control) 

109 PAR + PZD(  1W) AR 0x00, 0x00, 0x00, 0x73, 0x70 xx050000007370 

…    …   … … 

120 PAR + PZD(12W) AR 0x00, 0x00, 0x00, 0x73, 0x7B xx05000000737B 

11. Drivecom parameter channel / consistent process data (Lenze device control) 

121 PAR + PZD(  1W cons.) AR 0x00, 0x00, 0x00, 0x73, 0xF0 xx0500000073F0 

…    …   … … 

132 PAR + PZD(12W cons.) AR 0x00, 0x00, 0x00, 0x73, 0xFB xx0500000073FB 

12. no parameter channel / consistent process data (Lenze device control) 

133 PZD(  1W cons.) AR 0x00, 0x00, 0x00, 0xF0 xx04000000F0 

…    …   … … 

144 PZD(12W cons.) AR 0x00, 0x00, 0x00, 0xFB xx04000000FB 

  

 
16 no distinguishing between inconsistent/consistent data transmission 



4  Appendix 
4.2  AIF-IN Interface of 9300 

 

 Automation Building Blocks 4-56 

 

4.2 AIF-IN Interface of 9300 

 
 

Illustration 46: signal flow of the AIF-IN interface on the 9300 servo inverter (excerpt from GDC help) 
 

  



4  Appendix 
4.3  AIF-OUT Interface of 9300 

 

 Automation Building Blocks 4-57 

 

4.3 AIF-OUT Interface of 9300 

 

 

 

 

 

 

 

 

 
 

Illustration 47: signal flow of the AIF-OUT interface on the 9300 servo inverter (excerpt from GDC help) 

 

 

  



4  Appendix 
4.4  Drivecom Control Word 

 

 Automation Building Blocks 4-58 

 

4.4 Drivecom Control Word 

Bit Name Meaning 

0 Switch On command bit: 

 FALSE commands 2, 6, 8 (controller inhibit)  

 TRUE command 3 (controller enable)  

1 Voltage Inhibit command bit: disable/enable motor voltage 

 FALSE inhibit voltage  

 TRUE enable voltage  

2 Quick Stop command bit: activate quick stop 

 FALSE activate quick stop  

 TRUE release quick stop 

3 Enable Operation command bit: enable drive operation 

 FALSE disable drive operation  

 TRUE enable drive operation 

4 RFG Inhibit command bit: application quick stop (QSP) 

 FALSE activate application quick stop (QSP) 

 TRUE release application quick stop (QSP) 

Note: The negated signal of this bit is directly output on scControlWords1.xQsp. 

5 RFG Stop command bit: stop ramp function generator 

 FALSE ramp function generator freezes 

The drive maintains the actual speed even if the target speed on scControlWords1.iIn2 is not 
reached yet. 

 TRUE ramp function generator is active 

The drive accelerates/decelerates to the target speed on scControlWords1.iIn2. 

Notes:  

• The negated signal of this bit is directly output on scControlWords1.xBit04.  

• In the basic application ‘SpeedControl’, bit 5 (RFG Stop) has minor priority against bit 6 (RFG Zero). 

6 RFG Zero command bit: ramp down set speed to zero 

 FALSE zero target speed 

The drive ramps down to a zero speed. The value received on scControlWords1.iIn2 is ignored. 

 TRUE external target speed 

The drive follows the target speed on scControlWords1.iIn2. 

Notes:  

• The negated signal of this bit is directly output on scControlWords1.xBit05.  

• In the basic application ‘SpeedControl’, bit 6 (RFG Zero) has priority over bit 5 (RFG Stop). 

7 Error Reset command bit: reset drive error 

 FALSE=>TRUE resets a drive error 

Notes:  

• A drive error can only be reset in case the error cause has been removed before. 

• This bit is directly output on scControlWords1.xTripReset. 

8 … 10 (reserved)  

11 Manufacturer free bit (directly output on scControlWords1.xBit07) 

12 Manufacturer free bit (directly output on scControlWords1.xBit12) 

13 Manufacturer free bit (directly output on scControlWords1.xBit13) 

14 Manufacturer free bit (directly output on scControlWords1.xBit14) 

15 Manufacturer free bit (directly output on scControlWords1.xBit15) 

 

 

  



4  Appendix 
4.5  Drivecom Status Word 

 

 Automation Building Blocks 4-59 

 

4.5 Drivecom Status Word 

Bit Name Meaning 

0 Ready To Start device state machine information: 

 FALSE The device status is lower than Ready To Start. 

 TRUE The device status is at least Ready To Start. 

1 Switched On device state machine information: 

 FALSE The device status is lower than Switched On. 

 TRUE The device status is at least Switched On. 

2 Operation Enabled device state machine information: 

 FALSE The device status is lower than Operation Enabled. 

 TRUE The device status is at least Operation Enabled. 

3 Fault device is in error state: 

 FALSE no error is active on the device 

 TRUE an error is active on the device 

Note: The signal is derived from scStatusWords1.xStat8, scStatusWords1.xStat10 and scStatusWords1.xStat11. 

4 Voltage Inhibited handshake signal: return of control bit 1 (“Voltage Inhibit“) 

 FALSE no error is active on the device 

 TRUE an error is active on the device 

Note: The signal is directly copied from bit 1 of the Drivecom control word (see previous chapter 4.4). 

5 Quick Stop handshake signal: return of control bit 2 (Quick Stop) 

 FALSE quick stop command is active on the device 

 TRUE no quick stop command is active on the device 

Note: The signal is directly copied from bit 2 or bit 4 of the Drivecom control word (see previous chapter 4.4). 

6 Switch-On Inhibited device state machine information: 

 FALSE The device is not in state Switch-On Inhibited. 

 TRUE The device is in state Switch-On Inhibited. 

7 Warning device is in warning state: 

 FALSE no warning is active on the device 

 TRUE a warning is active on the device 

Note: The signal of this bit is directly copied from scStatusWords1.xWarning. 

8 Message message is active on the device: 

 FALSE no message is active on the device 

 TRUE a message is active on the device 

Notes:  

• A message state typically occurs in at an undervoltage state (main power switched off). 

• The signal of this bit is directly copied from scStatusWords1.xMessage. 

9 Remote fieldbus access authorization: 

 FALSE - 

 TRUE (this signal is set always TRUE in Drivecom operation mode) 

10 Set Point Reached status of the internal ramp generator: 

 FALSE The actual drive speed does not match the target value. 

 TRUE The actual drive speed matches the target value. 

Notes:  

• In default speed control, the signal represents the Set Point Reached status of the speed ramp generator. In this 
case, the following Drivecom command bits may suppress the Set Point Reached status signal: 

− RFG Inhibit  (command bit 4) 

− RFG Stop  (command bit 5) 

− RFG Zero  (command bit 6) 

• Generally, the signal of this bit is directly copied from scStatusWords1.xBit04. 

11 Limit Value Status of the Drivecom speed limitation (not supported): 

 FALSE (this signal is set always FALSE in Drivecom operation mode) 

 TRUE - 

12 Manufacturer free bit (signal directly copied from scStatusWords1.xBit14) 

13 Manufacturer free bit (signal directly copied from scStatusWords1.xBit03) 

14 Manufacturer free bit (signal directly copied from scStatusWords1.xBit02) 

15 Manufacturer free bit (signal directly copied from scStatusWords1.xBit05) 

  



4  Appendix 
4.6  Drivecom DP V0 Parameter Channel (Tx) 

 

 Automation Building Blocks 4-60 

 

4.6 Drivecom DP V0 Parameter Channel (Tx) 

The following chart describes the meaning of the transmit parameter channel request (8 bytes), 

sent by the PLC to the slave device (drive): 

 

byte 1 (service) byte 2 byte 3 byte 4 by e  5 … 8 

7 6 5 4 3 2 1 0 subindex index17 
(high byte) 

index 
(low byte) 

data  

 

request type: 000 = no request 
  001 = read request (read data from device) 
  010 = write request (write data to device) 

(not used) 

data length18:   00 = 1 byte 
    01 = 2 bytes 
    10 = 3 bytes 
    11 = 4 bytes 

handshake: 

• The PLC changes this (toggle) bit for every new request. 

• The slave mirrors this bit into its response telegram (see chapter 4.7).  
 
(not used – keep on FALSE level) 
 

 

Illustration 48: structure of the Drivecom DP V0 parameter channel Tx telegram on the 9300 servo inverter (PLC => drive) 

 

 

  

 
17 The 9300 index number results from subtracting the 9300 code number from a fixed value of 24575 (=0x5FFF). 
18 length of data in bytes 5 ... 8 (data/error 1 ... 4) to be read/written to the slave device index 



4  Appendix 
4.7  Drivecom DP V0 Parameter Channel (Rx) 

 

 Automation Building Blocks 4-61 

 

4.7 Drivecom DP V0 Parameter Channel (Rx) 

The following chart describes the meaning of the receive parameter channel response (8 bytes), 

returned by the slave device (drive) to the PLC: 

 

byte 1 (service) byte 2 byte 3 byte 4 by e  5 … 8 

7 6 5 4 3 2 1 0 subindex index19 
(high byte) 

index 
(low byte) 

data / error code 

 

mirror of the request type bits 0 …   (see chapter 2.1.4) 

(not used) 

data length20:   00 = 1 byte 
    01 = 2 bytes 
    10 = 3 bytes 
    11 = 4 bytes 

mirror of handshake bit 6 of the Tx telegram (see chapter 2.2.16): 

• The PLC changes this (toggle) bit for every new request. 

• The slave device copies the bit into its response telegram.  
 
status bit: 
Status information from the slave device to the PLC when sending the request confirmation. This bit 
informs the master PLC whether the request has been carried out without any faults. 

    0 = request completed without fault  
(The data of bytes 5 ... 8 represent the data read from the target index.) 

    1 = request not completed - an error has occurred.  
(The data of bytes 5 ... 8 represent the error number.) 

 

 

The following error codes are returned in case of bit 7 is on TRUE: 

byte 5 byte 6 byte 7 byte 8 error description 

0x00 0x00 0x00 0x08 no response to a request could be received within the watchdog time 

0x00 0x00 0x03 0x06 access not permitted for this parameter 

0x00 0x00 0x07 0x06 code number does not exist in the parameter reference list 

0x00 0x00 0x08 0x06 data types do not correspond 

0x01 0xFE 0x00 0x08 invalid service (no read or write request) 

0x10 0x00 0x05 0x06 target index/sub-index number does not exist on the device 

0x11 0x00 0x05 0x06 sub-code number does not exist in the parameter reference list 

0x12 0x00 0x05 0x06 data length of the value to be written is too large 

0x13 0x00 0x05 0x06 data length of the value to be read is too small 

0x30 0x00 0x00 0x08 write access not denied due to drive operation enabled  

0x31 0x00 0x00 0x08 upper limit value of the parameter is not reached 

0x32 0x00 0x00 0x08 lower limit value of the parameter is not reached 

 
 

Illustration 49: structure of the Drivecom DP V0 parameter channel Rx telegram on the 9300 servo inverter (drive => PLC) 

 

 

 

 
19 The 9300 index number results from subtracting the 9300 code number from a fixed value of 24575 (=0x5FFF). 
20 length of the return data in bytes 5 ... 8 (data/error 1 ... 4) 


	Copyright
	Imprint
	Copyright information
	Liability
	Trademarks
	1 Function Blocks
	1.1 Document History
	1.2 About Automation Building Blocks
	1.3 Conventions used
	Variable Names

	1.4 System Requirements
	Software
	Hardware


	2 Function Blocks
	2.1 Function Block L_ICIA_PROFIBUS_Base
	2.1.1 Configuration Mode Selection (GSD/GSE Configuration)
	Set GSD/GSE Configuration  (BYTE ARRAY[23])

	2.1.2 Parameter Handling
	2.1.3 Incompatibility List
	2.1.4 Interface
	2.1.5 Task Information
	2.1.6 Inputs and Outputs
	2.1.7 Inputs
	User-Defined Variable Structure L_ICIA_sc93ParReference

	2.1.8 Outputs
	User-Defined Variable Structure L_ICIA_scStateMachine


	2.2 Function Block L_ICIA_PROFIBUS_In
	2.2.1 Process Data (PZD)
	2.2.2 Drivecom State Machine
	2.2.3 Incompatibility List
	2.2.4 Interface
	2.2.5 Task Information
	2.2.6 Inputs and Outputs
	2.2.7 Inputs
	2.2.8 Outputs
	User-Defined Variable Structure L_ICIA_scControlWords1
	User-Defined Variable Structure L_ICIA_scControlWords


	2.3 Function Block L_ICIA_PROFIBUS_Out
	2.3.1 Process Data (PZD)
	2.3.2 Drivecom State Machine
	2.3.3 Incompatibility List
	2.3.4 Interface
	2.3.5 Task Information
	2.3.6 Inputs and Outputs
	2.3.7 Inputs
	2.3.8 Outputs
	User-Defined Variable Structure scStatusWords1
	User-Defined Variable Structure L_ICIA_scStatusWords



	3 Application Example
	3.1 Commissioning Sequence (Motion Application)
	3.2 Commissioning Sequence (PROFIBUS)

	4 Appendix
	4.1 Supported GSD Configurations
	4.2 AIF-IN Interface of 9300
	4.3 AIF-OUT Interface of 9300
	4.4 Drivecom Control Word
	4.5 Drivecom Status Word
	4.6 Drivecom DP V0 Parameter Channel (Tx)
	4.7 Drivecom DP V0 Parameter Channel (Rx)


