DRIVECOM

DRIVECOM

DriveServer

Version 1.1, 19.0ctober.01 09:38

Editor: DRIVECOM Nutzergruppe e.V.
Postfach 1102, D-32817 Blomberg
Phone : ++49 5235/ 3-4 18 64
Fax :++495235/3-41862

Internet: http://www.DRIVECOM.org

All rights, including the translation, reserved. No part of these information must be reproduced, copied,

printed (or by any other means) and given to third parties without the written approval of DRIVECOM
Nutzergruppe e.V.

Alterations reserved

DRIVECOM

A

DriveServer

Version 1.1, 19.0ctober 2001 09:32

Authors:

Albach Lust Lahnau

Arlt Lenze Hameln
Hadlich Ifak system GmbH Magdeburg
Iwanitz Softing GmbH Munchen
Krumsiek Phoenix Contact Blomberg
Leurs Rexroth Indramat Lohr am Main
Mirbach Lenze Hameln
Miiller Phoenix Contact Blomberg
Pollmeier ESR Polimeier Ober-Ramstadt
Ried| Ifak Magdeburg e.V. Magdeburg
Schleicher Indramat-Refu Metzingen
Schnurbusch Lenze Hameln
Ziegler SEW-EURODRIVE Bruchsal

For any remarks or comments please contact Stefan Pollmeier under gl@esr-polimeier.de.

History of the document:

Version Name Company Comment
0.0.22 Ried| ifak Creation
0.1 Mirbach Lenze - Three-stage addressing (BusServer)
- ldentification of the bus system by the
DriveServer
- Different networks or strings connected
to a BusServer
1.0 Mirbach Lenze - Clarification of the bit-by-bit access to
the DriveServer interface for the OPC
client
- Deletion of the bit-by-bit access to the
BusServer interface
1.0a Mirbach Lenze Type VT_ARRAY added to chapter 5
1 Mirbach Lenze Profidrive parameter channel information

added to chapters 3.2.1.1 and 3.3.2.1. Do
not indicate a subindex for parameters
without a subindex. Due to the
compatibility with the Profibus, the version
1.0 is now not compatible with version 1.1

DRIVECOM

\
‘ DriveServer Version 1.1, 19.0ctober 2001 09:32
Contents
I INEEOAUCHION ...ttt ettt sttt et be st bt st es et b e sae e bt et ese e eaenne e 4
1.1 OVETVIEW ..ttt ettt ettt et et b e s a e bttt e b s bt e bt et e ae e s et e b saeeue et enaennenaenne e 4
2 ATCRITECLUIE. ...ttt ettt et e b ettt be sa e bt e ae e st et et e bt sae e bt et eaeenn et ebe e 5
2.1 OVEIVIBW ...ttt sttt ettt b e s a e bttt et e b s bt e bt et e e s e e e b saeeue et enaenenaeene e 5
2.2 Layout Of the COMPONENLSeeiiieiiieiieeie ettt ettt ste et e st e e st e e saeessbeessaeessseeesseessseessseensseenseesnses 5
2.3 ComMmUNICAtION SLIUCTULEo.eeuiienieiiieieterteie ettt sttt ettt ettt et se et e e st eae e s b et ene e seene e 6
2.4 DIiveServer architeCtUIEcccccorioiiirieiriiiieiieseee ettt sttt s s 7
2.5 BUSSEIVET ATChItECTUIEcviiiiiiiiiciiiieieic ettt sttt 8
3 FUNCHONALIEY ..oeviiiieiieieete ettt et e et e st e te et e st e eebeesaessae s ee s e enseensesnsesseesseanseenseanseensessaenseenseensennsennnes 9
3.1 OVETVIEW ...ttt ettt b et b e b e st e b et be et s et b et ene e 9
3.2 DriveServer fUNCHONAIIEYccciiiiiiieiieit ettt et e st ettt e enseessesseesseenseenseensesnnas 9
3.2.1 OVETVIBW ...ttt ettt et st b et eb ettt a s b s bt e bt e st ese et e e e besbeebe et e s ennenaenbenaeas 9
322 Parameter SEt tranSTETcc.eouiiiiiiieicee e e 15
323 User programs fOr the AIIVE.........cceiiiiiiiiiiiieeiee sttt ettt stee e tee e e et e eaeeebaeensneens 16
324 Drive 1dentifICatIONccuoiuiriiiiiiiiiicieieteee sttt 18
33 BUSSErVer fUNCHIONALIEYcuveiiiieiieeiieeee ettt te st e et e st e st e e st e e sateestbeesabeesaeeseesnseeenseesnsaeensseessseennsenns 19
3.3.1 OVEIVIEW ...ttt ettt n ettt en e ne 19
332 INAINE SPACE ..eeuveeiniieeiit ettt ettt et ettt ettt ettt ettt e bt e e sat e e bt e e s ateesbteesab e e bteesabeesateesabeenabeesabaeeaseesnbaesnsees 20
I T U 13101 o TR 23
S VATIANE QALA EYPCS . ueeiieiieieeieiiecite ettt ettt e et e et et e bt esteesaesstessee st eseenseensees e e st en st enseenseesaenseeseeseenneenneennens 24
LT € 30 Y 1y 2SR USRUSRPRRRE 25
T LEEETATUTE....c.eeeitiieiietetcec ettt sttt ettt et s et b e s et b s e st et et e b e st e e ebe et e seene et e e e eren 26

DRIVECOM

(¢
DriveServer Version 1.1, 19.0ctober 2001 09:32

1 Introduction

1.1 Overview

Intelligent modular systems contain mechanical, electronic and software components as well as
sensors and actors which determine the production strategy. Modern controllers, for instance, take
over extensive technological control and regulation tasks. Standardised fieldbus systems, such as
Profibus, help to implement these modular machinery concepts.

Problems. From the user's point of view a drive is something completely different than it is from the
communication’s point of view. Users work with parameters, which are detectable by names. For
communication, parameters are defined by number pairs (e.g. index, subindex; slot, index). Many
users accept and use this way of representation and they know that the communication usually
depends on the communication protocol or profile, i.e. handling differences occur. This results in a
considerable engineering effort. A quick and controller-oriented data access would make engineering
a lot easier and therefore cheaper.

The DRIVECOM user group therefore decided to standardise the communication interface for
accessing drives. The DriveServer specification is based on the OPC interface standard, version 2.0.
The innovative concept standardises the presentation and access to controllers and functions.

Due to the use of the OPC interfaces in process automation the individual adaptation to controllers
and hardware is not longer necessary, but vendors of automation devices can do that themselves.
Since the access to process data has been standardised and the software of the PC can be loaded via
OLEs, adaptations to vendor-specific interfaces are not longer required. Up to now this process was
mainly limited to communication networks, but now the DriveServer specification uses this concept for
automation devices in general.

Integration into the OPC architecture. The DriveServer is based on the OPC technology. It is
comparable to a layer between a user program with OPC client interface and the communication
media. The connection with the communication media can either be implemented by the vendor in the
DriveServer or a communication OPC server.

The DriveServer encapsulates device features according to their functions. All features are accessed
via a functional interface. Thus the functionality of the devices, their description and access
mechanism remains unchanged. Access is made via standard means, for instance, not parameters
and their content but the access to these parameters are defined by names. The main advantage is
that the vendors do not have to change their implementations.

The DriveServer specification is based on a clear separation between communication functionality and
DriveServer functionality. By this it is ensured that the great variety of available and reasonable
communication media can be used. The DriveServer communicates via an OPC interface. This open
architecture ensures the flexibility of fieldbus systems required. This is another important step towards
open and uniform automation solutions.

The OPC based integration of drives into engineering systems described here sets a new standard for
fieldbus communication. Its mainly independent architecture opens up a wide field of applications for
the DriveServer. If this concept will also be accepted for fieldbus components, it will be the basis for
device servers in general.

This document describes a uniform application interface for accessing drives. The aim of this
specification process is to create a plug & play device by representing drive variables and vendor-
specific functions for OPC servers, like driver software for printers.

DRIVECOM

(¢
DriveServer Version 1.1, 19.0ctober 2001 09:32

2 Architecture

2.1 Overview

The DriveServer architecture is completely based on the OPC specification and thus ensures
compatibility with other servers. The DriveServer specifications can be implemented by OPC servers,
but they can also be met with standard OPC means. At first the DriveServer itself is a client of a
communication OPC server (called BusServer in the following text) since the communication
interfaces usually connect fieldbuses. The BusServer can however be a server of any transfer
medium.

Implemented into

aPC
Operating system <
Windows NT

—
Fieldbus /4—? ? ? ? ? ?

Drives with
2.2 Layout of the components

subsystems il il il
The software components shown in figure 1 can be installed on individual computers or computers
connected via a network. For this, the servers must meet the OPC and (D) COM specifications
stipulated for the registration on a computer or computer network. These specifications do not
describe the installation since it is defined by the DCOM standard mechanisms.

_[

]

Figure 1: OPC server architecture

A common application is the access of a DriveServer to one or several BusServers. The configuration
determines which BusServers will be accessed by the DriveServer. The DriveServer vendor defines
how the configuration is to be made.

The DriveServer must log in at the BusServer with IOPCCommon::SetClientName (e.g.
,DriveServer XY.EXE“ or ,\\192.168.10.2\DriveServer XY.EXE") according to the OPC
specification. If necessary, the BusServer can thus detect the client.

DRIVECOM

‘\

DriveServer Version 1.1, 19.0ctober 2001 09:32

Dots are defined as OPC delimiters (,.“). Therefore dots cannot be used as part of a name for a
parameter.

2.3 Communication structure

The DriveServer maps the device-related accesses of the application to fieldbus-related accesses.
According to the OPC specification, DriveServer and communications OPC server access use names
for accessing. These names can be preconfigured or have a dynamic character, depending on the
server implementation. Figure 2 shows the communication using names and the mapping of bus and
device architecture.

Identification

Browse Interface Browse Interface
ItemID: <DevAdr><SubAdr>/DS_Vendorname| | ItemID: <DevAdr>/DS_Vendorname
Example: Master45.Axis1/DS_Vendorname Example: 4.3.1/DS_Vendorname

Browse Interface
ItemID: <DevAdr><SubAdr>/Parametername
Example: Master45.Axis1/Speed-Min-Max

Configuration
AddItem AddItem

ItemID: <DevAdr><SubAdr>/Parametername ItemID: <DevAdr>/PARi6047s3d3
Example: Master45.Axis/Speed Example: 4.3.1/PARi6047s3d3

Transfer
Read (Interbus)

Read Group Read Group KR: 5, Index: 6047, Subindex: 3

Write (CAN)

Write Group Write Group CB: 384, Index:1047, Subindex:3

Figure 2 : Communication structure

The interface between application, DriveServer and BusServer comprises three phases:
e Device identification

The DriveServer detects devices available at the bus via the browse interface of the BusServer.
This detection follows the regulations described under 3.3.2. The device types are determined via
a vendor-specific identification algorithm which is implemented in the DriveServer and which also
allows the device types to be displayed in the browse interface of the DriveServer. An application
can now select the devices.

o ltem definition as access specification (configuration)

As soon as it is clear which devices are to work together, OPC groups can be created in the
DriveServer. These OPC groups contain OPC items which correspond to the controller
parameters. Based on the previous controller identification the DriveServer can now create its own
name space and reject parameter queries, if necessary. Thus faulty queries can be avoided.

DRIVECOM

(¢
DriveServer Version 1.1, 19.0ctober 2001 09:32

In general, the OPC groups and OPC items created in the DriveServer are also created in the
corresponding BusServers. Here the OPC item names correspond to the bus and controller-
internal addresses. If an OPC group or OPC item cannot be created in the BusServer, also the
DriveServer must indicate that these objects cannot be created.

e 1/O operations (transfer)
After the server configuration, the data transfer can be activated by the application, which means
that read and write commands are executed by the groups of the DriveServer so that all OPC

items included in the OPC group communicate. These commands are passed on to the
subordinate BusServers which then exchange parameter values with the controllers.

2.4 DriveServer architecture

According to the OPC definition a DriveServer provides an OPC server interface and an OPC client
interface. The DriveServer consists of three main components:

e A component which implements the OPC server interface

¢ A component which implement the DRIVECOM features and thus is available for the connection of
all controllers but however allows different implementations

o A component which groups the vendor-specific features of the devices

OPC server functionality
Standard Manufacturer-
DriveServer OPC specific drive
functionality functionality

OPC client functionality

Figure 3: DriveServer architecture

DRIVECOM

(¢
DriveServer Version 1.1, 19.0ctober 2001 09:32

2.5 BusServer architecture

With this architecture the BusServer communicates with the controllers. In general the BusServer is a
bus-specific OPC server, i.e. read and write requests cannot be determined with this specification.

The BusServer does not have to directly access a bus, it is for instance possible that an OPC server is
just based on TCP/IP and only uses certain sockets of the operating system or communicates with
other (D)COM components which simulate controllers.

The requirements to BusServers are limited to the standard OPC server functionality. The browse
interface must however be implemented. Dynamic configuration of the BusServer should be possible,
i.e. OPC items can be added during run time although they have not been configured in the first place.
All requirements listed under 3.3 must be met.

DRIVECOM

(¢
DriveServer Version 1.1, 19.0ctober 2001 09:32

3 Functionality

3.1 Overview

The OPC specification “Data Access 2.0” defines the structure and the response of interfaces.
Everything related to the name space of a server (structure, itemlD, etc.) is not defined which means a
certain freedom for the developing engineer and uncertainty for the user.

The DriveServer specification limits this freedom in creating the name space and the semantics of
itemIDs. As a result, automated processes and easy handling (recognition) can be ensured for the
user.

3.2 DriveServer functionality
A DriveServer provides the functionality necessary to access and handle a drive.

3.2.1 Overview

The controllers can be automatically identified via the browse interface of the DriveServer. Exactly
defined <keyword tag> are assigned to every controller. This specification proposes the
‘DS _Vendorname‘ as <keyword tags>, it is however possible to define different strings. The
DriveServer client accesses the name space of the DriveServer, which has a flat format according to
the OPC specification (see page 9) and searches the name space for possible controller addresses
following the identifying <keyword tag>. According to its definition the complete text of the filtered
name, without the DS_Vendorname determines the controller address, it is called <device tag>.
The syntax of this text depends on the server. Since this text indicates a clearly defined access path, it
is used by the clients instead of a controller address. Thus the client does not need the bus-specific
controller address to access the controllers.

In an OPC name space the DriveServer indicates the drives detected. This name space has a
hierarchical structure, i.e. the name space has a structure (branch/leaf) which is similar to the file
structure in a computer (directories/files). A branch corresponds to a directory and a leaf to a file (OPC
server data).

The name space can be queried via the TOPCBrowseServerAddressSpace interface. The client
can browse through the different structure levels in the name space (similar to a change of directories)
and query leafs of individually structured items. The name space can also be queried using flat format
(completely or partly). The leaf names are indicated together with the names of the higher-level
structure items (similar to absolute file names).

Example: 2 controllers are connected to the bus. They are assigned to different addresses.
Hierarchical name space:
Bus Server Name

Address 1
DS _Vendorname
DS Devicename

DS DevicelID

Address 2
DS _Vendorname
DS Devicename

DS DevicelID

DRIVECOM

(¢
DriveServer Version 1.1, 19.0ctober 2001 09:32

flat format
Bus Server Name.Address 1.DS_Vendorname

Bus Server Name.Address 1.DS Devicename

Bus Server Name.Address 1.DS DeviceID

Bus Server Name.Address 2.DS_Vendorname
Bus Server Name.Address 2.DS_Devicename

Bus Server Name.Address 2.DS DeviceID

If the DriveServer addresses several BusServers, a corresponding structure level can be created in
the name space of the DriveServer. Every structure item of this level corresponds to a BusServer. The
drives, which communicate with the BusServers, can be assigned to the corresponding BusServer
structure items. The string for the BusServers displayed while browsing is freely selectable and can be
configured (depending on the implementation). The name of the hierarchy level for the controller
address is created by concatenating the value of the OPC item DS _BusPort, ,-“ and the value of the
OPC items DS_DeviceID of the BusServer.

PROFIBUS
Drivel
Drive2
Drive3
Interbus
Drivel
Drive2

(I

i l [l |

||==I.I
'I==I|I

Figure 4: Drive representation in the DriveServer

The name space hierarchy shows parts of the system structure. Slave drives have a lower position in
the hierarchy than the corresponding master drives.

10

DRIVECOM

‘\

DriveServer

Version 1.1, 19.0ctober 2001 09:32

Master

Slaves

— /

3
g

5 —
Hl

Figure 5: Drive with subsystems

Example for the name space of a drive with subsystems:

BusServer name

9

DS _Vendorname
DS_Devicename

DS DevicelID

1
DS Vendorname
DS_Devicename
DS DevicelD

2

DS Vendorname
DS_Devicename

DS DevicelD

11

DRIVECOM

<

DriveServer Version 1.1, 19.0ctober 2001 09:32

The initialisation of the name space depends on the implementation (which is vendor-specific) and is
also called server configuration. We distinguish between two configuration types:

e Static configuration: Static configuration means either reading in the configuration or the
controller description when starting the server. According to the DriveServer specification
and also the vendor’s specification any symbolic name can be used.

¢ Dynamic configuration: Dynamic configuration is made through ItemIDs with a defined
syntax.

Every controller can be clearly identified in the name space by means of a <keyword tag>. All
parameters of a controller are defined as leafs of a controller-specific branch. Therefore all parameters
are structured as followed in a name space with a flat format:

<item tag> := <device tags><parameter tag>

The <device tag> is assigned by the DriveServer itself and contains all characters and strings to
identify a controller even if controller-specific character strings and <parameter tags> are
separated by a delimiter.

If it is necessary, the string <device tag> can be directly in front of a parameter address to find a
controller parameter.

3.21.1 Reserved names (DriveServer-specific names)

This specification reserves specific names (observe small and capital letters) for certain standard
functions.

Every controller provides standard parameters which can be used by the client to identify the
controller. The following parameters are of data type VARIANT. The data type can be freely selected
by the vendor since every OPC client can interpret or convert the data type as required.

Parameter Meaning m/o
DS Devicename Controller name M
DS DevicelID Controller identification (bus address, URL, ...) M
DS Vendorname Vendor's name M
DS Devicetype Controller type O
DS Vendorcode Vendor’s code o
DS ProfileID Profile identification)
DS BusSystem Component category (registry format) for a fieldbus system O
(see chapter 4)

DS BusPort Bus network or string (see chapter 3.3.2.1) 0
Examples :

Bus Server Name.9.DS ProfileID (DS DeviceID = 9)
Bus Server Name.127-168-0-2.DS ProfileID (DS DeviceID = 127-168-0-2)

Bus Server Name.COM1-9.DS ProfileID (DS BusPort = COM1l, DS DevicelID = 9)

12

DRIVECOM

<

DriveServer Version 1.1, 19.0ctober 2001 09:32

Name convention

Individual drive parameters can be addressed using a defined syntax. The following name convention
applies to all parameters (also those with a symbolic name):

The optional bit-by-bit access to process and parameter data can be limited to certain parameters by
the DriveServer.

<parameter tag> := <parameter channel> | <process channels>

” PAR ”n
<index infos><subindex info>[<datatype info>]
[<bit_info>] [<length info>]

<parameter channel>

[<extra info>]
<process_channel> := <process cannel info>
<index info><subindex info>[<bit info>]

[<datatype info>]<length info>[<extra info>]

<process channel info> := "oUT” | "IN”

<index_ info> := (I]i)[0-9]1+

<subindex_info> := (S]s) [0-9]+

<bit info> := (B|b) [0-9]+

<datatype info»> := (D|d) (VT_UI1l | VT _ARRAY | ...)

(The numbers to be used here are listed in chapter 5)

<length info> := (L|1) [0-9]+

<extra info> := (X]|x)<String>

index info: Object index (starts with 0)

subindex_info: For process data channels access to a single byte if the

objects consists of several bytes, 0 means access to all bytes
of the object.

In parameter data channels, the subindex indicates the
position in indexed fields. If the addressed object is not a
subindexed parameter, a subindex must not be indicated.

bit info: Bit position in the object, counting starts at LSB with bit
number O; if the bit position is indicated, also the length must
be defined
length info: Length of the data to be transferred in bits
Examples :
PARI1000S0: Subindexed parameter variable with index 1000 and subindex 0. The

DriveServer already knows the data type from the device description.
Therefore it is not necessary to indicate the data type.

paril20d3 : Non-subindexed parameter variable with index 120, data type 3
(corresponds to VT _14: 4-byte integer)

13

DRIVECOM

DriveServer Version 1.1, 19.0ctober 2001 09:32

paril0s40ds : Parameter variable with index 10 and subindex 40, data type 8
(corresponds to VT_BSTR: character string)

INI2SO0D3: IN process variable on process data channel 2. The entire process
variable is to be interpreted as 4-byte integer (VT 14).

INI2S0D3L16: IN process variable on process data channel 2. The last 16 bits of the
variables are to be mapped onto a 4-byte integer variable.

Assumption: Width of the process data channel is 4 bytes.
Source: MSB XXXXXXXX XXXXXXXX PONMLKJI HGFEDCBA LSB
Target: MSB XXXXXXXX XXXXXXXX PONMLKJI HGFEDCBA LSB

INI1S2D3B2L4 : IN process variable on process data channel 1. Byte 2 is to be mapped
onto a 4-byte integer variable (vT I4) starting from bit 2 over 4 bits.

Assumption: Width of the process data channel is 4 bytes.
Source: MSB XXXXXXXX XXXXXXXX XXDCBAXX XXXXXXXX LSB
Target: MSB XXXXXXXX XXXXXXXX XXXXXXXX XXXXDCBA LSB

INI1S0D3B10L4 : IN process variable on process data channel 1. The bits 10, 11, 12, 13
of the process data are to be mapped onto a 4-byte integer variable
(VT_14).

Assumption: Width of the process data channel is 4 bytes.
Source: MSB XXXXXXXX XXXXXXXX XXDCBAXX XXXXXXXX LSB
Target: MSB XXXXXXXX XXXXXXXX XXXXXXXX XXXXDCBA LSB

PARI150S0D3B1L4 : Parameter variable with index 150 and subindex 0. 4 bits are to be
mapped onto a 4-byte integer variable (VT _I4) starting from bit 1.

Source: MSB - XXXXXXXX XXXDCBAX - LSB

Target: MSB XXXXXXXX XXXXXXXX XXXXXXXX XXXXDCBA LSB

With complete path:
Bus Servername.9.paril0s40d3

Bus Servername.9.inils0d314

By means of this syntax the parameter access can be mapped onto symbolic names in the
DriveServer (or vice versa).

3.21.2 Structure of the name space
This specification is based on a hierarchical name space.

Multi-axis drives

The DriveServer encapsulates the controller architecture. One of the controller features is to create
subsystems which are called multi-axis drives.

Drives can be connected by means of different communication systems. These systems are not
necessarily standardised but always selected by the vendor. The drives communicate via vendor-
specific protocols which need to be encapsulated.

14

DRIVECOM

<

DriveServer Version 1.1, 19.0ctober 2001 09:32

The DriveServer provides a system architecture for other applications which ensures direct access of
all controllers of the subsystem. Access to the architecture is possible because of the name space
which can be created in the DriveServer. While reading and writing items, the DriveServer maps the
data to the controller protocol.

All controllers identified via the browse interface of the BusServer are tested when the DriveServer
creates its internal name space. It identifies master and slave drives via a vendor-specific protocol.

Based on these information the DriveServer creates a subhierarchy for every controller. The
controllers can be identified by the application. The subsystem is also marked with a
<keyword_ tag>.

3.2.2 Parameter set transfer
Every drive has a subhierarchy for the parameter set transfer:

Parameter Meaning m/o

DS ParameterSets Number of parameter sets in the drive

o|Oo

DS_ParameterSet [0..9]+ |Subhierarchy for each parameter set for transfer
actions

DS ParameterSetAll Subhierarchy transfer actions of all parameter sets O

DS _ParameterSet [0-9]+
Filename
Action
State
Result

DS ParameterSetAll
Filename
Action
State

Result

Every parameter set has got this subhierarchy. The individual parameter sets are unambiguously
identified by numbers.

e Use the item ‘Filename’ to enter a file name. The file contains the vendor-specific transfer data.
The file format is also vendor-specific. Filename is optional. If the user does not enter a
Filename, the current data of the DriveServer are written to the drive or overwritten from the
drive.

e Theitem ‘Action’ describes the transfer type. The following strings can be written to the item:

e "UPLOAD"

e "DOWNLOAD”
e "VERIFY”

e "COMPARE”

Written to the item starts the respective procedure. The results of VERIFY and COMPARE are
stored in files. The file names are created from the item value for ‘Filename’ and a corresponding
extension. The format is selected by the vendor.

15

DRIVECOM

<

DriveServer Version 1.1, 19.0ctober 2001 09:32

e Theitem ‘State’ can only be read. It informs about the current state of the transfer operation. The
following states are defined:

e "READY”
e "RUNNING”
e "UNDEFINED”

Writing to the ‘Action’ item only starts an action if the ‘State’ is "READY”.

UNDEFINED READY
Independent
transfer by A
ge. S UPLOAD,
riveServer DOWNLOAD,
VERIFY,
COMPARE
Action over or
error
\ 4
RUNNING

Figure 6: State transition for parameter set transfer

e The ‘Result’item can only be read. It informs about the success of an action. This item should
only be evaluated when ‘state’ is "READY”. ‘Result’ has the value range and the coding of
HRESULT.

3.2.3 User programs for the drive
Every drive has a subhierarchy for user programs:

Parameter Meaning m/o

DS Programs Subhierarchy for drive programs O

DS_Programs
ProgramNamel
Filename
Action
State
Result
CodeAttribute

ProgramName2

16

DRIVECOM

’e

DriveServer Version 1.1, 19.0ctober 2001 09:32

Filename

Every drive program has its own subhierarchy. The individual programs are identified by unambiguous
and freely selectable node names (here: ProgramNamel, ProgramName?2).

e The item ‘Filename’ describes a file name. The file contains vendor-specific program data. The
file format is also selected by the vendor. Filename is optional.

e Theitem ‘Action’indicates the transfer type. The following strings can be written to the item:
e ’UPLOAD”
e "DOWNLOAD”

e "PREPARE”

e "START’
. ”STOP”
. ”HALT”

Writing to an item starts the respective procedure. The values can be written depending on the
status (see Figure 7).

e The item ‘State’ can only be read. It informs about the current status of the transfer operation.
The following states are defined:

e ’INITIALIZED”
The drive has not been loaded with a program code. This is the default status.
e ’LOADED”

A program code has been loaded to the drive. The program can be prepared for being
started by "PREPARE".

e "RUNNING”

The program is running.
e "STOPPED”

The program has been stopped. It can be restarted any time and will start at its beginning.
e "HALTED”

The program has been stopped. A restart is possible any time. It will restart where it had
been interrupted.

17

DRIVECOM

(¢
DriveServer Version 1.1, 19.0ctober 2001 09:32

INITIALIZED

l DOWNLOAD

> LOADED

l PREPARE
«— | STOPPED -«
POWNLOAD START l T STOP
RUNNING STOP
HALT l T START
HALTED

Figure 7: State transitions of a program
e The item ‘Result’ can only be read. It informs about the success of the completed action.
‘Result’ has the value range and the coding of HRESULT.

e Theitem ‘CodeAttribute’ defines the start type of the program after a restart of the drive (value
range: VT_I4):

Value Meaning
0 The program does not start on its own after a restart of the drive.
1 The program starts on its own after a restart.

2 ... EFFF |Reserved

FFFF ... -1 | Vendor-specific

The program transfer and operation are individually selected by the vendor.

3.2.4 Drive identification
The DriveServer identifies the drives available in the BusServer by means of the following algorithm:

1. Browsing of the name space in the BusServer and searching for the <keyword tag>
DS Vendorname. The result should be formatted in £1at.

18

DRIVECOM

’e

DriveServer Version 1.1, 19.0ctober 2001 09:32

2. The Item Ids for the found leafs are to be queried and dissected into controller and parameter
specific components.

3. The DriveServer creates the items required for the drive identification in the BusServer and
evaluates them according to the vendor’s instructions.

4. After the evaluation, these items can be released for the BusServer.
The DriveServer is now responsible for presenting the controllers it detected as operator-accessible to

its clients.

3.3 BusServer functionality

3.3.1 Overview

A BusServer enables communication between system values using a certain communication medium.
BusServers are vendor specific and are not mainly described in this specification. The following
requirements must be met to ensure optimum co-operation between DriveServer and BusServer:

¢ A BusServer must support the optional OPC interface ,IOPCBrowseServerAddressSpace’.

¢+ Name spaces should be extendable by, for instance, creating an OPC item for which no item is
defined in the name space. It is thus possible to create OPC items which have not been
introduced to the name space of the BusServer by static configuration earlier.

¢ The BusServer must register itself with the corresponding component categories for the supported
bus systems.

19

DRIVECOM

<

DriveServer Version 1.1, 19.0ctober 2001 09:32

3.3.2 Name space

The name space of the BusServer is created and structured by the vendor according to
communication aspects.

The following rules must be met to ensure co-operation between DriveServer and BusServer:

e The reserved names of the BusServer must have been created earlier and the spelling must not
be changed.

e It must be possible to search the name space by the DriveServer in £1at format.
The name space is initialised by the vendor. There are two types of configuration possible:
e Static configuration: Static configuration means either reading in the configuration or the
controller description when starting the server. According to the DriveServer specification

and also the vendor’s specification any symbolic name can be used.

e Dynamic configuration: Dynamic configuration is made through ItemIDs with a defined
syntax.

Every controller is to be unambiguously identified by means of a <keyword tag>.

All parameters of a device can be found as leafs of a device-specific branch.

3.3.21 Reserved names
This specification reserves names for certain standard functions.

BusServer-specific names

Every device has standard parameters which help the client (DriveServer) to identify a device (capital
and small letters).

Parameter Meaning m/o
DS Devicename Controller name M
DS DevicelID Controller ID (bus address) M
DS Vendorname Vendor's name M
DS Devicetype Controller type)
DS Vendorcode Vendor’s code o
DS BusSystem Component category (registry format) for a fieldbus system O
(for definition see chapter 4)

DS BusPort Bus network or string O
Notes:

The parameter DS _DeviceID must be unambiguous for the corresponding bus string (BusServers
can support several bus strings, e.g. several PC cards, several ports at a PC card), since it is used for
the creation of the DriveServer name space. If a BusServer has several bus networks or strings, the
DS DevicelID is not unambiguous any more since, for example, address 5 can occur at every bus
string. With several bus strings at the BusServer, the BusServer must mark bus string in the parameter
DS_BusPort so that the name space structure is unambiguous (DS DeviceID and DS_BusPort).

The sign “.“ must not be used for parameters since it is used as OPC delimiter.
20

DRIVECOM

<

DriveServer Version 1.1, 19.0ctober 2001 09:32

The values of the parameters DS_Devicetype, DS DeviceID, DS BusSystem, DS BusPort
and DS _Vendorcode are independent of the language since they are used for addressing and
identification.

If a BusServer supports several bus systems, the component categories registered do not indicate
which bus the controller is connected to. In this case, the parameter DS BusSystem gives all
information necessary.

Name convention

The following name convention applies to parameters without symbolic names. Two and three stage
addresses are possible (depending on the bus system).

Bus systems which use 2-stage addressing (e.g. CANopen) address parameters via an index and a
subindex. This type of addressing corresponds to what the user usually sees. The 3-stage address is
used for, for instance, DeviceNet applications. The <index info> is an instance and the
<subindex info> an attribute. The class, which is the 3¢ stage, requires an additional identifier. It
can only be used for bus systems with 3-stage addressing.

<parameter tag> := <parameter channel> | <process channels>

<parameter channel> := "PAR”
[<class_info>]<index infos>[<subindex info>]

<datatype info>[<length info>]

[<extra info>]
<process_channels> := <process cannel info>

<index infos><subindex info>

<datatype info><length info>[<extra info>]

<process_ channel info> := "ouT” | "IN”

<class _info> := (Clc) [0-9]+

<index infos := (I|1i)[0-9]+

<subindex_info> := (S]s) [0-9]+

<datatype infox> := (D|d) (VT_UI1l | VT _ARRAY | ...)

(The numerical values to be inserted are listed in chapter 5)

<length info> := (L]1) [0-9]+

<extra info> := (X]|x)<String>

class_info: Object class; only with 3-stage addressing
index_info: 2-stage addressing: Index of the object (starts with 0)

3-stage addressing: Instance of a class
Process data: Number of the process data channel

subindex_info: 2-stage addressing: Subindex of an object (starts with 0)
If the addressed object is not a subindexed parameter, do not
indicate a subindex.

3-stage addressing: attribute of an instance

21

DRIVECOM

<

DriveServer Version 1.1, 19.0ctober 2001 09:32

Process data: Access to a byte if the object consists of several
bytes. 0 means that all bytes of an object are accessed

length info: Length of the required in bits
Examples :
INI1SO0D3: IN process variable to process data channel 1. The object is to be
completely mappedto a vT_I4.
pari24564D3 : Parameter variable with index 24564, data type 3 (corresponds to
VT I4)

pari24566S0D3 : Subindexed parameter variable with index 24566 and subindex 0, data
type 3 (corresponds to VT 14)

parcl00i10s40d8: Parameter variable class 100, instance 10, attribute 40 in a bus system
for 3-stage addresses, representable as data type VT BSTR

Complete path:
OPC://PROGID- Bus Server /DP://brd0.seg0.dev9/inils0d314
OPC://PROGID- Bus Server /DP://brd0.seg0.dev9/pari24566s0d3

3.3.2.2 Structure of the name space

This specification is based or a hierarchical structure of the name space. All parameters of a controller
can be found as leafs of a controller-specific branch. Therefore all branch names in the name space
(f1lat format) have the following structure:

<item tags> := <device tag><parameter tags>

The <device tag> contains all signs and strings required by the OPC server for the identification of
a controller including a possible delimiter between controller-specific character string and the
<parameter tag>.

22

DRIVECOM

<

DriveServer Version 1.1, 19.0ctober 2001 09:32

4 Registration
DRIVECOM defines the following component categories.

All CATIDs and the corresponding descriptions are listed in the following.
“ DriveServer version 1.0”

CATID DriveServerl0 = {276BCLlC0-0BCl-11D4-A78F-525405F5B2CF}

“ Busserver version 1.0”

CATID BusServerl0 = {276BC1C1—OBC1—11D4—A78F—525405F5B2CF}

“BusServer CANopen”

CATID CANOPEN = {3CF19FF1-907B-11d4-B4A7-0050DA3F121C}
“ BusServer PROFIBUS-PA”

CATID PROFIBUS-PA
“ BusServer PROFIBUS-DP”

{3CF19FF2-907B-11d4-B4A7-0050DA3F121C}

CATID_ PROFIBUS-DP = {3CF19FF3-907B-11d4-B4A7-0050DA3F121C}
“ BusServer PROFIBUS-FMS”

CATID PROFIBUS-FMS = {3CF19FF4-907B-11d4-B4A7-0050DA3F121C}
“ BusServer INTERBUS”

CATID_ INTERBUS = {3CF19FF5—907B—11d4—B4A7—0050DA3F121C}

“ BusServer DeviceNet”

CATID DEVICENET = {3CF19FF6-907B-11d4-B4A7-0050DA3F121C}
“ BusServer LON”

CATID LON = {3CF19FF7-907B-11d4-B4A7-0050DA3F121C}

It is demanded that the servers enter all categories supported by them into the registry
(HKEY CLASSES ROOT\Component Categories) when they are installed. A description is stored
together with the CATID value.

Every BusServer must enter all bus protocols supported as CATID. If a bus protocol is not identified by
a CATID, the syntax defined under 3.3.2 is sufficient to address a certain parameter. Protocol
conversions in the DriveServer are not necessary. The server itself declares its support of a CATID by
corresponding entries under Implemented Categories in the registry.

23

DRIVECOM

<

DriveServer

Version 1.1, 19.0ctober 2001 09:32

5 Variant data types

The name convention uses the Microsoft variant data types. All possible types are listed in the
following table.

Variant type | Value | Description

VT _EMPTY |0 Not standardised

VT I2 2 2 byte integer with sign

VT I4 3 4 byte integer with sign

VT R4 4 4 byte floating point number
VT RS 5 8 byte floating point number
VT CY 6 Currency

VT DATE 7 Date

VT BSTR 8 String

VT _BOOL 11 Boolean, True=-1, False=0
VT UIl 17 1 byte integer without sign

The data type VT_ARRAY contains data and information about the data type of array elements and
array limits. The data type is indicated by a combination of the VT_ARRAY values and the variant type
(table above) or by bit-by-bit OR. (Example: Value for the data type "Array of 1 byte integer without
sign" 8209 (= 8192 or 17). Array length is variable).

Variant type

Value

Description

VT ARRAY

8192

Array

24

DRIVECOM

<

DriveServer Version 1.1, 19.0ctober 2001 09:32

6 Glossary
BusServer OPC server which enables controller communication. The name space and the

available server items depend on the communication
<device tag> Character string which represents the controller-specific part of an itemID
DriveServer OPC server which enables controller (drives) communication. The name space

and the available server items depend on the controllers.
<item Tag> Character string which represents a complete parameter address and can be

used as itemID

<keyword tag> Keyword needed to find controllers in the name space and <device tags>
required for accessing parameters

Name space Overview over the data known by the OPC server. A name space can have a
hierarchical or a f£1at format, i.e. all data available is listed

<parameter tag> Character string which represent a parameter-specific part of an itemID

25

DRIVECOM

-~

DriveServer Version 1.1, 19.0ctober 2001 09:32

7 Literature
OPC OLE for Process Control, Data Access Custom Interface Standard, Version 2.0

www.opcfoundation.org

26

