
 

 
 

OPC Alarms and Events 

JUNE 2, 1999 

Version 1.01 

 

TM 



OPC Alarms and Events Version 1.01 06/02/99 

 i 

 

Synopsis: 
This specification is the specification of the interface for developers of OPC 
clients and OPC servers..   The specification is a result of an analysis and 
design process to develop a standard interface to facilitate the development of 
servers and clients by multiple vendors that shall inter-operate seamlessly 
together.    
 

Trademarks: 

Most computer and software brand names have trademarks or registered 
trademarks. The individual trademarks have not been listed here. 

Required Runtime Environment: 

This specification requires Windows 95 Windows NT 4.0 or later 

Specification Type Industry Standard Specification    
     
Title: OPC Alarms and Events Date: June 2, 1999  

     
Version: 1.01 Soft MS-Word  

  Source: OPC Alarms and 
Events.doc 

 

     
Author: Opc Foundation Status: Release 1.01  
     



OPC Alarms and Events Version 1.01 06/02/99 

 ii 

NON-EXCLUSIVE LICENSE AGREEMENT 
 
The OPC Foundation, a non-profit corporation (the “OPC Foundation”), has established a set of standard 
OLE/COM interface protocols intended to foster greater interoperability between automation/control 
applications, field systems/devices, and business/office applications in the process control industry.  
 
The current OPC specifications, prototype software examples and related documentation (collectively, the 
“OPC Materials”), form a set of standard OLE/COM interface protocols based upon the functional 
requirements of Microsoft’s OLE/COM technology.  Such technology defines standard objects, methods, 
and properties for servers of real-time information like distributed process systems, programmable logic 
controllers, smart field devices and analyzers in order to communicate the information that such servers 
contain to standard OLE/COM compliant technologies enabled devices (e.g., servers, applications, etc.). 
 
The OPC Foundation will grant to you (the “User”), whether an individual or legal entity, a license to use, 
and provide User with a copy of, the current version of the OPC Materials so long as User abides by the 
terms contained in this Non-Exclusive License Agreement (“Agreement”).  If User does not agree to the 
terms and conditions contained in this Agreement, the OPC Materials may not be used, and all copies (in 
all formats) of such materials in User’s possession must either be destroyed or returned to the OPC 
Foundation. By using the OPC Materials, User (including any employees and agents of User) agrees to be 
bound by the terms of this Agreement. 
 
LICENSE GRANT: 
 
Subject to the terms and conditions of this Agreement, the OPC Foundation hereby grants to User a non-
exclusive, royalty-free, limited license to use, copy, display and distribute the OPC Materials in order to 
make, use, sell or otherwise distribute any products and/or product literature that are compliant with the 
standards included in the OPC Materials.        
 
All copies of the OPC Materials made and/or distributed by User must include all copyright and other 
proprietary rights notices include on or in the copy of such materials provided to User by the OPC 
Foundation. 
 
The OPC Foundation shall retain all right, title and interest (including, without limitation, the copyrights) in 
the OPC Materials, subject to the limited license granted to User under this Agreement. 
 
WARRANTY AND LIABILITY DISCLAIMERS: 
 
User acknowledges that the OPC Foundation has provided the OPC Materials for informational purposes 
only in order to help User understand Microsoft’s OLE/COM technology.  THE OPC MATERIALS ARE 
PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, 
INCLUDING, BUT NOT LIMITED TO, WARRANTIES OF PERFORMANCE, MERCHANTABILITY, 
FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT.  USER BEARS ALL RISK 
RELATING TO QUALITY, DESIGN, USE AND PERFORMANCE OF THE OPC MATERIALS.  The 
OPC Foundation and its members do not warrant that the OPC Materials, their design or their use will meet 
User’s requirements, operate without interruption or be error free. 
 
IN NO EVENT SHALL THE OPC FOUNDATION, ITS MEMBERS, OR ANY THIRD PARTY BE 
LIABLE FOR ANY COSTS, EXPENSES, LOSSES, DAMAGES (INCLUDING, BUT NOT LIMITED 
TO, DIRECT, INDIRECT, CONSEQUENTIAL, INCIDENTAL, SPECIAL OR PUNITIVE DAMAGES) 
OR INJURIES INCURRED BY USER OR ANY THIRD PARTY AS A RESULT OF THIS 
AGREEMENT OR ANY USE OF THE OPC MATERIALS. 
 



OPC Alarms and Events Version 1.01 06/02/99 

 iii 

GENERAL PROVISIONS: 
 
This Agreement and User’s license to the OPC Materials shall be terminated (a) by User ceasing all use of 
the OPC Materials, (b) by User obtaining a superseding version of the OPC Materials, or (c) by the OPC 
Foundation, at its option, if User commits a material breach hereof.  Upon any termination of this 
Agreement, User shall immediately cease all use of the OPC Materials, destroy all copies thereof then in its 
possession and take such other actions as the OPC Foundation may reasonably request to ensure that no 
copies of the OPC Materials licensed under this Agreement remain in its possession. 
 
User shall not export or re-export the OPC Materials or any product produced directly by the use thereof to 
any person or destination that is not authorized to receive them under the export control laws and 
regulations of the United States. 
 
The Software and Documentation are provided with Restricted Rights.  Use, duplication or disclosure by 
the U.S. government is subject to restrictions as set forth in (a) this Agreement pursuant to DFARs 
227.7202-3(a); (b) subparagraph (c)(1)(i) of the Rights in Technical Data and Computer Software clause at 
DFARs 252.227-7013; or (c) the Commercial Computer Software Restricted Rights clause at FAR 52.227-
19 subdivision (c)(1) and (2), as applicable.  Contractor/ manufacturer is the OPC Foundation, 20423 State 
Road 7, Suite 292, Boca Raton, FL  33498. 
 
Should any provision of this Agreement be held to be void, invalid, unenforceable or illegal by a court, the 
validity and enforceability of the other provisions shall not be affected thereby.  
 
This Agreement shall be governed by and construed under the laws of the State of Minnesota, excluding its 
choice or law rules. 
 
This Agreement embodies the entire understanding between the parties with respect to, and supersedes any 
prior understanding or agreement (oral or written) relating to, the OPC Materials.   



OPC Alarms and Events Version 1.01 06/02/99 

 iv 

Revision 1.01 Highlights 
This revision includes minor additions to the IDL in the form of ''reserved" words added to various 
structures. Adding these words to pad the structures insures that the structures will give the same result 
regardless of the 'packing' value used by the compiler and that clients and servers compiled with different 
packing values will be compatible. If you have used any packing value other than the default packing value 
of '8' then you should rebuild and relink your applications to insure they are compatible with other OPC 
Alarms and Events applications. 

 



OPC Alarms and Events Version 1.01 06/02/99 

 v 

Table of Contents 

1. INTRODUCTION................................................................................................................................................ 1 

1.1 BACKGROUND ..................................................................................................................................................1 
1.2 PURPOSE............................................................................................................................................................1 
1.3 RELATIONSHIP TO OTHER OPC SPECIFICATIONS .......................................................................................1 
1.4 SCOPE................................................................................................................................................................1 

1.4.1 General.....................................................................................................................................................1 
1.4.2 Multiple Levels of Capability ..............................................................................................................1 

1.4.2.1 Types of Alarm and Event Servers .......................................................................................................2 
1.4.2.2 Types of Alarm and Event Clients........................................................................................................2 
1.4.2.3 Client – Server Interactions...................................................................................................................3 

1.5 REFERENCES.....................................................................................................................................................3 
1.6 AUDIENCE .........................................................................................................................................................3 
1.7 DELIVERABLES.................................................................................................................................................4 

2. FUNDAMENTAL CONCEPTS ....................................................................................................................... 5 

2.1 OVERVIEW ........................................................................................................................................................5 
2.2 OPC EVENT SERVERS.....................................................................................................................................5 
2.3 AREAS................................................................................................................................................................5 
2.4 CONDITIONS......................................................................................................................................................6 

2.4.1 General.....................................................................................................................................................6 
2.4.2 Attributes of OPCConditions...............................................................................................................7 

2.4.2.1 Condition Quality..................................................................................................................................8 
2.4.3 Attributes of OPCSubConditions........................................................................................................8 

2.4.3.1 Condition Definitions............................................................................................................................8 
2.4.3.2 Severity .................................................................................................................................................8 

2.4.4 Enabling and Disabling.......................................................................................................................10 
2.4.5 Interfaces ...............................................................................................................................................10 
2.4.6 Condition States ...................................................................................................................................10 

2.5 EVENTS AND EVENT NOTIFICATIONS..........................................................................................................12 
2.5.1 General...................................................................................................................................................12 
2.5.2 Event Notifications..............................................................................................................................12 

2.5.2.1 Standard Attributes .............................................................................................................................13 
2.5.2.2 Vendor-Specific Attributes .................................................................................................................14 

2.5.3 Event Categories...................................................................................................................................15 
2.5.4 Interfaces ...............................................................................................................................................15 

2.6 SUBSCRIPTIONS TO EVENT NOTIFICATIONS...............................................................................................15 
2.6.1 General...................................................................................................................................................15 
2.6.2 Properties of OPCEventSubscriptions..............................................................................................15 
2.6.3 Filters......................................................................................................................................................15 
2.6.4 Interfaces ...............................................................................................................................................16 

2.7 CONDITION STATE SYNCHRONIZATION......................................................................................................16 
2.8 ERROR HANDLING .........................................................................................................................................16 

3. ARCHITECTURAL OVERVIEW ................................................................................................................17 

3.1 RELATIONSHIP TO OPC DATA ACCESS SERVER .......................................................................................17 
3.2 OVERVIEW OF OBJECTS AND INTERFACES.................................................................................................17 

3.2.1 General...................................................................................................................................................17 
3.2.2 OPCEventServer Object .....................................................................................................................18 
3.2.3 OPCEventSubscription Object...........................................................................................................19 
3.2.4 OPCEventAreaBrowser Object (optional).......................................................................................19 

4. OPC EVENT SERVER QUICK REFERENCE........................................................................................21 

4.1 CUSTOM INTERFACE – SERVER SIDE ..........................................................................................................21 



OPC Alarms and Events Version 1.01 06/02/99 

 vi 

4.1.1 OPCEventServer Object .....................................................................................................................22 
4.1.2 OPCEventAreaBrowser Object (optional).......................................................................................23 
4.1.3 OPCEventSubscription Object...........................................................................................................23 

4.2 CUSTOM INTERFACE – CLIENT SIDE...........................................................................................................24 

5. OPC EVENT SERVER CUSTOM INTERFACES ..................................................................................25 

5.1 OVERVIEW ......................................................................................................................................................25 
5.2 GENERAL INFORMATION...............................................................................................................................25 
5.3 OPCEVENTSERVER OBJECT ........................................................................................................................26 

5.3.1 Overview...............................................................................................................................................26 
5.3.2 IUnknown ..............................................................................................................................................26 
5.3.3 IOPCCommon ......................................................................................................................................26 
5.3.4 IOPCEventServer.................................................................................................................................27 

5.3.4.1 IOPCEventServer::GetStatus..............................................................................................................28 
5.3.4.2 IOPCEventServer:: CreateEventSubscription.....................................................................................30 
5.3.4.3 IOPCEventServer::QueryAvailableFilters..........................................................................................32 
5.3.4.4 IOPCEventServer::QueryEventCategories .........................................................................................33 
5.3.4.5 IOPCEventServer::QueryConditionNames ........................................................................................34 
5.3.4.6 IOPCEventServer::QuerySubConditionNames ..................................................................................35 
5.3.4.7 IOPCEventServer::QuerySourceConditions.......................................................................................36 
5.3.4.8 IOPCEventServer::QueryEventAttributes ..........................................................................................37 
5.3.4.9 IOPCEventServer::TranslateToItemIDs .............................................................................................38 
5.3.4.10 IOPCEventServer::GetConditionState..............................................................................................40 
5.3.4.11 IOPCEventServer::EnableConditionByArea.....................................................................................44 
5.3.4.12 IOPCEventServer::EnableConditionBySource .................................................................................45 
5.3.4.13 IOPCEventServer::DisableConditionByArea....................................................................................46 
5.3.4.14 IOPCEventServer::DisableConditionBySource ................................................................................47 
5.3.4.15 IOPCEventServer::AckCondition......................................................................................................48 
5.3.4.16 IOPCEventServer::CreateAreaBrowser............................................................................................50 

5.3.5 IConnectionPointContainer................................................................................................................51 
5.3.6 IConnectionPoint..................................................................................................................................52 

5.4 OPCEVENTAREABROWSER OBJECT (OPTIONAL).....................................................................................53 
5.4.1 IOPCEventAreaBrowser.....................................................................................................................53 

5.4.1.1 IOPCEventAreaBrowser::ChangeBrowsePosition.............................................................................54 
5.4.1.2 IOPCEventAreaBrowser::BrowseOPCAreas .....................................................................................55 
5.4.1.3 IOPCEventAreaBrowser::GetQualifiedAreaName ............................................................................56 
5.4.1.4 IOPCEventAreaBrowser::GetQualifiedSourceName.........................................................................57 

5.5 OPCEVENTSUBSCRIPTION OBJECT .............................................................................................................58 
5.5.1 IOPCEventSubscriptionMgt...............................................................................................................58 

5.5.1.1 IOPCEventSubscriptionMgt::SetFilter...............................................................................................59 
5.5.1.2 IOPCEventSubscriptionMgt::GetFilter...............................................................................................61 
5.5.1.3 IOPCEventSubscriptionMgt::SelectReturnedAttributes.....................................................................62 
5.5.1.4 IOPCEventSubscriptionMgt::GetReturnedAttributes.........................................................................63 
5.5.1.5 IOPCEventSubscriptionMgt::Refresh.................................................................................................64 
5.5.1.6 IOPCEventSubscriptionMgt::CancelRefresh......................................................................................66 
5.5.1.7 IOPCEventSubscriptionMgt::GetState ...............................................................................................67 
5.5.1.8 IOPCEventSubscriptionMgt::SetState................................................................................................68 

5.5.2 IConnectionPointContainer................................................................................................................70 
5.5.3 IConnectionPoint..................................................................................................................................71 

5.6 CLIENT SIDE INTERFACES.............................................................................................................................72 
5.6.1 IOPCEventSink ....................................................................................................................................72 

5.6.1.1 IOPCEventSink::OnEvent..................................................................................................................73 
5.6.2 IOPCShutdown.....................................................................................................................................77 

5.6.2.1 IOPCShutdown::ShutdownRequest....................................................................................................78 

6. INSTALLATION ISSUES ...............................................................................................................................79 

6.1 COMMON TOPICS...........................................................................................................................................79 
6.2 COMPONENT CATEGORIES REGISTRATION................................................................................................79 

6.2.1 Server Registration...............................................................................................................................79 



OPC Alarms and Events Version 1.01 06/02/99 

 vii 

6.2.2 Client Enumeration..............................................................................................................................80 

7. SUMMARY OF OPC ERROR CODES .......................................................................................................81 

APPENDIX A – SAMPLE STRING FILTER FUNCTION............................................................................83 

APPENDIX B – EVENT TYPES, EVENT CATEGORIES, AND CONDITIONS ..................................87 

APPENDIX C – EVENT ATTRIBUTES ..............................................................................................................88 

APPENDIX D – EVENT S ERVER IDL SPECIFICATION...........................................................................89 

APPENDIX E – OPCAEDEF.H..............................................................................................................................96 

APPENDIX F – OPCAE_ER.H...............................................................................................................................98 

 



OPC Alarms and Events Version 1.01 06/02/99 

 1

1. Introduction 

1.1 Background 
Today with the level of automation that is being applied in manufacturing, operators are dealing with 
higher and higher amounts of information. Alarming and event subsystems have been used to indicate 
areas of the process that require immediate attention. Areas of interest include (but are not limited to); 
safety limits of equipment, event detection, abnormal situations.  In addition to operators, other client 
applications may collect and record alarm and event information for later audit or correlation with 
other historical data. 

Alarm and event engines today produce an added stream of information that must be distributed to 
users and software clients that are interested in this information. Currently most alarming/event 
systems use their own proprietary interfaces for dissemination and collection of data. There is no 
capability to augment existing alarm solutions with other capabilities in a plug-n-play environment. 
This requires the developer to recreate the same infrastructure for their products as all other vendors 
have had to develop independently with no interoperability with any other systems. 

In keeping with the desire to integrate data at all levels of a business (as was stated in the OPC Data 
background information), alarm information can be considered to be another type of data. This 
information is a valuable component of the information architecture outlined in the OPC Data 
specification.  

Manufacturers and consumers want to use off the shelf, open solutions from vendors that offer superior 
value that solves a specific need or problem. 

1.2 Purpose 
To identify interfaces used to pass alarm and event information between components which would be 
suitable to standardization. Additionally this document details the design of those interfaces in such a 
way as to compliment the existing OPC Data Access Interfaces.  

1.3 Relationship to Other OPC Specifications 
This specification complements but is separate from the OPC Data Access and the OPC Historical 
Data Access specifications.  It references the OPC Common specification, in that OPC Event Servers 
support the interfaces specified there. 

1.4 Scope 

1.4.1 General 
The scope of this document is to provide a specification for a software “conduit” for alarm and event 
information to be broadcast from servers to clients. “Conduit” refers to the notion that this document is 
not intended to specify solutions for alarming problems, but rather provide an enabling technology that 
will permit multi-vendor solutions to operate in a heterogeneous computing environment. 

1.4.2 Multiple Levels of Capability 
The OPC Alarms and Event specification accommodates a variety of applications that need to share 
alarm and event information.  In particular, there are multiple levels of capability for handling alarm 
and event functionality, from the simple to the sophisticated.   



OPC Alarms and Events Version 1.01 06/02/99 

 2

1.4.2.1 Types of Alarm and Event Servers 
There are several types of OPC Alarm and Event Servers.  Some key types supported by this 
specification are:  

• Components that can detect alarms and/or events and report them to one or more clients. 

• Components that can collect alarm and event information from multiple sources (whether by 
subscribing to other OPC alarm and event servers or by detecting alarms and events on it’s 
own) and report such information to one or more clients. 

Distinctions are made between these two roles because this specification does not overburden simple 
alarm and event servers, but also facilitates more sophisticated servers.  Simpler software components 
or devices that can detect and report alarms and events, should not have to also perform advanced 
sorting or filtering operations.  In other words, the required server interface is kept simple.  It supports 
the reporting of information but not much more.  

Thus, simple event servers may choose to restrict the functionality of the event filtering they provide.  
Also, they may choose to not implement such functions as area browsing, enabling/disabling of 
conditions, and translation to itemIDs. 

Optional objects and interfaces are noted in the reference portion of this specification.  Similarly, 
methods which may return E_NOTIMPL, or which may have varying levels of functionality are also 
noted. 

1.4.2.2 Types of Alarm and Event Clients 
 

Clients for OPC alarm and event servers are typically components that subscribe to and display, 
process, collect and/or log alarm and event information.  The clients of OPC alarms and events servers 
may include (but are not limited to) : 

• operator stations 

• event/alarm logging components 

• event/alarm management subsystems  



OPC Alarms and Events Version 1.01 06/02/99 

 3

1.4.2.3 Client – Server Interactions 

Operator
Station 2

Operator
Station 1

Event
Logger, etc.

Alarm/Event
Management Server

server client

Device w/
Alarm Info

Simple Alarm/
Event Server

SPC Module

Simple Alarm/
Event Server

 

Figure 1-1.  Interaction between several OPC Alarm and Event Servers and Clients 

 
Figure 1-1 shows several types of OPC Alarm and Event clients and servers including a Device, SPC 
Module, Operator Stations, Event Logger, and an Alarm/Event Management subsystem.  The 
arrowhead end of the lines connecting the components indicate the client side of the connection.  
Notice that there are multiple roles played by some components.  The Alarm/Event Management 
server is also a client to more than one OPC Alarm and Event server.  In this model, the Alarm/Event 
Management server is acting as kind of a collector or data concentrator, providing its clients with 
perhaps more organized information or a more advanced interface.  Unlike the Alarm/Event 
Management server, the Device and SPC Modules implement the simplest Alarm/Event server 
interface. 

1.5 References 
• OPC Data Access Custom Interface Standard, Version 2.0 (Release Candidate 1), OPC Task 

force, January 8, 1998. 

• The Component Object Model Specification, Version 0.9, Microsoft Corporation, (available 
from Microsoft’s FTP site), October 24, 1995. 

1.6 Audience 
This document is intended to be used as reference material for developers of OPC compliant alarm 
clients and servers. It is assumed that the reader is familiar with Microsoft OLE/COM technology, the 
needs of the process control industry and the OPC Data Access 2.0 specification. 



OPC Alarms and Events Version 1.01 06/02/99 

 4

1.7 Deliverables 
This document covers the analysis and design for a COM compliant custom interface.  A separate 
document describes a related OLE Automation interface. 



OPC Alarms and Events Version 1.01 06/02/99 

 5

2. Fundamental Concepts 

2.1 Overview 
This specification describes objects and interfaces which are implemented by OPC Event Servers, and 
which provide the mechanisms for OPC Clients to be notified of the occurrence of specified events and 
alarm conditions.  These interfaces also provide services which allow OPC Clients to determine the 
events and conditions supported by an OPC Event Server, and to obtain their current status. 

This specification deals with entities commonly referred to in the process control industry as alarms 
and events.  In informal conversation, the terms alarm and event are often used interchangeably and 
their meanings are not distinct. 

Within this specification, an alarm is an abnormal condition and is thus a special case of a condition.  
A condition is a named state of the OPC Event Server, or of one of its contained objects, which is of 
interest to its OPC Clients.  For example, the tag FIC101 may have the “LevelAlarm” or 
“DeviationAlarm” conditions associated with it. 

Furthermore, a condition may be defined (optionally) to include multiple sub-conditions.  For example, 
a LevelAlarm condition may include the “HighAlarm”, “HighHighAlarm”, “LowAlarm”, and 
“LowLowAlarm” sub-conditions1. 

On the other hand, an event is a detectable occurrence which is of significance to the OPC Event 
Server, the device it represents, and its OPC Clients.  An event may or may not be associated with a 
condition.  For example, the transitions into the LevelAlarm condition and the return to normal are 
events which are associated with conditions.  However, operator actions, system configuration 
changes, and system errors are examples of events which are not related to specific conditions.  OPC 
Clients may subscribe to be notified of the occurrence of specified events. 

2.2 OPC Event Servers 
Any COM object which implements the IOPCEventServer interface is an OPC Event  Server.  

The IOPCEventServer interface provides methods enabling the OPC Client to: 

• Determine the types of events which the OPC Event Server supports. 

• Enter subscriptions to specified events, so that OPC Clients can receive notifications of their 
occurrences. 

• Specify a client callback interface to be invoked if the OPC Event Server is shutting down. 

2.3 Areas 
The expectation is that events and conditions available in the server are organized within one or more 
process areas.  An area is a grouping of plant equipment configured by the user, typically according to 
areas of operator responsibility.  The definition of the area configuration is outside the scope of this 
specification.  Implementation of the area concept is optional. 

If areas are available, an OPCEventAreaBrowser object may be created by the client to browse the 
process area organization.  The client can filter event subscriptions by specifying the process areas to 
limit the event notifications sent by the server. 

                                                                 
1 Some servers may choose to represent these as conditions, rather than sub-conditions, as is shown in 
Appendix B. 



OPC Alarms and Events Version 1.01 06/02/99 

 6

2.4 Conditions 

2.4.1 General 
A condition is a named state of the OPC Event Server, or of one of its contained OPC Items (if it is 
also an OPC Data Access Server), which is of interest to its OPC Clients.  An alarm is merely a special 
case of a condition, one which is deemed to be abnormal and requiring special attention.  This 
specification deals with conditions in general, and does not treat alarms in any special way. 

Within the OPC Event Server, conditions are represented by objects of type OPCCondition2.  Each 
OPCCondition is associated with an OPCSource, as shown in figure 2-1.  An OPCSource may be a 
process tag (e.g. FIC101) or possibly a device or subsystem.  An OPCSource may be an OPCItem if 
the OPC Event Server is (or is associated with) an OPC Data Access Server. 

Conditions may be single state, or multi-state.  A multi-state condition is one whose state encompasses 
multiple “ranges” or sub-states which are of interest.  For example, a “LevelAlarm” condition may 
have multiple sub-states including “HighAlarm” and “HighHighAlarm”.  Each sub-state is represented 
by an object of the type OPCSubCondition (which again is not a COM object).  Each 
OPCSubCondition is associated with an OPCCondition , as shown in figure 2-1.  The sub-states of a 
multi-state condition must be mutually exclusive, e.g. a tag cannot be in both HighAlarm and 
HighHighAlarm at the same time. 

The rationale for sub-conditions is to allow clients to more easily deal with closely related event 
notifications.  For example, it is easier for an alarm display client to detect and correctly display the 
fact that FIC101 has moved from “HighAlarm” to “HighHighAlarm” if these states are modeled as 
sub-conditions of the same condition (“LevelAlarm”), than if they are modeled as independent 
conditions.  The independent condition model makes it more difficult for the client to determine when 
conditions are mutually exclusive. 

 A single state condition has only one sub-state of interest, and thus has only one sub-condition 
associated with it.  An example of a single state condition is a “hardware failure” condition, where a 
hardware device is either in the failed condition or not. 

It is important to maintain a clear distinction between OPCCondition/OPCSubCondition classes and 
instances.  When discussing a condition or sub-condition in isolation, we are likely dealing with a class 
of conditions or sub-conditions.  However, when discussing a condition or sub-condition in 
conjunction with an OPCSource, we are dealing with a particular instance.  For example, a 
“LevelAlarm” is a class of OPCConditions, which may be defined for many analog tags in the process 
control system.  However, if we say that FIC101 is in “LevelAlarm”, we are dealing with the particular 
instance of “LevelAlarm” associated with FIC101. 

                                                                 
2 The OPCCondition discussed here is not a COM object, but is an abstract model of what we think will 
commonly be happening within the vendor specific server.  It is  not directly exposed through any of the 
interfaces defined in this specification.  Strictly speaking, this specification defines the interfaces and their 
behaviors on a “black box” called an OPC Event Server, and says nothing about any internal details which 
might produce such behavior.  However, the OPCCondition is a useful model to help explain and clarify 
the various behaviors. 



OPC Alarms and Events Version 1.01 06/02/99 

 7

OPCSource OPCCondition

has
1 0..N

Attributes:
Name
…
…
...

Attributes:
Name
Active
ActiveSubCondition
Quality
Enabled
Acked
LastAckTime
SubCondLastActive
CondLastActive
LastInactive
AcknowledgerID
Comment

OPCSubCondition

Attributes:
Name
Definition
Severity
Description

has
1 1..N

 

Figure 2-1.  Relationship between Server Objects, OPCConditions, and OPCSubConditions. 

OPCConditions and OPCSubConditions are defined by the implementer of  the OPC Event Server, and 
the mechanisms for defining OPCConditions and OPCSubConditions are outside the scope of this 
specification. 

2.4.2 Attributes of OPCConditions 
Each OPCCondition has the following attributes: 

Name The name assigned to the condition, e.g. “LevelAlarm”.  The name of a condition 
must be unique within the event server. 

Active The associated object is currently in the state represented by the condition. 

ActiveSubCondition  If Active, this is the name of the SubCondition which is currently active.  For 
example, if the LevelAlarm condition is active, the ActiveSubCondition value might 
be “HighAlarm”.  For single-state conditions, the value would be the condition name. 

Enabled The condition is currently being checked by the OPC Event Server. 

Quality The current quality of the data value(s) upon which this condition is based.  (see 
Condition Quality below) 

Acked If Active, the condition has been acknowledged. 

LastAckTime   Time of the most recent acknowledgement  (of any sub-condition). 

SubCondLastActive  Time of the most recent transition into the currently active sub-condition.  
This is the time value which must be specified when acknowledging the condition. 

CondLastActive  Time of most recent transition into this condition.  There may be transitions 
among the sub-conditions which are more recent. 

LastInactive Time of most recent transition out of this condition. 

AcknowledgerID  The ID of the client who last acknowledged this condition. 

Comment The comment string passed in by the client who last acknowledged this condition. 



OPC Alarms and Events Version 1.01 06/02/99 

 8

2.4.2.1 Condition Quality 
Since a condition is usually based on one or more OPCItems which have a Quality attribute, the 
condition also has an associated quality.  If the process value is “Uncertain”, the “LevelAlarm” 
condition is also questionable.  As with OPCItems, conditions will have a mandatory Quality attribute 
and when the quality changes, it will generate an event notification.  The quality is not handled as 
another parameter since it is closely associated with the condition. 

It is up to the server to determine how to derive the value of Quality.  Servers may also wish to define 
a special EventCategory to report bad quality attributes for values. 

Values for the Quality property conform to the OPC Quality Flags definition in the OPC Data Access 
server specification. 

2.4.3 Attributes of OPCSubConditions 
Each OPCSubCondition has the following attributes: 

Name The name assigned to the sub-condition, e.g. “HighAlarm” for a sub-condition of 
“LevelAlarm”.  In the case of a single-state alarm, the sub-condition name is the 
same as the associated condition name.  The name of the sub-condition must be 
unique within its associated condition. 

Definition An expression which defines the sub-state represented by the sub-condition (see 
Condition Definitions below). 

Severity The severity of any event notifications generated on behalf of this sub-condition (see 
Severity below).  Note that different sub-conditions of the same condition may have 
different severity levels. 

Description The text string to be included in any event notification generated on behalf of this 
sub-condition. 

2.4.3.1 Condition Definitions 
Condition definitions are server specific.  Some examples are: 

1. A boolean expression over one or more OPCItems, e.g. FIC101.PV > 100 & FIC101.PV < 150.  
This might be the definition for the HighAlarm sub-condition of the LevelAlarm condition. 

2. A text string referring to a condition defined by the underlying system or device, e.g. 
“DeviceFailure”. 

3. A text string indicating a condition which is associated with the OPC Event Server. Examples of  
OPC Event Server conditions are:  

• Shutting Down at specified time 
• Server overloaded 
• Underlying system/device is down 
• Etc. 

2.4.3.2 Severity 
The severity value is an indication of the urgency of the sub-condition. This is also commonly called 
‘priority’, especially in relation to process alarms.  Values will range from 1 to 1000, with 1 being the 
lowest severity and 1000 being the highest.  Typically, a severity of 1 would indicate in event which is 
informational in nature, while a value of 1000 would indicate an event of catastrophic nature which 
could potentially result in severe financial loss or loss of life. 



OPC Alarms and Events Version 1.01 06/02/99 

 9

It is expected that few server implementations will support 1000 distinct severity levels.  Therefore, 
server developers are responsible for distributing their severity levels across the 1 – 1000 range in such 
a manner that clients can assume a linear distribution.  For example, a client wishing to present five 
severity levels to a user should be able to do the following mapping: 

Client Severity OPC Severity 
HIGH 801 – 1000 

MEDIUM HIGH 601 – 800 

MEDIUM 401 – 600 

MEDIUM LOW 201 – 400 

LOW 1 – 200  

 

In many cases a strict linear mapping of underlying device severities to the OPC Severity range is not 
appropriate.  The server developer will instead intelligently map the underlying device severities to the 
1 – 1000 OPC Severity range in some other fashion.  In particular, it is recommended that server 
developers map device events of high urgency into the OPC severity range of 667 – 1000, device 
events of medium urgency into the OPC severity range of 334 – 666, and low urgency device events 
into OPC severities of 1 – 333. 

For example, if a device supports 16 severity levels, which are clustered such that severities 0, 1, and 2 
are considered to be LOW, 3 – 7 are MEDIUM, and 8 – 15 are HIGH, then an appropriate mapping 
might be as follows: 

OPC Range Device Severity OPC Severity 
15 1000 

14 955 

13 910 

12 865 

11 820 

10 775 

9 730 

HIGH (667 – 1000) 

8 685 

7 650 

6 575 

5 500 

4 425 

MEDIUM (334 – 666) 

3 350 

2 300 

1 150 

LOW (1 – 333) 

0 1 

 



OPC Alarms and Events Version 1.01 06/02/99 

 10 

Some servers may not support any events which are catastrophic in nature, so they may choose to map 
all of their severities into a subset of the 1 – 1000 range (for example, 1 – 666).  Other servers may not 
support any events which are merely informational, so they may choose to map all of their severities 
into a different subset of the 1 – 1000 range (for example, 334 – 1000). 

The purpose of this approach is to allow clients to use severity values from multiple servers from 
different vendors in a consistent manner. 

2.4.4 Enabling and Disabling  
Clients may enable and disable conditions, and the resulting behavior is illustrated in the state diagram 
below.   Additional behaviors are noted below: 

• The server may choose to continue to test for a condition while it is disabled.  However, no 
event notifications will be generated while the condition is disabled, nor can it be acknowledged 
while it is disabled. 

• It is server-specific as to whether or not the following condition properties are defined while in 
the disabled state:  Active, ActiveSubCondition, Quality, Acked, LastAckTime, 
SubCondLastActive, CondLastActive, LastInactive, AcknowledgerID, and Comment. 

• On a refresh, no event notifications will be generated for disabled conditions. 

• When enabled, the Time attribute associated with the “Condition Active” event notification will 
either be the time the condition is first discovered after enabling, or the time it became active 
(server-specific). 

2.4.5 Interfaces 
None.  OPCConditions and OPCSubConditions are not COM objects.  They are defined by the 
implementer of the OPC Event Server, and their definition is outside the scope of this specification.  
Methods to support client access to conditions are defined in the IOPCEventServer interface. 

2.4.6 Condition States 
Figure 2-2 shows a state machine for an OPCCondition which requires acknowledgement.  Note that 
the intent of this diagram is to convey the expected behavior of conditions, as viewed by a client of the 
OPC Event Server.  It is not intended to specify implementation, other than that the implementation 
must support the expected behavior. 

Each state transition is an event.  Event notification messages are sent at each state transition. 



OPC Alarms and Events Version 1.01 06/02/99 

 11 

Condition State:
Active, Unacked, Enabled

Condition State:
Inactive, Acked, Enabled

Condition State:
Inactive, Unacked, Enabled

Condition State:
Active, Acked, Enabled

Becomes Inactive:
Send “Condition Inactive”

Notification Becomes Active:
Send “Condition Active”

Notification

Invalid Ack
Recv’d:
Ignore

Invalid Ack Received:
Ignore

Valid Ack Received:
Send “Acknowledged”

Notification

Valid Ack Received:
Send “Acknowledged”

Notification

Becomes Active:
Send “Condition Active”

Notification

Becomes Inactive:
Send “Condition Inactive”

Notification

Condition State:
Disabled

Condition State:
Enabled, ...

Enable Received:
Ignore

Disnable Received:
Ignore

Disable Received :
Possibly Send

“Disabled” Notif.*

(For all enabled states)

Quality Changes:
Send “Quality Changed”

Notification

Sub-condition changes:
Send notification of
new sub-condition

Sub-condition changes:
Send notification of
new sub-condition

Enable Received:
(No Notification)

* Notification sent only if prior state was “Active” or “Inactive” and “Unacked”.

 

Figure 2-2.  OPCCondition State Machine 

Every event notification which is condition-related (see the section below on Events and Event 
Notifications) and which requires acknowledgment includes the Name of the condition, the time that 
the condition most recently entered the active state or transitioned into a new sub-condition 
(SubCondLastActive property), and the Cookie which uniquely identifies the event notification.  This 
information is specified by an OPC Client when acknowledging the condition.  This information is 
used by the OPC Event Server to identify which specific event occurrence (state transition) is being 
acknowledged.  If an acknowledgment is received with an out-of-date SubCondLastActive property 
(this can occur due to latency in the system), the condition state does not become acknowledged. 

Note that an acknowledgement effects the condition state only if it (the condition) is currently active or 
it is currently inactive and the most recent active condition was unacknowledged.  If an inactive, 
unacknowledged condition again becomes active, all subsequent acknowledgements will be validated 
against the newly active condition state attributes.  The server may optionally use the Cookie attribute 
of  the Event Notification to log acknowledgement of “old” condition activations, but such “late” 
acknowledgements have no affect on the current state of the condition. 

Acknowledgment of the condition active state may come from the OPC client or may be due to some 
logic internal to the OPC Event Server.  For example, acknowledgment of a related OPCCondition 
may result in this OPCCondition becoming acknowledged, or the OPCCondition may be set up to 
automatically acknowledge itself when the condition becomes inactive. 

For conditions that do not track or require acknowledgement, the state transitions are simpler - just 
between enabled inactive, enabled-active, and disabled states. 



OPC Alarms and Events Version 1.01 06/02/99 

 12 

Enabling a condition places it in the inactive-acked-enabled state.  It is possible for the condition to 
become active very quickly after being enabled.  No special scan/calculation are performed as part of 
the enabling action. 

It is recommended that the event server generate tracking events for enable and disable operations, 
rather than generating an event notification for each condition instance being enabled or disabled.  
Enabling and disabling by area could result in a flood of event notifications if this recommendation is 
not followed. 

2.5 Events and Event Notifications 

2.5.1 General 
An event is a detectable occurrence which is of significance to the OPC Event Server, the device it 
represents, and its OPC Clients.  An event has no direct representation within the OPC model.  Rather, 
its occurrence is made known via an Event Notification.  Event Notifications are represented by objects 
of class OPCEventNotification3, which are described in the following section.  
(OPCEventNotifications are not COM objects.) 

There are three types of events: 

1. Condition-related events are associated with OPCConditions, and represent transitions into or out 
of the states represented by OPCConditions and OPCSubConditions.  An example is the tag 
FIC101 transitioning into the LevelAlarm condition and HighAlarm sub-condition. 

2. Tracking-related events are not associated with conditions, but represent occurrences which 
involve the interaction of an OPC Client with a “target” object within the OPC Event Server.  An 
example of such an event is a control change in which the operator, (the OPC Client), changes the 
set point of tag FIC101 (the “target”). 

3. Simple events are all events other than the above.  An example of a simple event is a component 
failure within the system/device represented by the OPC Event Server. 

2.5.2 Event Notifications 
OPCEventNotifications are sent to subscribing clients using the Connection Point callback interface 
supplied by the OPC Client in the event subscription (see Subscriptions to Event Notifications below). 

The types of OPCEventNotifications form an inheritance hierarchy as shown in figure 2-3. 

                                                                 
3 The OPCEventNotification discussed here is not a COM object, but is an abstract model of what we think 
will commonly be happening within the vendor specific server.  It is not directly exposed through any of 
the interfaces defined in this specification, although event notification attributes are provided to the client 
in the ONEVENTSTRUCT (see the description of the IOPCEventSink interface later in this document).  
Strictly speaking, this specification defines the interfaces and their behaviors on a “black box” called an 
OPC Event Server, and says nothing about any internal details which might produce such behavior.  
However, the OPCEventNotification is a useful model to help explain and clarify the various behaviors. 



OPC Alarms and Events Version 1.01 06/02/99 

 13 

OPCSimpleEventNotification

Standard Attributes:
Source
Time
Type
EventCategory
Severity
Message
Vendor-Specific Attributes:
(Attributes defined by the server
implementer)

OPCTrackingEventNotification

Standard Attributes:
ActorID
Vendor-Specific Attributes:
(Attributes defined by the server
implementer)

OPCConditionEventNotification

Standard Attributes:
ConditionName
SubConditionName
NewState
Quality
AckRequired
ActiveTime
Cookie
ActorID
Vendor-Specific Attributes:
(Attributes defined by the server
implementer)

is-a

 

Figure 2-3.  OPCEventNotification Type Hierarchy 

2.5.2.1 Standard Attributes 
All OPCEventNotifications have standard attributes which are defined by this specification, and are 
included in the ONEVENTSTRUCT returned to clients with event notifications.  See the discussion of 
the IOPCEventSink interface in Section 5.6.1. 

2.5.2.1.1 OPCSimpleEventNotifications 
OPCSimpleEventNotifications have the following standard attributes.  Note that 
OPCConditionEventNotifications and OPCTrackingEventNotifications also include these standard 
attributes through inheritance. 

Source A reference to the object which generated the event notification.  For example, this 
would be a tag name (e.g. FIC101) if the event pertains to a tag entering the 
LevelAlarm condition (condition-related event).  It could also be a tag name for a 
tracking event such as the operator changing the set point value for FIC101.  For a 
simple event such as a system error, the Source value might be “System”. 

Time The time that the event occurred. 

Type The type of the event, i.e. condition-related, tracking-related, or simple. 

EventCategory  The category to which this event belongs (see Event Categories below). 

Severity The urgency of the event.  This may be a value in the range of 1 – 1000, as described 



OPC Alarms and Events Version 1.01 06/02/99 

 14 

in Section 2.4.3.2. 

Message Message text which describes the event.  For condition-related events, this will 
generally include the description property of the active sub-condition. 

2.5.2.1.2 OPCTrackingEventNotifications 
Tracking events have the attributes of a simple event plus the following: 

ActorID The identifier of the OPC Client which initiated the action resulting in the tracking-
related event.  For example, if the tracking-related event is a change in the set point 
of FIC101, the ActorID might be a reference to the client application which initiated 
the change or might be the userID of the operator who specified the change.  This 
value is server specific, and its definition is outside the scope of this specification. 

2.5.2.1.3 OPCConditionEventNotifications 
Condition events have the attributes of a simple event plus the following: 

ConditionName  The name of the associated OPCCondition. 

SubConditionName  The name of the currently active OPCSubCondition. 

ChangeMask Indicates to the client which properties of the condition have changed, to have caused the 
server to send the event notification. 

NewState Indicates the new state of the condition.  This indicates the new values for the 
Enabled, Active, and Acked properties of the condition. 

ConditionQuality  Indicates the quality of the underlying data items upon which this condition is 
based. 

AckRequired  An indicator as to whether or not an acknowledgement is required.  Many event 
notifications related to conditions do not normally require an acknowledgment, e.g. 
the receipt of an acknowledgment or the transition to the inactive state.  Furthermore, 
some conditions may be configured (using facilities outside the scope of this 
specification) to not require acknowledgment even for transitions into the condition, 
or for transitions among sub-conditions (e.g. transition into LevelAlarm or transition 
from HighAlarm to HighHighAlarm).  In this case, it is the responsibility of the 
server to automatically place the condition into the Acknowledged state, since an 
acknowledgment will never be received. 

ActiveTime The time of the transition into the condition or sub-condition which is associated 
with this event notification.  This corresponds to the SubCondLastActive property of 
the associated OPCCondition object and is used to correlate condition 
acknowledgements with a particular transition into the condition/sub-condition.  

Cookie Server defined cookie associated with the event notification.  This value is used by 
the client when acknowledging the condition.  This value is opaque to the client. 

ActorID The identifier of the OPC Client which acknowledged the condition, which is 
maintained as the AcknowledgerID property of the condition.  This is included in 
event notifications generated by condition acknowledgments. 

2.5.2.2 Vendor-Specific Attributes 
In addition to the standard attributes described above, implementers of OPC Event Servers may choose 
to provide additional attributes with event notifications.  In order to promote consistency among event 
server implementations, implementers are encouraged to select their attribute names from those listed 
in Appendix C where applicable. 



OPC Alarms and Events Version 1.01 06/02/99 

 15 

2.5.3 Event Categories 
EventCategories define groupings of events supported by an OPC Event server.  Examples of event 
categories might include “Process Events”, “System Events”, or “Batch Events”.  Event categories 
may be defined for all event types, i.e. Simple, Tracking, and Condition-Related.  However, a  
particular event category can include events of only one type.  A given Source (e.g. “System” or 
“FIC101”) may generate events for multiple event categories.  Names of event categories must be 
unique within the event server.  The definition of event categories is server specific and is outside the 
scope of this specification.  A list of recommended event categories for each event type is provided in 
Appendix B. 

The name of the event category is included in every event notification.  Event subscriptions may be 
filtered based on event category. 

2.5.4  Interfaces 
OPC Event Servers provide interfaces to allow OPC Clients to determine the types of events which the 
OPC Event Server supports, and to enter subscriptions to specified events. 

2.6 Subscriptions to Event Notifications 

2.6.1 General 
In order to receive event notifications, OPC Clients must subscribe to them.  A subscription is entered 
with an OPC Event Server by requesting it to create an OPCEventSubscription object.  An OPC Client 
may have one or more OPCEventSubscriptions active with a single OPC Event Server. 

OPCEventSubscriptions are “connectable objects” in that they implement the DCOM Connection 
Point interfaces.  This is the mechanism used to send event notifications to OPC Clients. 

2.6.2 Properties of OPCEventSubscriptions 
OPCEventSubscriptions have the following property: 

Filter A structure containing criteria for selecting events of interest to the client (see Filters 
below).  A null Filter results in the OPC Client receiving all event notifications. 

2.6.3 Filters 
Events may be selected using the following criteria: 

• Type of event, i.e. simple, condition, or tracking. 

• Event categories 

• Lowest severity, i.e. all events with a severity greater than or equal to the specified severity. 

• Highest severity, i.e. all events with a severity less than or equal to the specified severity. 

• Process areas 

• Event sources 

A list of values for a single criterion are logically ORed together (e.g. if two event categories are 
specified, event notifications for both categories will be received).  If multiple criteria are specified, 
they will be logically ANDed together, i.e. only those events satisfying all criteria will be selected.  An 
example is specifying both lowest priority and highest priority will result in the selection of events 
with priorities lying between the two values. 

For example, the following filter: 



OPC Alarms and Events Version 1.01 06/02/99 

 16 

Type = CONDITION 
Category = PROCESS 
LowSeverity = 600 
Area = AREA1, AREA2 

would result in the selection of condition-related events within the “Process” category in both AREA1 
and AREA2 which are of high urgency (greater than or equal to 600). 

An OPCEventSubscription has only one filter. 

2.6.4 Interfaces 
OPCEventSubscriptions provide an interface to allow the OPC Client to specify the Filter.  In addition, 
they implement the standard DCOM Connection Point interfaces, to provide the mechanism for 
notifying OPC Clients of event occurrences.  

2.7 Condition State Synchronization 
OPC Clients can obtain the current state of all conditions which are active, or which are inactive but 
unacknowledged, by requesting a “refresh” from each active OPCEventSubscription object.  The 
server will respond by sending the appropriate events to the client, via the event call back mechanism, 
for all conditions selected by the filter for each subscription.  When invoking the client’s call back, the 
server will indicate whether the invocation is for a refresh or is an original notification.  Refresh and 
original event notifications will not be mixed in the same call back invocation. 

This design assumes that the client needs only the current state information for conditions, so only 
condition-releated event notifications are refreshed.  It should be noted that “refresh” is not a general 
replay capability, since the server is not required to maintain an event history. 

Refresh event notifications may be sent in an arbitrary order and may be out of sequence.  Since 
conditions may change state while the server is replying to a refresh request, the refresh event 
notification may no longer reflect the current condition state by the time the client receives it.  
Similarly, a client may receive an original event notification after receiving a refresh event notification 
for the same event.  Clients will need to comp are timestamps to ensure that they have the correct state 
of the condition. 

2.8 Error Handling 
OPC Event Servers may report internal or source connection errors as standard events, which may be 
simple events or condition-related events.  Events for server errors belong to the 
OPC_SERVER_ERROR event category.  The specific events included in this category are vendor 
specific, but they should cover cases such as: 

• Internal buffer overflow 

• Event source communication problems  

• Client communication problems  

In the case of loss of communication from an event source, the currently active conditions from that 
source should have their quality attribute updated to signify the loss of communication.  This can be 
accomplished by setting the quality to “Bad” with a substatus of  “Comm Failure”.  This change in 
quality must result in event notifications to all subscribers. 



OPC Alarms and Events Version 1.01 06/02/99 

 17 

3. Architectural Overview 

3.1 Relationship to OPC Data Access Server 
Any COM object which supports the IOPCEventServer interface is an OPC Event  Server.  In many 
cases, an OPC Data Access Server will also expose an OPCEventServer object and will fill both the 
roles of data server and event server.  However, there may be other situations where it is advantageous 
to have a dedicated OPC Event Server, i.e. one which is not also an OPC Data Access Server object.  

3.2 Overview of Objects and Interfaces 

3.2.1 General 
This specification defines the following COM objects, which are briefly covered in the following 
sections:   OPCEventServer, OPCEventSubscription, and OPCEventAreaBrowser.  

Figure 3-1 shows the how these objects are related. 

OPC Event Server OPC Event 
Subscription

OPC Event 
Area Browser

1

0..N

1 1..N

 

Figure 3-1 -  Relationship of OPC Event Server Objects 



OPC Alarms and Events Version 1.01 06/02/99 

 18 

3.2.2 OPCEventServer Object 

OPC Event Server
Object

IID_IOPCShutdown

IOPCEventServer

IConnectionPointContainer

IUnknown

IConnectionPoint

IOPCCommon

 

Figure 3-2  - OPC Event Server Object 

Figure 3-2 is a view of an OPC Event Server and IID_IOPCShutdown objects.  These objects are 
created (or connected to) using the DCOM facilities CoCreateInstance or CoCreateInstanceEx.  As 
noted earlier, this may be an OPC (Data Access) Server object which also implements the 
IOPCEventServer interface, or may be a distinct COM object which implements this interface but not 
the data access interfaces. 

The IOPCCommon interface is used to perform certain functions which are common to other OPC 
servers, e.g. Data Access.  Examples of such common functions are the management of LocaleIDs and 
retrieval of error strings. 

The IOPCEventServer interface is used to create OPC Event Subscription and OPC Event Area 
Browser objects, query vendor-specific event categories and event parameters, and manage conditions. 

The IConnectionPointContainer and IConnectionPoint interfaces are the standard DCOM interfaces for 
connectable objects, and are used to handle the callbacks for server notifications to the client of 
impending shutdown. 



OPC Alarms and Events Version 1.01 06/02/99 

 19 

3.2.3 OPCEventSubscription Object 

OPC Event Subscription
Object

IID_IOPCEventSink

IOPCEventSubscriptionMgt

IConnectionPointContainer

IUnknown

IConnectionPoint

 

Figure 3-3 - OPC Event Subscription Object 

Figure 3-3 is a view of the OPCEventSubscription and IID_IOPCEventSink objects, which are created 
by the OPC Event Server when the client subscribes to events using the 
IOPCEventServer::CreateEventSubscription method. 

The IOPCEventSubscriptionMgt interface is used to configure filters and other attributes for OPC 
event reporting. 

The IConnectionPointContainer and IConnectionPoint interfaces are the standard DCOM interfaces for 
connectable objects, and are used to handle the callbacks for event notifications. 

3.2.4 OPCEventAreaBrowser Object (optional) 

OPC Event Area
Browser Object

IUnknown

IOPCEventAreaBrowser

 

Figure 3-4 - OPC Event Area Browser Object 

Figure 3-4 is a view of the OPCEventAreaBrowser object which is created by the OPC Event Server 
when the client invokes the IOPCEventServer::CreateAreaBrowser method. 



OPC Alarms and Events Version 1.01 06/02/99 

 20 

The IOPCEventAreaBrowser interface provides a way for clients to browse the process area 
organization implemented by the server.  The expectation is that events and conditions provided by the 
server are organized into one or more process areas, and that the client can filter event subscriptions 
according to specified process areas.  

This object is optional, and may not be exposed by simple event servers. 



OPC Alarms and Events Version 1.01 06/02/99 

 21 

4. OPC Event Server Quick Reference 
This section includes a quick reference for the methods in the Custom Interface.  These interfaces, their 
parameters, and behavior are defined in detail in  section 5. 

4.1 Custom Interface – Server Side 
Note:  this section does not show additional standard COM interfaces, such as IUnknown, which are 
also supported by the event server. 

OPCEventServer 
 IOPCCommon 
 IOPCEventServer 
 IConnectionPointContainer 

OPCEventAreaBrowser (optional) 
 IOPCEventAreaBrowser 

OPCEventSubscription 
 IOPCEventSubscriptionMgt 
 IConnectionPointContainer 



OPC Alarms and Events Version 1.01 06/02/99 

 22 

4.1.1 OPCEventServer Object 

IOPCCommon  

HRESULT SetLocaleID ( dwLcid ) 
HRESULT GetLocaleID ( pdwLcid ) 
HRESULT QueryAvailableLocaleIDs ( pdwCount, pdwLcid ) 
HRESULT GetErrorString ( dwError, ppString) 
HRESULT SetClientName (szName) 

IOPCEventServer  

HRESULT GetStatus ( ppEventServerStatus ) 
HRESULT CreateEventSubscription ( bActive, dwBufferTime, dwMaxSize, 

hClientSubscription, riid, ppUnk, pdwRevisedBufferTime, 
pdwRevisedMaxSize ) 

HRESULT QueryAvailableFilters ( pdwFilterMask ) 
HRESULT QueryEventCategories ( dwEventType, pdwCount, ppdwEventCategories, 

ppEventCategoryDescs ) 
HRESULT QueryConditionNames ( dwEventCategory, pdwCount, ppszConditionNames ) 
HRESULT QuerySubConditionNames ( szConditionName, pdwCount, 

ppszSubConditionNames ) 
HRESULT QuerySourceConditions ( szSource, pdwCount, ppszConditionNames ) 
HRESULT QueryEventAttributes ( dwEventCategory, pdwCount, ppdwAttrIDs, 

ppszAttrDescs, ppvtAttrTypes ) 
HRESULT TranslateToItemIds ( szSource, dwEventCategory, szConditionName, 

szSubConditionName, dwCount, pdwAssocAttrIDs, ppszAttrItemIDs, 
ppszNodeNames, pCLSIDs ) – See Note1 

HRESULT GetConditionState ( szSource, szConditionName, ppConditionState ) 
HRESULT EnableConditionByArea ( dwNumAreas, pszAreas ) – See Note1 
HRESULT EnableConditionBySource ( dwNumSources, pszSources ) – See Note1 
HRESULT DisableConditionByArea ( dwNumAreas, pszAreas ) – See Note1 
HRESULT DisableConditionBySource ( dwNumSources, pszSources ) – See Note1 
HRESULT AckCondition ( dwCount, szAcknowledgerID, szComment, pszSource, 

pszConditionName, pftActiveTime, pdwCookie, ppErrors ) 
HRESULT CreateAreaBrowser ( riid, ppUnk ) – See Note1 

IOPCConnectionPointContainer  

HRESULT EnumConnectionPoints ( ppEnum ) 
HRESULT FindConnectionPoint ( riid, ppCP ) 



OPC Alarms and Events Version 1.01 06/02/99 

 23 

4.1.2 OPCEventAreaBrowser Object (optional) 

IOPCEventAreaBrowser  

HRESULT ChangeBrowsePosition ( dwBrowseDirection, szString ) 
HRESULT BrowseOPCAreas ( dwBrowseFilterType, szFilterCriteria, ppIEnumString ) 
HRESULT GetQualifiedAreaName ( szAreaName, pszQualifiedAreaName ) 
HRESULT GetQualifiedSourceName ( szSourceName, pszQualifiedSourceName ) 

4.1.3 OPCEventSubscription Object 

IOPCEventSubscriptionMgt  

HRESULT SetFilter ( dwEventType, dwNumCategories, pdwEventCategories, 
dwLowSeverity, dwHighSeverity, dwNumAreas, pszAreaList, 
dwNumSources, pszSourceList ) – See Note2 

HRESULT GetFilter ( pdwEventType, pdwNumCategories, ppdwEventCategories, 
pdwLowSeverity, pdwHighSeverity, pdwNumAreas, ppszAreaList, 
pdwNumSources, ppszSourceList ) 

HRESULT SelectReturnedAttributes ( dwEventCategory, dwCount, dwAttributeIDs ) 
HRESULT GetReturnedAttributes ( dwEventCategory, pdwCount, pdwAttributeIDs ) 
HRESULT Refresh ( dwConnection) 
HRESULT CancelRefresh ( dwConnection) 
HRESULT GetState ( pbActive, pdwBufferTime, pdwMaxSize, phClientSubscription ) 
HRESULT SetState ( bActive, dwBufferTime, dwMaxSize, hClientSubscription, 

pdwRevisedBufferTime, pdwRevisedMaxSize ) 

IOPCConnectionPointContainer  

HRESULT EnumConnectionPoints ( ppEnum ) 
HRESULT FindConnectionPoint ( riid, ppCP ) 

 

Note1:  These methods may not be supported by simple event servers, and may return 
E_NOTIMPL. 

Note2:  The functionality of this method may be restricted by simple event servers. 



OPC Alarms and Events Version 1.01 06/02/99 

 24 

4.2 Custom Interface – Client Side 

IOPCEventSink  

HRESULT OnEvent ( hClientSubscription, bRefresh, bLastRefresh, dwCount, pEvents ) 

IOPCShutdown  

HRESULT ShutdownRequest ( szReason ) 
 



OPC Alarms and Events Version 1.01 06/02/99 

 25 

5. OPC Event Server Custom Interfaces 

5.1 Overview 
The OPC Event Server Custom Interface objects include the following: 

• OPCEventServer 

• OPCEventSubscription 

• OPCEventAreaBrowser 

The interfaces and behaviors of these objects are described in detail in this chapter.  Developers of 
OPC Event servers are required to implement the OPC objects by providing the functionality defined 
in this chapter.  

This chapter also references and defines expected behavior for the standard OLE interfaces that an 
OPC Event server and an OPC Event client are required to implement to build and deliver OPC 
compliant components.  

In addition, standard and custom enumerator objects are created and interfaces to these objects are 
returned in several cases. In general the enumerator objects and interfaces are described only briefly 
since their behavior is well defined by OLE.  

Note that for proper operation, enumerators are created and returned from methods on objects rather 
than through QueryInterface.  The enumerator defined in this specification is: 

• Server process area enumerator - (see IOPCEventAreaBrowser::BrowseOPCAreas) 

Additional enumerators may be created when dealing with connection points (see the 
IOPCEventSubscriptionMgt interface).  However, they are created using standard COM interfaces 
defined for connectable objects. 

5.2 General Information 
Ownership of memory 

Per the COM specification, clients must free all memo ry associated with ‘out’ or ‘in/out’ parameters.  
This includes memory that is pointed to by elements within any structures.  This is very important for 
client writers to understand as problems will result in troublesome and difficult to locate  memory 
leaks.  See the IDL file to determine which parameters are out parameters.  The recommended 
approach is for the client to create a subroutine to be used for properly freeing each type of structure. 

Standard Interfaces 

Note that (per the COM specification) all methods must be implemented on each interface. Methods 
which are not required can return E_NOTIMPL or occasionally S_OK depending on the situation. 

Null Strings and Null Pointers 

Both of these terms are used below.  They are NOT the same thing.  A NULL Pointer is an invalid 
pointer (0) which will cause an exception if used.  A NULL String is a valid (non zero) pointer to a 1 
character array where that character is a NULL (i.e. 0). 

Note that COM does not allow NULL to be passed for Out or In/Out parameters. 

Returned Arrays 

You will note the syntax “size_is(,dwCount)” in the IDL used in combination with pointers to 
pointers.  This indicates that the returned item is a pointer to an actual array of the indicated type rather 
than a pointer to an array of pointers to items of the indicated type.  This simplifies marshaling as well 
as creation and access of the data by the server and client. 



OPC Alarms and Events Version 1.01 06/02/99 

 26 

5.3 OPCEventServer Object 

5.3.1 Overview 
The OPCEventServer object is the primary object that an OPC Event Server exposes.  The interfaces 
that this object provides include: 

• IUnknown 

• IOPCCommon 

• IOPCEventServer 

• IConnectionPointContainer 

5.3.2 IUnknown  
The server must provide a standard IUnknown Interface.  Since this is a well defined interface it is not 
discussed in detail.  See the OLE Programmer’s reference for additional information.  This interface 
must be provided, and all  functions implemented as required by Microsoft.. 

5.3.3 IOPCCommon  
Other OPC Servers such as Data Access share this interface design. It provides the ability to set  and 
query a LocaleID which would be in effect for the particular client/server session. That is, as with a 
Group definition, the actions of one client do not affect any other clients. 

A quick reference for this interface is provided below. A more detailed discussion can be found in the 
OPC Common specification. 

 

HRESULT SetLocaleID (  
 [in] LCID dwLcid 
 ); 
 
HRESULT GetLocaleID (  
 [out] LCID *pdwLcid 
 ); 
 
HRESULT QueryAvailableLocaleIDs (  
 [out] DWORD *pdwCount, 
 [out, sizeis(dwCount)] LCID *pdwLcid 
 ); 
 
HRESULT GetErrorString(  
 [in] HRESULT dwError, 
 [out, string] LPWSTR *ppString 
 ); 
 
HRESULT SetClientName (  
 [in, string] LPCWSTR szName  
 ); 



OPC Alarms and Events Version 1.01 06/02/99 

 27 

5.3.4 IOPCEventServer  
This is the main interface to the alarm and event capabilities of an OPC Event Server.  This interface is 
used to create OPC Event Subscription objects, to create OPC Event Area Browser objects, to query 
event categories and associated event parameters, to manage conditions, and to perform miscellaneous 
operations such as getting the status of the event server. 



OPC Alarms and Events Version 1.01 06/02/99 

 28 

5.3.4.1 IOPCEventServer::GetStatus  
HRESULT GetStatus ( 
 [out] OPCEVENTSERVERSTATUS ** ppEventServerStatus 
 ); 

Description 

Returns current status information for the OPC Event server. 

Parameters Description 

ppEventServerStatus Pointer to where the OPCEVENTSERVERSTATUS 
structure pointer should be returned.  The server allocates the 
structure. 

Return Codes 

Return Code Description 

E_FAIL The operation failed. 

E_OUTOFMEMORY Not enough memory 

E_INVALIDARG An argument to the function was invalid. 

S_OK The operation succeeded. 

Comments 

The OPCEVENTSERVERSTATUS is described below. 

Client must free the structure as well as the VendorInfo string within the structure. 

Periodic calls to GetStatus would be a good way for the client to determine that the server is still 
connected and available. 

5.3.4.1.1 OPCEVENTSERVERSTATUS 
typedef struct { 
 FILETIME    ftStartTime; 
 FILETIME    ftCurrentTime; 
 FILETIME    ftLastUpdateTime; 
 OPCEVENTSERVERSTATE dwServerState; 
 WORD    wMajorVersion; 
 WORD    wMinorVersion; 
 WORD    wBuildNumber; 
 [string] LPWSTR  szVendorInfo; 
} OPCEVENTSERVERSTATUS; 
 
This structure is used to communicate the status of the server to the client.  This information is provided by 
the server in the IOPCEventServer::GetStatus() call. 
 
 



OPC Alarms and Events Version 1.01 06/02/99 

 29 

Member Description 

ftStartTime Time (UTC) the event server was started.  This is constant 
for the server instance and is not reset when the server 
changes states. Each instance of a server should keep the 
time when the process started. 

ftCurrentTime The current time (UTC) as known by the server. 
ftLastUpdateTime The time (UTC) the server sent an event notification (via 

the IOPCEventSink::OnEvent) to this client. This value is 
maintained on an instance basis. 

dwServerState The current status of the server.  Refer to OPC Event 
Server State values below. 

wMajorVersion The major version of the server software 
wMinorVersion The minor version of the server software 
wBuildNumber The ‘build number’ of the server software 
szVendorInfo Vendor specific string providing additional information 

about the server. It is recommended that this mention the 
name of the company and the type of device(s) supported. 

 
OPCEVENTSERVERSTATE Values Description 

OPC_STATUS_RUNNING The server is running normally. This is the usual 
state for a server 

OPC_STATUS_FAILED A vendor specific fatal error has occurred within 
the server. The server is no longer functioning. 
The recovery procedure from this situation is 
vendor specific. An error code of E_FAIL should 
generally be returned from any other server 
method.  

OPC_STATUS_NOCONFIG The server is running but has no configuration 
information loaded and thus cannot function 
normally. Note this state implies that the server 
needs configuration information in order to 
function. Servers which do not require 
configuration information should not return this 
state. 

OPC_STATUS_SUSPENDED The server has been temporarily suspended via 
some vendor specific method and is not getting or 
sending data. 

OPC_STATUS_TEST The server is in Test Mode. Events may be 
generated in a simulation mode, this is server 
specific. 

 
 



OPC Alarms and Events Version 1.01 06/02/99 

 30 

5.3.4.2 IOPCEventServer:: CreateEventSubscription 
HRESULT CreateEventSubscription( 
 [in] BOOL bActive, 

[in] DWORD dwBufferTime,  
[in] DWORD dwMaxSize, 
[in] OPCHANDLE hClientSubscription, 

 [in] REFIID riid, 
 [out, iid_is(riid)] LPUNKNOWN * ppUnk 
 [out] DWORD * pdwRevisedBufferTime, 
 [out] DWORD * pdwRevisedMaxSize, 
 ); 

Description 

Add an Event Subscription object to an Event Server.  

Create an OPCEventSubcription object on behalf of this client and return an interface to the Client.  
This object will support at least IUnknown, IOPCEventSubscriptionMgt and 
IConnectionPointContainer. The client can manage the state of this interface including the filter and 
can create subscriptions to it via ConnectionPoints as described later. 

The Event Subscription Object uses conventional reference counting and thus will be deleted with all 
interfaces to it are released. 

Parameters Description 

bActive FALSE  if the Event Subscription  is to be created inactive. 
TRUE if the Event Subscriptions is to be created as active. 
If the subscription is inactive, then the server will not send 
event notifications to the client based on the subscription, 
and has no responsibility to buffer or maintain the event 
notifications.  Thus event notifications may be lost. 

dwBufferTime The requested buffer time. The buffer time is in milliseconds 
and tells the server how often to send event notifications.  
This is a minimum time - do not send event notifications any 
faster that this UNLESS dwMaxSize is greater than 0, in 
which case the server will send an event notification sooner 
to obey the dwMaxSize parameter.  A value of 0 for 
dwBufferTime means that the server should send event 
notifications as soon as it gets them.  This parameter along 
with the dwMaxSize parameter are used to improve 
communications efficiency between client and server. This 
parameter is a recommendation from the client, and the 
server is allowed to ignore the parameter.  The server will 
return the buffer time it is actually providing in 
pdwRevisedBufferTime. 



OPC Alarms and Events Version 1.01 06/02/99 

 31 

dwMaxSize The requested maximum number of events that will be sent 
in a single IOPCEventSink::OnEvent callback. A value of 0 
means that there is no limit to the number of events that will 
be sent in a single callback..  Note that a value of 
dwMaxSize greater than 0, may cause the server to call the 
OnEvent callback more frequently than specified in the 
dwBufferTime parameter when a large number of events are 
being generated  in order to limit the number of events to the 
dwMaxSize.  This parameter is a recommendation from the 
client and the server is allowed to ignore this parameter.  The 
server will return the actual number of events it is actually 
providing in pdwRevisedMaxSize. 

hClientSubscription Client provided handle for this event subscription.  This 
handle is passed back in the OnEvent callback to identify the 
subscription object that is calling back.  The client should 
assign a unique value of hClientSubscription for each 
subscription object in order to detect the source of the 
callback information. 

riid The type of interface desired (e.g. 
IID_IOPCEventSubscriptionMgt) 

ppUnk Where to store the returned interface pointer. NULL is 
returned for any FAILED HRESULT. 

pdwRevisedBufferTime The buffer time that the server is actually providing, which 
may differ from dwBufferTime. 

pdwRevisedMaxSize The maximum number of events that the server will actually 
be sending in a single IOPCEventSink::OnEvent callback, 
which may differ from dwMaxSize. 

Return Codes 

Return Code Description 

E_FAIL The operation failed. 

E_OUTOFMEMORY Not enough memory 

E_INVALIDARG Bad argument was passed. 

OPC_S_INVALIDBUFFERTIME The buffer time parameter was invalid . 
OPC_S_INVALIDMAXSIZE The max size parameter was invalid. 
S_OK The operation succeeded. 

Comments 



OPC Alarms and Events Version 1.01 06/02/99 

 32 

5.3.4.3 IOPCEventServer::QueryAvailableFilters 
HRESULT QueryAvailableFilters( 
 [out] DWORD * pdwFilterMask,  

); 

Description 

The QueryAvailableFilters method gives clients a means of finding out exactly which filter criteria are 
supported by a given event server. This method would typically be invoked before configuring the 
filter on an OPCEventSubscription object. 

The client passes a pointer to where information is to be saved. 

Parameters Description 

pdwFilterMask This is a pointer to a bit mask which indicates which types of 
filtering are supported by the server.  See below for mask 
values. 

HRESULT Return Codes 

Return Code Description 
S_OK The function was successful. 
E_FAIL The function was unsuccessful.  

Filter Mask Values 

Filter Mask Item Value Description 

OPC_FILTER_BY_EVENT 1 The server supports filtering by event 
type. 

OPC_FILTER_BY_CATEGORY 2 The server supports filtering by event 
categories. 

OPC_FILTER_BY_SEVERITY 4 The server supports filtering by severity 
levels. 

OPC_FILTER_BY_AREA 8 The server supports filtering by process 
area. 

OPC_FILTER_BY_SOURCE 16 The server supports filtering by event 
sources. 

Comments 



OPC Alarms and Events Version 1.01 06/02/99 

 33 

5.3.4.4 IOPCEventServer::QueryEventCategories 
HRESULT QueryEventCategories( 
 [in] DWORD dwEventType, 
 [out] DWORD* pdwCount,  
 [out, size_is(*pdwCount)] DWORD** ppdwEventCategories, 
 [out, size_is(,*pdwCount)] LPWSTR** ppEventCategoryDescs 
  ); 

Description 

The QueryEventCategories method gives clients a means of finding out the specific categories of 
events supported by a given server. This method would typically be invoked prior to specifying an 
event filter. Servers will be able to define their own custom event categories, but a list of 
recommended categories is provided in Appendix B.  

Parameters Description 

dwEventType A DWORD bit mask specifying which event types are of 
interest; OPC_SIMPLE_EVENT, 
OPC_CONDITION_EVENT, OPC_TRACKING_EVENT, 
OPC_ALL_EVENTS,  These types can be OR’ed together to 
select multiple event types.  A value of 0 is an error and 
causes E_INVALIDARG to be returned. 

pdwCount The number of event categories (size of the 
EventCategoryID, and EventCategoryDesc arrays) returned 
by the function. 

ppdwEventCategories Array of DWORD codes for the vendor-specific event 
categories implemented by the server.  These IDs can be 
used in the event subscription interface for specifying filters. 

ppEventCategoryDescs Array of strings for the text names or descriptions for each of 
the event category IDs.  This array corresponds to the 
EventCategories array. 

 

Return Codes 

Return Code Description 

E_FAIL The operation failed. 

E_INVALIDARG A bad parameter was passed. 
E_OUTOFMEMORY Not enough memory 

S_OK The operation succeeded. 

Recommended Event Categories 

Server implementers are encouraged to implement the event categories described in Appendix B, in 
order to provide a level of consistency among event server implementations. 

Comments 

The number of event categories returned will vary depending on the sophistication of the server, but is 
expected to be less than 30 for most servers, making this interface more appropriate than a custom 
enumerator. 



OPC Alarms and Events Version 1.01 06/02/99 

 34 

5.3.4.5 IOPCEventServer::QueryConditionNames 
HRESULT QueryConditionNames{ 
 [in] DWORD dwEventCategory,  
 [out] DWORD* pdwCount,  
 [out, size_is(,*pdwCount)] LPWSTR** ppszConditionNames 
  ); 

Description 

The QueryConditionNames method gives clients a means of finding out the specific condition names 
which the event server supports for the specified event category.  This method would typically be 
invoked prior to specifying an event filter. Condition names are server specific. 

Parameters Description 

dwEventCategory A DWORD event category code, as returned by the 
QueryEventCategories method.  Only the names of 
conditions within this event category are returned. 

pdwCount The number of condition names being returned. 
ppszConditionNames Array of strings containing the condition names for the 

specified event category.   

 

Return Codes 

Return Code Description 

E_FAIL The operation failed. 

E_INVALIDARG A bad parameter was passed. 
E_OUTOFMEMORY Not enough memory 

S_OK The operation succeeded. 

Comments 

The number of condition names returned will vary depending on the sophistication of the server, but is 
expected to be less than 30 for most servers,  making this interface more appropriate than a custom 
enumerator. 



OPC Alarms and Events Version 1.01 06/02/99 

 35 

5.3.4.6 IOPCEventServer::QuerySubConditionNames 
HRESULT QuerySubConditionNames{ 
 [in] LPWSTR szConditionName,  
 [out] DWORD* pdwCount,  
 [out, size_is(,*pdwCount)] LPWSTR** ppszSubConditionNames 
  ); 

Description 

The QuerySubConditionNames method gives clients a means of finding out the specific sub-condition 
names which are associated with the specified condition name. Condition names are server specific. 

Parameters Description 

szConditionName A condition name, as returned by the QueryConditionNames 
method.  Only the names of sub-conditions associated with 
this condition are returned. 

pdwCount The number of sub-condition names being returned. 
ppszSubConditionNames Array of strings containing the sub-condition names 

associated with the specified condition.   
 

Return Codes 

Return Code Description 

E_FAIL The operation failed. 

E_INVALIDARG A bad parameter was passed. 
E_OUTOFMEMORY Not enough memory 

S_OK The operation succeeded. 

Comments 

The number of sub-condition names returned will vary depending on the sophistication of the server, 
but is expected to be less than 10 for most servers,  making this interface more appropriate than a 
custom enumerator. 



OPC Alarms and Events Version 1.01 06/02/99 

 36 

5.3.4.7 IOPCEventServer::QuerySourceConditions 
HRESULT QuerySourceConditions{ 
 [in] LPWSTR szSource,  
 [out] DWORD* pdwCount,  
 [out, size_is(,*pdwCount)] LPWSTR** ppszConditionNames 
  ); 

Description 

The QuerySourceConditions method gives clients a means of finding out the specific condition names 
associated with the specified source (e.g. FIC101).. Condition names are server specific. 

Parameters Description 

szSource A source name, as returned by the 
IOPCEventAreaBrower::GetQualifiedSourceName method.  
Only the names of conditions associated with this source are 
returned. 

pdwCount The number of condition names being returned. 
ppszConditionNames Array of strings containing the condition names for the 

specified source.   

 

Return Codes 

Return Code Description 

E_FAIL The operation failed. 

E_INVALIDARG A bad parameter was passed. 
E_OUTOFMEMORY Not enough memory 

S_OK The operation succeeded. 

Comments 

The number of condition names returned will vary depending on the sophistication of the server, but is 
expected to be less than 10 for most servers,  making this interface more appropriate than a custom 
enumerator. 

 

 



OPC Alarms and Events Version 1.01 06/02/99 

 37 

5.3.4.8 IOPCEventServer::QueryEventAttributes 
HRESULT QueryEventAttributes( 
 [in] DWORD dwEventCategory,  
 [out] DWORD* pdwCount,  
 [out, size_is(,*pdwCount)] DWORD** ppdwAttrIDs, 
 [out, size_is(,*pdwCount)] LPWSTR** ppszAttrDescs 
 [out, size_is(,*pdwCount)] VARTYPE** ppvtAttrTypes 
 ); 

Description 

Using the EventCategories returned by the QueryEventCategories method, client application can 
invoke the QueryEventAttributes method to get information about the vendor-specific attributes the 
server can provide as part of an event notification for an event within the specified event category. 
Simple servers may not support any vendor-specific attributes for some or even all EventCategories. 

Attributes of event notifications are described in Section 2.5.2.  Some possible vendor-specific 
attributes are included in Appendix C.   

Parameters Description 

dwEventCategory One of the Event Category codes returned from the 
QueryEventCategories function. 

pdwCount The number of event attributes (size of the AttrID, and 
AttrDescs, and AttrTypes arrays) returned by the function. 

ppdwAttrIDs Array of DWORD codes for vendor-specific event attributes 
associated with the event category and available from the 
server.  These attribute IDs can be used in the event 
subscription interface  to specify the information to be 
returned with an event notification. 

ppszAttrDescs Array of strings for the text names or descriptions for each of 
the event attribute IDs.  This array corresponds to the 
AttrIDs array. 

ppvtAttrTypes Array of VARTYPES identifying the data type of  each of 
the event attributes.  This array corresponds to the AttrIDs 
array. 

 

Return Codes 

Return Code Description 

E_FAIL The operation failed. 

E_INVALIDARG A bad parameter was passed. 
E_OUTOFMEMORY Not enough memory 

S_OK The operation succeeded. 

Comments 

All events of a particular event category have the potential of supporting the same attribute 
information. For event categories, where different instances of that category in the same server have 
different attributes, the server should return the union of all attributes and the client must allow for 
some attributes in event notifications to be null. 



OPC Alarms and Events Version 1.01 06/02/99 

 38 

5.3.4.9 IOPCEventServer::TranslateToItemIDs 
HRESULT TranslateToItemIDs( 
 [in] LPWSTR szSource,  
 [in] DWORD dwEventCategory 
  [in] LPWSTR szConditionName, 
 [in] LPWSTR szSubconditionName, 
 [in] DWORD dwCount,  
 [in, size_is(dwCount)] DWORD* pdwAssocAttrIDs,  
 [out, size_is(,dwCount)] LPWSTR** ppszAttrItemIDs, 
 [out, size_is(,dwCount)] LPWSTR** ppszNodeNames, 
 [out, size_is(,dwCount)] CLSID** ppCLSIDs 
 ); 

Description 

Many OPC Alarm & Event servers are associated with OPC Data Access servers.  Since these servers 
may provide a Data Access interface to some or all of the attributes associated with events, 
applications need the ability to determine the specific ItemID for one or more specific attribute ID 
codes given an associated source ID in order to be able to access the attribute via the Data Access 
interface.  TranslateToItemIDs performs the required translation.  This function will be useful for the 
case where the client wishes to use the OPC Data Access interface to subscribe to real-time data 
associated with a given event or alarm. 

Given an event source, and an array of associated attribute ID codes, return an array of the item ID 
strings corresponding to each attribute ID.  The event source, along with the associated attribute IDs 
are returned as part of the IOPCEventSink::OnEvent callback mechanism.  Attribute ID codes and 
descriptions for a given event category can also be queried via the 
IOPCEventServer::QueryEventAttributes function.  The server must return a NULL string for those 
attribute IDs that do not have a corresponding item ID. 

Parameters Description 

szSource An event source for which to return the item IDs 
corresponding to each of an array of attribute IDs if they 
exist.  (From OnEvent or from IOPCEventAreaBrowser) 

dwEventCategory A DWORD event category code indicating the category of 
events for which item IDs are to be returned.  (From 
OnEvent or from QueryEventCategories) 

szConditionName The name of a condition within the event category for which 
item IDs are to be returned.  (From OnEvent or from 
QueryConditionNames) 

szSubconditionName The name of a sub-condition within a multi-state condition.  
(From OnEvent or from QuerySubconditionNames)  This 
should be a NULL string for a single state condition. 

dwCount The number of event attribute IDs (size of the AssocAttrIDs 
array) passed into the function. 

ppdwAssocAttrIDs Array of DWORD IDs of vendor-specific event attributes 
associated with the generator ID and available from the 
server for which to return ItemIDs.  Note:  these attribute IDs 
are returned by the IOPCEventSink::OnEvent callback, and 
are selected via the 
IOPCEventSubscriptionMgt::SelectReturnedAttributes 
method. 



OPC Alarms and Events Version 1.01 06/02/99 

 39 

ppszAttrItemIDs Array of item ID strings corresponding to each event 
attribute ID associated with the generator ID. This array is 
the same length as the AssocAttrIDs array passed into the 
function.  A Null string is returned if no item ID is available 
for this attribute. 

ppszNodeNames Array of network node names of the associated OPC Data 
Access Servers.  A Null string is returned if the OPC Data 
Access Server is running on the local node.  

ppCLSIDs Array of class IDs for the associated OPC Data Access 
Servers. 

 

Return Codes 

Return Code Description 

E_FAIL The operation failed. 

E_NOTIMPL This capability not implemented by this server. 

E_INVALIDARG A bad parameter was passed. 
E_OUTOFMEMORY Not enough memory 

S_OK The operation succeeded. 

Comments 



OPC Alarms and Events Version 1.01 06/02/99 

 40 

5.3.4.10 IOPCEventServer::GetConditionState  
HRESULT GetConditionState ( 
 [in]  LPWSTR szSource, 
 [in]  LPWSTR szConditionName, 
 [in]  DWORD dwNumEventAttrs, 
 [in, size_is(dwNumEventAttrs)] DWORD* pdwAttributeIDs, 
 [out] OPCCONDITIONSTATE ** ppConditionState 
 ); 

Description 

Returns the current state information for the condition instance corresponding to the szSource and 
szConditionName.  The OPCCONDITIONSTATE structure is defined below.  See section 2.4 for a 
discussion of conditions and their states. 

Parameters Description 

szSource A source name, as returned by the 
IOPCEventAreaBrower::GetQualifiedSourceName 
method.  The state of the condition instance associated 
with this source is returned. 

szConditionName A condition name, as returned by the 
QueryConditionNames method.  The state of this 
condition is returned. 

dwNumEventAttrs The requested number of event attributes to be returned in the 
OPCCONDITIONSTATE structure. Can be zero if no 
attributes are desired 

pdwAttributeIDs The array of Attribute IDs indicating which event attributes 
should be returned in the OPCCONDITIONSTATE 
structure. 

ppConditionState Pointer to where the OPCCONDITIONSTATE structure 
pointer should be returned.  The server allocates the 
structure. 



OPC Alarms and Events Version 1.01 06/02/99 

 41 

Return Codes 

Return Code Description 

E_FAIL The operation failed. 

E_OUTOFMEMORY Not enough memory 

E_INVALIDARG An argument to the function was invalid. 

E_NOTIMPL This method is not implemented by this server. 

OPC_E_NOINFO Although this server implements this method and the 
specified condition name is valid, no information is 
currently available for this condition.  Such a 
situation may arise for servers which maintain 
condition state information only for active or 
unacknowledged conditions. 

S_OK The operation succeeded. 

Comments 

Client must free the structure. 

Some servers may not maintain sufficient condition state information to fully implement this method.  
In this case, the server should return E_NOTIMPL.  If a server chooses to implement this method, it 
must return valid information for every member of OPCCONDITIONSTATE. 

5.3.4.10.1 OPCCONDITIONSTATE 
typedef  struct { 
 WORD wState; 
 LPWSTR  szActiveSubCondition; 
 LPWSTR szASCDefinition; 
 DWORD dwASCSeverity; 
 LPWSTR szASCDescription; 
 WORD wQuality; 
 FILETIME ftLastAckTime; 
 FILETIME ftSubCondLastActive; 
 FILETIME ftCondLastActive; 
 FILETIME ftCondLastInactive; 
 LPWSTR szAcknowledgerID; 
 LPWSTR szComment; 
 DWORD dwNumSCs; 
 [size_is (dwNumSCs)] LPWSTR * pszSCNames; 
 [size_is (dwNumSCs)] LPWSTR * pszSCDefinitions; 
 [size_is (dwNumSCs)] DWORD  * pdwSCSeverities; 
 [size_is (dwNumSCs)] LPWSTR * pszSCDescriptions; 
 DWORD dwNumEventAttrs; 
 [size_is(dwNumEventAttrs)] VARIANT*  pEventAttributes; 
 [size_is(dwNumEventAttrs)] HRESULT*  pErrors; 
} OPCCONDITIONSTATE; 

 

Member Description 

wState A WORD bit mask of three bits specifying the new 
state of the condition:  OPC_CONDITION_ACTIVE, 
OPC_CONDITION_ENABLED, 



OPC Alarms and Events Version 1.01 06/02/99 

 42 

OPC_CONDITION_ACKED. 

szActiveSubCondition The name of the currently active sub-condition, for 
multi-state conditions which are active.  For a single-
state condition, this contains the condition name. 

For inactive conditions, this value is NULL. 

szASCDefinition An expression which defines the sub-state represented 
by the szActiveSubCondition, for multi-state 
conditions.  For a single state condition, the expression 
defines the state represented by the condition. 

For inactive conditions, this value is NULL. 

dwASCSeverity The severity of any event notification generated on 
behalf of the szActiveSubCondition (0..1000).  See 
section 2.4.3.2. 

For inactive conditions, this value is 0. 

szASCDescription The text string to be included in any event notification 
generated on behalf of the szActiveSubCondition. 

For inactive conditions, this value is NULL. 

wQuality Quality associated with the condition state.  See 
Section 2.4.2.1.  Values are as defined for the OPC 
Quality Flags in the OPC Data Access Server 
specification. 

ftLastAckTime The time of the most recent acknowledgment of this 
condition (of any sub-condition). 

Contains 0 if the condition has never been 
acknowledged. 

ftSubCondLastActive Time of the most recent transition into 
szActiveSubCondition.  This is the time value which 
must be specified when acknowledging the condition. 

Contains 0 if the condition has never been active. 

ftCondLastActive Time of the most recent transition into the condition.  
There may be transitions among the sub-conditions 
which are more recent. 

Contains 0 if the condition has never been active. 

ftCondLastInactive Time of the most recent transition out of this condition. 

Contains 0 if the condition has never been active, or if 
it is currently active for the first time and has never 
been exited. 

szAcknowledgerID This is the ID of the client who last acknowledged this 
condition. 

Contains NULL if the condition has never been 
acknowledged. 

szComment The comment string passed in by the client who last 
acknowledged this condition. 

Contains NULL if the condition has never been 
acknowledged. 

dwNumSCs  The number of sub-conditions defined for this 
condition.  For multi-state conditions, this value will be 



OPC Alarms and Events Version 1.01 06/02/99 

 43 

greater than one.  For single-state conditions, this value 
will be 1. 

pszSCNames Pointer to an array of sub-condition names defined for 
this condition.  For single-state conditions, the array 
will contain one element, the value of which is the 
condition name (see Section 2.4.3). 

pszSCDefinitions Pointer to an array of sub-condition definitions (see 
Section 2.4.3). 

pdwSCSeverities Pointer to an array of sub-condition severities (see 
Section 2.4.3). 

pszSCDefinitions Pointer to an array of sub-condition definitions (see 
Section 2.4.3). 

dwNumEventAttrs The length of the arrays pEventAttributes and 
pErrors.  Must be equal to dwNumEventAttrs passed 
into function GetConditionState(). 

pEventAttributes Pointer to an array of vendor specific attributes 
associated with that latest event notification for this 
condition. The order of the items returned matches the 
order that was specified by pdwAttributeIDs. If a 
server cannot provide reasonable data for an attribute, 
the returned VARIANT should be set to VT_EMPTY. 

pErrors Pointer to an array of HRESULT values for each 
requested attribute ID specified by pdwAttributeIDs. 
Servers should return S_OK if the Attribute ID is valid 
or E_FAIL if not. 

State Values 

State Value Description 

OPC_CONDITION_ACTIVE 1 The condition has become active. 

OPC_CONDITION_ENABLED 2 The condition has been enabled. 

OPC_CONDITION_ACKED 4 The condition has been 
acknowledged. 

 



OPC Alarms and Events Version 1.01 06/02/99 

 44 

5.3.4.11 IOPCEventServer::EnableConditionByArea 
HRESULT EnableConditionByArea( 
 [in] DWORD dwNumAreas,  
 [in, size_is(dwNumAreas)] LPWSTR* pszAreas 
 ); 

Description 

Places all conditions for all sources within the specified process areas into the enabled state.  
Therefore, the server will now generate condition-related events for these conditions.   

The effect of this method is global within the scope of the event server.  Therefore, if the server is 
supporting multiple clients, the conditions are enabled for all clients, and they will begin receiving the 
associated condition-related events. 

Parameters Description 

dwNumAreas The number of process areas for which conditions are to be 
enabled.  

pszAreas An array of area names, as returned by 
IOPCEventAreaBrowser::GetQualifiedAreaName. 

Return Codes 

Return Code Description 

E_FAIL The operation failed. 

E_INVALIDARG One or more of the specified arguments is not valid. 

E_NOTIMPL The server does not support this method. 

S_OK The operation succeeded. 

Comments 

Because of the global effect of this method, some event server implementers may choose not to 
implement it.  In this case, the server should return E_NOTIMPL. 

A condition may be associated with multiple sources (see Section 2.4).  These sources may be 
distributed among multiple areas.  Enabling the conditions in one area does not change the 
enabled/disabled state of conditions of the same name, which are associated with sources in other 
areas.  For example, the “LevelAlarm” condition may be enabled for sources in “Area1” and disabled 
for sources in “Area2”. 



OPC Alarms and Events Version 1.01 06/02/99 

 45 

5.3.4.12 IOPCEventServer::EnableConditionBySource 
HRESULT EnableConditionBySource( 
 [in] DWORD dwNumSources,  
 [in, size_is(dwNumSources)] LPWSTR* pszSources 
 ); 

Description 

Places all conditions for the specified event sources into the enabled state.  Therefore, the server will 
now generate condition-related events for these conditions.   

The effect of this method is global within the scope of the event server.  Therefore, if the server is 
supporting multiple clients, the conditions are enabled for all clients, and they will begin receiving the 
associated condition-related events. 

Parameters Description 

dwNumSources The number of event sources for which conditions are to be 
enabled.  

pszSources An array of source names, as returned by 
IOPCEventAreaBrowser::GetQualifiedSourceName 

Return Codes 

Return Code Description 

E_FAIL The operation failed. 

E_INVALIDARG One or more of the specified arguments is not valid. 

E_NOTIMPL The server does not support this method. 

S_OK The operation succeeded. 

Comments 

Because of the global effect of this method, some event server implementers may choose not to 
implement it.  In this case, the server should return E_NOTIMPL. 

A condition may be associated with multiple sources (see Section 2.4).  Enabling conditions associated 
with one source does not change the enabled/disabled state of conditions of the same name, which are 
associated with other sources.  For example, the “LevelAlarm” condition may be enabled for “A100” 
and disabled for “FIC101”. 



OPC Alarms and Events Version 1.01 06/02/99 

 46 

5.3.4.13 IOPCEventServer::DisableConditionByArea 
HRESULT DisableConditionByArea( 
 [in] DWORD dwNumAreas,  
 [in, size_is(dwNumAreas)] LPWSTR* pszAreas 
 ); 

Description 

Places all conditions for all sources within the specified process areas into the disabled state.  
Therefore, the server will now cease generating condition-related events for these conditions.   

The effect of this method is global within the scope of the event server.  Therefore, if the server is 
supporting multiple clients, the conditions are disabled for all clients, and they will stop receiving the 
associated condition-related events. 

Parameters Description 

dwNumAreas The number of process areas for which conditions are to be 
disabled.  

pszAreas An array of area names, as returned by 
IOPCEventAreaBrowser::GetQualifiedAreaName 

Return Codes 

Return Code Description 

E_FAIL The operation failed. 

E_INVALIDARG One or more of the specified arguments is not valid. 

E_NOTIMPL The server does not support this method. 

S_OK The operation succeeded. 

Comments 

Because of the global effect of this method, some event server implementers may choose not to 
implement it.  In this case, the server should return E_NOTIMPL. 

A condition may be associated with multiple sources (see Section 2.4).  These sources may be 
distributed among multiple areas.  Disabling the conditions in one area does not change the 
enabled/disabled state of conditions of the same name, which are associated with sources in other 
areas.  For example, the “LevelAlarm” condition may be enabled for sources in “Area1” and disabled 
for sources in “Area2”. 



OPC Alarms and Events Version 1.01 06/02/99 

 47 

5.3.4.14 IOPCEventServer::DisableConditionBySource 
HRESULT DisableConditionBySource( 
 [in] DWORD dwNumSources,  
 [in, size_is(dwNumSources)] LPWSTR* pszSources 
 ); 

Description 

Places all conditions for the specified event sources into the disabled state.  Therefore, the server will 
no longer generate condition-related events for these conditions.   

The effect of this method is global within the scope of the event server.  Therefore, if the server is 
supporting multiple clients, the conditions are disabled for all clients, and they will stop receiving the 
associated condition-related events. 

Parameters Description 

dwNumSources The number of event sources for which conditions are to be 
disabled.  

pszSources An array of source names, as returned by 
IOPCEventAreaBrowser::GetQualifiedSourceName 

Return Codes 

Return Code Description 

E_FAIL The operation failed. 

E_INVALIDARG One or more of the specified arguments is not valid. 

E_NOTIMPL The server does not support this method. 

S_OK The operation succeeded. 

Comments 

Because of the global effect of this method, some event server implementers may choose not to 
implement it.  In this case, the server should return E_NOTIMPL. 

A condition may be associated with multiple sources (see Section 2.4).  Disabling conditions 
associated with one source does not change the enabled/disabled state of conditions of the same name, 
which are associated with other sources.  For example, the “LevelAlarm” condition may be enabled for 
“A100” and disabled for “FIC101”. 



OPC Alarms and Events Version 1.01 06/02/99 

 48 

5.3.4.15 IOPCEventServer::AckCondition 
HRESULT AckCondition( 

[in] DWORD dwCount 
[in, string] LPWSTR szAcknowledgerID, 
[in, string] LPWSTR szComment, 
[in, size_is(dwCount)] LPWSTR* pszSource, 
[in, size_is(dwCount)] LPWSTR* pszConditionName, 
[in, size_is(dwCount)] FILETIME* pftActiveTime, 
[in, size_is(dwCount)] DWORD* pdwCookie, 
[out, size_is(,dwCount)] HRESULT **ppErrors 

 ); 

Description 

The client uses the AckCondition method to acknowledge one or more conditions in the Event Server.  
The client receives event notifications from conditions via the IOPCEventSink::OnEvent callback.  
This AckCondition method specifically acknowledges the condition becoming active or transitioning 
into a different sub-condition (and no other state transition of the condition).  One or more conditions 
belong to a specific event source – the source of the event notification.  For each condition-related 
event notification, the corresponding Source, Condition Name, Active Time and Cookie  is received by 
the client as part of the OnEvent callback parameters. 

Parameters Description 

dwCount The number of acknowledgments passed with this function. 
szAcknowledgerID A string passed in by the client, identifying who is 

acknowledging the conditions. This is an attribute 
(AcknowledgerID) of the condition that identifies who 
acknowledged the condition.  This is just a string generated 
by the client.  This is also also included as the ActorID in the 
acknowledgment event notification sent to all subscribing 
clients.  A NULL string is not allowed, since a NULL 
AcknowledgerID indicates that the event was automatically 
acknowledged by the server. 

szComment Comment string passed in by the client associated with 
acknowledging the conditions.  A NULL string indicating no 
comment is allowed. 

pszSource Array of event source strings identifying the source (or 
owner) of each condition that is being acknowledged, e.g. 
FIC101.   Sources are passed to the client in the szSource 
member of the ONEVENTSTRUCT by the 
IOPCEventSink::OnEvent callback. 

pszConditionName Array of Condition Name strings identifying each condition 
that is being acknowledged.  Condition Names are unique 
within the scope of the event server.  Examples of Condition 
Names might be “LevelAlarm” or “Deviation”.  Condition 
Names are passed to the client in the szConditionName 
member of the ONEVENTSTRUCT by the 
IOPCEventSink::OnEvent callback. 



OPC Alarms and Events Version 1.01 06/02/99 

 49 

pftActiveTime  Array of active times corresponding to each Source and 
ConditionName pair.  This parameter uniquely identifies a 
specific transition of the condition to the active state or into a 
different sub-condition and is the same as the 
SubCondLastActive condition attribute. Active Times are 
passed to the client in the ftActiveTime member of the 
ONEVENTSTRUCT by the IOPCEventSink::OnEvent 
callback. If the condition has become active again or 
transitioned into a different sub-condition at a later time, this 
acknowledgment will be ignored.   

pdwCookie Array of server supplied “cookies” corresponding to each 
Source and Condition Name pair, that in addition to the 
Active Time, uniquely identifies a specific event 
notification. Cookies are passed to the client in the 
dwCookie member of the ONEVENTSTRUCT by the 
IOPCEventSink::OnEvent callback.  The client is 
responsible for returning the same cookie parameter, 
received in the event notification, back to the server in the 
condition acknowledgment. 

ppErrors Array of HRESULTS indicating the success of the individual 
acknowledgments.  The errors correspond to the Source and 
ConditionName pairs passed in to the method. 

Return Codes 

Return Code Description 

E_FAIL The operation failed. 

E_INVALIDARG A bad parameter was passed.  (szAcknowledgerID is 
a NULL string) 

E_OUTOFMEMORY Not enough memory. 

S_OK The operation succeeded. 

S_FALSE One or more of ppErrors in not S_OK. 

ppError Codes 

Return Code Description 

S_OK The acknowledgment succeeded for the 
corresponding  Source and ConditionName pair. 

OPC_S_ALREADYACKED The condition has already been acknowledged.  

OPC_E_INVALIDTIME Time does not match latest active time. The 
pftActiveTime did not match the current 
SubCondLastActive attribute of the condition. 

E_INVALIDARG A bad parameter was passed.  (source, condition 
name or cookie) 

Comments 

The client is required to pass the ftActiveTime and dwCookie received from the 
IOPCEventSink::OnEvent callback to the AckCondition method without modification. 



OPC Alarms and Events Version 1.01 06/02/99 

 50 

5.3.4.16 IOPCEventServer::CreateAreaBrowser 
HRESULT CreateAreaBrowser( 

[in] REFIID riid, 
[out, iid_is(riid) LPUNKNOWN* ppUnk 
); 

Description 

Create an OPCEventAreaBrowser object on behalf of this client and return the interface to the Client.  
This object will support the IUnknown and IOPCEventAreaBrowser interfaces.  The client can use this 
interface to browse the process areas available from the server as described in the 
IOPCEventAreaBrowser interface shown below.   

If the OPC Event Server does not support browsing of the process area space, then this method will 
fail. 

The client may create multiple OPCEventAreaBrowser objects in order to support concurrent access to 
multiple levels, in the case of a hierarchical area name space. 

The OPCEventAreaBrowser uses conventional reference counting and thus will be deleted with all 
interfaces to it are released. 

 

Parameters Description 

riid The type of interface desired (e.g. 
IID_IOPCEventAreaBrowser) 

ppUnk Where to store the returned interface pointer. NULL is 
returned for any HRESULT other than S_OK. 

 

Return Codes 

Return Code Description 

E_FAIL The operation failed. 

E_OUTOFMEMORY Not enough memory 
E_INVALIDARG Bad argument was passed. 

E_NOTIMPL The server does not support area browsing. 

S_OK The operation succeeded. 

Comments 



OPC Alarms and Events Version 1.01 06/02/99 

 51 

5.3.5 IConnectionPointContainer 
The general principles of ConnectionPoints are not discussed here as they are covered very clearly in 
the Microsoft Documentation. The reader is assumed to be familiar with this technology.  

Likewise the details of the IEnumConnectionPoints, IConnectionPoint and IEnumConnections 
interfaces and their proper use in this context are well defined by Microsoft and are not discussed here. 

The IConnectionPointContainer interface discussed here is implemented on the OPCEventServer  
object.  In theory, the Advise and Unadvise methods of the connection points could be implemented 
within the IOPCEventServer interface.  However use of a separate ConnectionPoint implementation is 
more in keeping with state of the art Microsoft implementations. 

The IOPCShutdown callback object implemented by the client application is assumed to service a 
single Event Server, since no identification information is passed to the client.  

Note: OPC Compliant servers are not required to support more than one connection between each 
Event Server Object.  Given this, it is expected that a single connection will be sufficient for virtually 
all applications. For this reason (as per Microsoft Recommendations) the EnumConnections method 
for the IConnectionPoint interface for IOPCShutdown::ShutdownRequest callback is allowed to return 
E_NOTIMPL.  

 EnumConnectionPoints 

See the Microsoft documentation for a description of this method. 

OPC Event Servers must return an enumerator that includes IOPCShutdown.  Additional vendor 
specific callbacks are also allowed. 

FindConnectionPoint 

See the Microsoft documentation for a description of this method. 

OPC Event Servers must support IID_ IOPCShutdown. Additional vendor specific callbacks are also 
allowed.  



OPC Alarms and Events Version 1.01 06/02/99 

 52 

5.3.6 IConnectionPoint 
An IConnectionPoint for IOPCShutdown is returned from the Event Server’s 
ConnectionPointContainer.  Refer to the Microsoft documentation of this interface for additional 
information on its methods, which included Advise and Unadvise. 



OPC Alarms and Events Version 1.01 06/02/99 

 53 

5.4  OPCEventAreaBrowser Object (optional) 
The OPCEventAreaBrowser is the object that an OPC Event server supplies to manage browsing the 
process area space of the server.  The interfaces that this object provides include: 

• IUnknown 

• IOPCEventAreaBrowser 

This object is optional, and may not be supported by simple event servers. 

5.4.1 IOPCEventAreaBrowser 
This interface provides a way for clients to browse the process area organization implemented by the 
server.  The expectation is that events and conditions available in the server are organized in one or 
more process areas, and the client can filter event subscriptions by specifying the process areas to limit 
the event notifications sent by the server. These areas are for use in specifying event filters (see the 
IOPCEventSubscriptionMgt interface below).  They are logically independent of  the 
IOPCBrowseServerAddressSpace of the OPC Data Access interfaces and associated ItemIDs.  The 
relationship between the Server Address Space and the Server process area space is completely up to 
the server implementation. 

Note that the reason for making this a set of methods rather than an ActiveX control is to allow it to 
more easily be integrated with other browsing methods and address spaces that the Client may already 
be dealing with. 

Note that this interface behaves very much like an Enumerator in that it creates an object ‘behind the 
scenes’ and maintains state information (the current position in the address hierarchy) on behalf of the 
client. 

Here is an overview of how this interface is used: 

The browse position is initially set to the ‘root’ of the area space.  The client can optionally choose a 
starting point by calling ChangeBrowsePosition. For a HIERARCHICAL space the client may pass 
any partial path (although the client will typically pass a NULL string to indicate the root).  This sets 
an initial position from which to browse up or down. 

The Client can browse the items below (contained in) the current position via BrowseOPCAreas. For a 
hierarchical space you can specify AREA (which returns only areas on that level) or SOURCE (which 
returns only sources on that level).  A String enumerator is returned.    

This browse can also be filtered by a vendor specific filter string. 

Note that in a hierarchy, the enumerator will return ‘short’ strings; the name of the ‘child’.  These short 
strings will generally not be sufficient for the Area List array of the event subscription filter.  The 
client should always convert this short string to a ’fully qualified’ string via GetQualifiedAreaName or 
GetQualifiedSourceName.  For example the short string might be REACTOR5; the fully qualified 
string might be AREA1.REACTOR5.  

If the client browsed for AREAs then the result (short string) may be passed to ChangeBrowsePosition 
to move ‘down’.  This method can also move ‘up’ in which case the short string is not used.   



OPC Alarms and Events Version 1.01 06/02/99 

 54 

5.4.1.1 IOPCEventAreaBrowser::ChangeBrowsePosition 
HRESULT ChangeBrowsePosition( 
     [in]  OPCAEBROWSEDIRECTION dwBrowseDirection,   
     [in, string] LPCWSTR  szString 
     ); 

Description 

Provides a way to move ‘up’ or ‘down’ in a hierarchical space from the current position, or a way to 
move to a specific position in the area space tree.  The target szString must represent an area, rather 
than a source. 

Parameters Description 

dwBrowseDirection OPCAE_BROWSE_UP,OPCAE_BROWSE_DOWN or 
OPCAE_BROWSE_TO 

szString For DOWN, the partial area name of the area to move 
into. This would be one of the strings returned from 
BrowseOPCAreas.   

For UP this parameter is ignored and should point to a 
NULL string. 

For BROWSE_TO, the fully qualified area name (as 
obtained from GetQualifiedAreaName method) or 
NULL to go to the root. 

Return Codes 

Return Code Description 
E_FAIL The function failed  
E_INVALIDARG Bad Direction or String. 
OPC_E_INVALIDBRANCHNAME szString is not a recognized area name. 
S_OK The function was successful 

Comments 

An error is returned if the passed string does not represent an area. 



OPC Alarms and Events Version 1.01 06/02/99 

 55 

5.4.1.2 IOPCEventAreaBrowser::BrowseOPCAreas 
HRESULT BrowseOPCAreas( 
     [in] OPCAEBROWSETYPE   dwBrowseFilterType, 
     [in, string] LPCWSTR  szFilterCriteria,   
     [out] LPENUMSTRING  * ppIEnumString 
     );   

Description 

Return an IEnumString for a list of Areas as determined by the passed parameters. The position 
from which the browse is done can be set via the ChangeBrowsePosition. 

Parameters Description 

dwBrowseFilterType OPC_AREA - returns only areas. 
OPC_SOURCE - returns only sources. 

szFilterCriteria A server specific filter string.  See Appendix A for the 
definition of the syntax which must be supported by all 
servers.  The implementer may  extend this syntax to 
provide additional capabilities. A NULL string indicates 
no filtering. 

ppIEnumString Where to save the returned interface pointer.  NULL if 
the HRESULT is other than S_OK 

Return Codes 

Return Code Description 
E_FAIL The function failed  
S_FALSE There is nothing to enumerate 
E_INVALIDARG A bad parameter was passed. 
E_OUTOFMEMORY Not enough memory 
S_OK The function was successful 

Comments 

The returned enumerator may be empty if no Areas or Sources satisfied the filter constraints. The 
strings returned by the enumerator represent the Areas or Sources contained in the current level. They 
do not include ?? and delimiter or “parent” names.  

Clients are allowed to create and hold multiple enumerators in order to maintain more than one 
“browse position” at a time. Changing the browse position in one enumerator will not affect any other 
enumerator the client has created. The client must release each enumerator when finished with it. 



OPC Alarms and Events Version 1.01 06/02/99 

 56 

5.4.1.3 IOPCEventAreaBrowser::GetQualifiedAreaName 
HRESULT GetQualifiedAreaName(  

[in] LPCWSTR szAreaName, 
[out , string] LPWSTR *pszQualifiedAreaName 
); 

Description 

Provides a mechanism to assemble a fully qualified Area name in a hierarchical space.  This is required 
since at each point one is browsing just the names below the current node. 

Parameters Description 

szAreaName The name of an Area at the current level, obtained from 
the string enumerator returned by BrowseOPCAreas 
with a BrowseFilterType of OPC_AREA. 

pszQualifiedAreaName Where to return the resulting fully qualified area name. 

Return Codes 

Return Code Description 
E_FAIL The function failed  
E_INVALIDARG A bad parameter was passed. 
E_OUTOFMEMORY Not enough memory 
S_OK The function was successful 

Comments 

The server must return strings that can be added to the pszAreaList for the 
IOPCEventSubscriptionMgt::SetFilter method, and can be used in the 
IOPCEventAreaBrowser::ChangeBrowsePosition method to move to a specific place in the process 
area space tree. 



OPC Alarms and Events Version 1.01 06/02/99 

 57 

5.4.1.4 IOPCEventAreaBrowser::GetQualifiedSourceName 
HRESULT GetQualifiedSourceName(  

[in] LPCWSTR szSourceName, 
[out , string] LPWSTR *pszQualifiedSourceName 
); 

Description 

Provides a mechanism to assemble a fully qualified Source name in a hierarchical space.  This is 
required since at each point one is browsing just the names below the current node. 

Parameters Description 

szSourceName The name of a Source at the current level, obtained 
from the string enumerator returned by 
BrowseOPCAreas with a BrowseFilterType of 
OPC_SOURCE. 

pszQualifiedSourceName Where to return the resulting fully qualified source 
name. 

Return Codes 

Return Code Description 
E_FAIL The function failed  
E_INVALIDARG A bad parameter was passed. 
E_OUTOFMEMORY Not enough memory 
S_OK The function was successful 

Comments 

The server must return strings that can be added to pszSources for the 
IOPCEventServer::EnableConditionBySource method. 

 



OPC Alarms and Events Version 1.01 06/02/99 

 58 

5.5  OPCEventSubscription Object 
The OPCEventSubscription object is the object that an OPC Event server delivers to manage a single 
event subscription.  It is created by invoking IOPCEventServer::CreateEventSubscription.  This object 
provides the following interfaces: 

• IUnknown 

• IOPCEventSubscriptionMgt 

• IConnectionPointContainer 

In addition, OPCEventSubscription contains an IID_IOPCEventSink object which supports the 
IConnectionPoint interface. 

Each subscription between a client and server will have only one filter, though that filter can include 
several criteria. Clients can implement multiple filters using multiple subscriptions, each with their 
own filter. When the subscription is established, a default filter is created that is equivalent to “no 
filtering” i.e. send all event notifications.  

The criteria for defining the scope of the filter is to eliminate the majority of events a client is not 
interested in, without having to be exhaustive. The primary reason for the filter is to reduce 
unnecessary communication overhead and to improve performance. The most important filtering 
criteria then are severity and process area.  This filter mechanism provides a set of filter criteria that are 
simple yet powerful - but do not cover every possible specific type of filter the client may wish for.   
The client can do additional filtering on received event notifications, further customizing exactly which 
event notifications are displayed or stored. 

The functionality provided by each of these interfaces is defined in this section. 

5.5.1 IOPCEventSubscriptionMgt 
This interface specifies how to manage a particular subscription to OPC event information.  It is used 
to specify criteria for selecting events of interest, to specify vendor-specific information to be returned 
in event notifications, and to request a refresh of selected conditions. 



OPC Alarms and Events Version 1.01 06/02/99 

 59 

5.5.1.1 IOPCEventSubscriptionMgt::SetFilter 
HRESULT SetFilter(  

[in] DWORD  dwEventType,  
 [in] DWORD dwNumCategories,   

[in, size_is(dwNumCategories)] DWORD* pdwEventCategories,  
[in] DWORD dwLowSeverity, 
[in] DWORD dwHighSeverity, 

 [in] DWORD dwNumAreas,   
[in, size_is(dwNumAreas)] LPWSTR* pszAreaList, 
[in] DWORD dwNumSources, 
[in, size_is(dwNumSources] LPWSTR* pszSourceList 
); 

Description 

Sets the filtering criteria to be used for the event subscription. 

Events may be selected using the following criteria: 

• Type of event, i.e. simple, condition, or tracking. 

• Event categories 

• Lowest severity, i.e. all events with a severity greater than or equal to the specified severity. 

• Highest severity, i.e. all events with a severity less than or equal to the specified severity. 

• Process areas 

• Event Sources 

A list of values for a single criterion are logically ORed together (e.g. if two event categories are 
specified, event notifications for both categories will be received).  If multiple criteria are specified, 
they will be logically ANDed together, i.e. only those events satisfying all criteria will be selected.  An 
example is specifying both lowest severity and highest severity will result in the selection of events 
with severities lying between the two values. 

An OPCEventSubscription object has only one filter. 

Parameters Description 

dwEventType A DWORD bit mask specifying which event types are of 
interest; OPC_SIMPLE_EVENT, 
OPC_CONDITION_EVENT, OPC_TRACKING_EVENT, 
OPC_ALL_EVENTS. These types can be OR’ed together to 
filter multiple types.  A value of 0 is an error and 
E_INVALIDARG will be returned. 

dwNumCategories  Length of array of event categories. A length of 0 indicates 
all categories should be included in the filter. 

pdwEventCategories Array of event categories of interest.  These are DWORD 
event category codes returned by 
IOPCEventServer::QueryEventCategories. A NULL pointer 
should be specified if dwNumCategories is 0. 

dwLowSeverity Lowest severity of interest.  To receive events of all  
severities, set dwLowSeverity to 0. 



OPC Alarms and Events Version 1.01 06/02/99 

 60 

dwHighSeverity Highest severity of interest.  To receive events of all  
severities, set dwHighSeverity to 1000.  The server is 
responsible for mapping its internal severity levels to evenly 
span the 0 to 1000 range.  

dwNumAreas Length of array of areas.  A length of 0 indicates all areas 
should be included in the filter. 

pszAreaList Array of process area strings of interest - only events or 
conditions in these areas will be reported.  Area strings can 
be obtained using IOPCEventAreaBrowser::GetArea.  A 
NULL pointer should be specified if dwNumAreas is 0. 

dwNumSources Length of array of event sources. A length of 0 indicates all 
sources should be included in the filter. 

pszSourceList Array of event sources of interest - only events from these 
sources will be reported.  It is possible to specify sources 
using the wildcard syntax described in Appendix A. A 
NULL pointer should be specified if dwNumSources is 0.  

 

Return Codes 

Return Code Description 

E_FAIL The operation failed. 

E_INVALIDARG A bad parameter was passed. 
E_OUTOFMEMORY Not enough memory 

OPC_E_BUSY A refresh operation is currently in progress on this 
event subscription object. 

S_OK The operation succeeded. 

S_FALSE One or more of the specified filter criteria were 
ignored. 

Comments 

Servers may not support all the various filter criteria.  The specific filter criteria supported by a given 
server can be determined via the IOPCEventServer::QueryAvailableFilters method.  If a filter criterion 
is specified that is not supported by the server, it will ignore that filter criterion and return S_FALSE.  

Note that for a given condition, if the event notifications corresponding to acknowledge or return to 
normal have different severity levels than the event notification for the condition becoming active, it is 
possible that the client may receive one set of notifications but not the others due to filtering by 
severity. 

 



OPC Alarms and Events Version 1.01 06/02/99 

 61 

5.5.1.2 IOPCEventSubscriptionMgt::GetFilter 
HRESULT GetFilter(  

[out] DWORD* pdwEventType,  
 [out] DWORD* pdwNumCategories,   

[out, size_is(,*pdwNumCategories)] DWORD** ppdwEventCategories,  
[out] DWORD* pdwLowSeverity, 
[out] DWORD* pdwHighSeverity, 

 [out] DWORD* pdwNumAreas,   
[out, size_is(,*pdwNumAreas)] LPWSTR** ppszAreaList 
[out] DWORD* pdwNumSources, 
[out, size_is(,*pdwNumSources)] LPWSTR** ppszSourceList 
 ); 

Description 

Returns the filter currently in use for event subscriptions. 

Parameters  Description 

pdwEventType A DWORD bit map specifying which event types are of 
allowed through the filter; OPC_SIMPLE_EVENT, 
OPC_CONDITION_EVENT, OPC_TRACKING_EVENT, 
OPC_ALL_EVENTS. These types can be OR’ed together to 
filter multiple types. 

pdwNumCategories Length of the event category array returned.  A length of 0 
indicates an empty array. 

ppdwEventCategories Array of event categories for the filter. 
pdwLowSeverity Lowest severity allowed through filter.  If the server does not 

support filtering on severity, the returned value will be 0. 
pdwHighSeverity Highest severity allowed through filter. If the server does not 

support filtering on severity, the returned value will be 1000. 
pdwNumAreas Length of the area list array returned. A length of 0 indicates 

an empty array. 
ppszAreaList List of process areas for the filter. 
pdwNumSources Length of the event source list returned. A length of 0 

indicates an empty array. 
ppszSourceList List of sources for the filter. 

 

Return Codes 

Return Code Description 

E_FAIL The operation failed. 

E_INVALIDARG A bad parameter was passed. 
E_OUTOFMEMORY Not enough memory 

S_OK The operation succeeded. 

Comments 

If a server does not support one or more of the filter criteria requested in SetFilter, it returns empty 
arrays for lists, and values which indicate no filtering is taking place for non-list items.  In these cases, 
it does not return any filters which may have been requested in SetFilter, but which were ignored. 



OPC Alarms and Events Version 1.01 06/02/99 

 62 

5.5.1.3 IOPCEventSubscriptionMgt::SelectReturnedAttributes 
HRESULT SelectReturnedAttributes(  
 [in] DWORD dwEventCategory,   
 [in] DWORD dwCount,   

[in, size_is(dwCount)] DWORD* dwAttributeIDs, 
); 

Description 

For each Event Category, SelectReturnedAttributes sets the attributes to be returned with event 
notifications in the IOPCEventSink::OnEvent callback. 

This method can be called multiple times in order to specify the attributes to return for each unique 
event type and event category pair.  For a given event type and event category pair, the attributes 
returned can be “cleared” by setting the dwCount parameter to zero.  If this is called multiple times for 
the same event type and event category pair, then the latest call will be in effect. 

Parameters Description 

dwEventCategory The specific event category for which the list of attributes 
applies.  These are returned from the 
IOPCEventServer::QueryEventCategories method. 

dwCount The size of the attribute IDs array. 
dwAttributeIDs The list IDs of the attributes to return with event 

notifications for the event type and event category specified.  
These are returned from the 
IOPCEventServer::QueryEventAttributes method. 

 

Return Codes 

Return Code Description 

E_FAIL The operation failed. 

E_INVALIDARG A bad parameter was passed. 
S_OK The operation succeeded. 

Comments 



OPC Alarms and Events Version 1.01 06/02/99 

 63 

5.5.1.4 IOPCEventSubscriptionMgt::GetReturnedAttributes 
HRESULT GetReturnedAttributes(  
 [in] DWORD dwEventCategory,   
 [out] DWORD * pdwCount,   

[out, size_is(,pdwCount)] DWORD* pdwAttributeIDs, 
); 

Description 

For each Event Category, GetReturnedAttributes retrieves the attributes which are currently specified 
to be returned with event notifications in the IOPCEventSink::OnEvent callback.  All retrieved 
attributes have been specified by previous calls to SelectReturnedAttributes. 

Parameters Description 

dwEventCategory The specific event category for which to retrieve the list of 
attributes. 

pdwCount The size of the attribute IDs array which is being returned.  
Is set to zero if no attributes are currently specified. 

dwAttributeIDs The list IDs of the attributes which are currently specified to 
be returned with event notifications for the event type and 
event category specified. 

 

Return Codes 

Return Code Description 

E_FAIL The operation failed. 

E_INVALIDARG A bad parameter was passed. 
S_OK The operation succeeded. 

Comments 



OPC Alarms and Events Version 1.01 06/02/99 

 64 

5.5.1.5 IOPCEventSubscriptionMgt::Refresh 
HRESULT Refresh( 
 [in] DWORD dwConnection, 
 ); 

Description 

Force a refresh for all active conditions and inactive, unacknowledged conditions whose event 
notifications match the filter of the event subscription.  

Clients will often need to get the current condition information from the server, particularly at client 
startup, for things such as a current alarm summary.  The OPC Event Server supports this requirement 
by resending the most recent event notifications which satisfy the filter in the event subscription and 
which are related to active and/or unacknowledged conditions.  The client can then derive the current 
condition status from the “refreshed” event notifications. 

Parameters Description 

dwConnection The OLE Connection number returned from 
IConnectionPoint::Advise. This is passed to help the 
server determine which OPC event sink to call when 
the request completes. 

HRESULT Return Codes 

Return Code Description 
S_OK The function was successful. 
OPC_E_BUSY There is currently another refresh in progress on this 

event subscription. 
E_FAIL The function was unsuccessful.  

Comments 

When the client needs a refreshed list of active conditions, it will request a “refresh” from the server. 
The server will send event notifications to that specific client indicating that they are “refresh” instead 
of “original” event notifications. Since the client only needs to get the current state information for 
conditions, only condition events will be refreshed. Note: “Refresh” is not a general “replay” 
capability since the server is not required to maintain an event history.  Refresh is only for updating 
the client’s state information for active or unacknowledged conditions. See section 2.6, Subscriptions 
to Event Notifications. 

In addition to the refresh indicator, there may be other differences between original and refresh event 
notifications. Specifically, since some attribute information available at the time of the original event 
notification may be unavailable at the time of the refresh, some attributes in the refresh may be null.  

Refresh event notifications and original event notifications will not be mixed in the same invocation of 
the event callback, though refresh and original event callback invocations may be interleaved. Thus, it 
is the responsibility of the client to check time stamps on the event notifications and put them into the 
correct order, to ensure correct condition status is obtained. 

The client will receive the maximum number of event notifications per single callback, according to 
the specification in the IOPCEventServer::CreateEventSubscription method. When sending refresh 
event notifications, the server will indicate if there are more refresh event notifications to send (see the 
bLastRefresh parameter of IOPCEventSink::OnEvent). 

This method is applicable to condition-related events only.  Notifications for simple events and 
tracking events are not returned, even if they would satisfy the filter of the event subscription. 



OPC Alarms and Events Version 1.01 06/02/99 

 65 

This method is applicable both when the subscription is active and when it is inactive  (see the 
discussion of the pbActive flag for the SetState method).   



OPC Alarms and Events Version 1.01 06/02/99 

 66 

5.5.1.6 IOPCEventSubscriptionMgt::CancelRefresh 
HRESULT CancelRefresh( 
 [in] DWORD dwConnection, 
 ); 

 

Description 

Cancels a refresh in progress for the event subscription.  

If a refresh is in progress, the server should send one final callback with the last refresh flag set and the 
number of events equal to zero. 

 

Parameters Description 

dwConnection The OLE Connection number returned from 
IConnectionPoint::Advise. This is passed to help the 
server determine which OPC event sink to call when 
the request completes. 

HRESULT Return Codes 

Return Code Description 
S_OK The function was successful. 
E_FAIL The function was unsuccessful.  

Comments 

 

 



OPC Alarms and Events Version 1.01 06/02/99 

 67 

5.5.1.7 IOPCEventSubscriptionMgt::GetState 
HRESULT GetState( 
 [out] BOOL * pbActive,  
 [out] DWORD * pdwBufferTime,   

[out] DWORD * pdwMaxSize, 
 [out] OPCHANDLE * phClientSubscription, 
 ); 

Description 

Get the current state of the subscription. Client passes pointers to where information is to be saved.   

Parameters Description 

pbActive The current active state of the subscription. 

pdwBufferTime The current buffer time configured for event 
notification. See the discussion in 
IOPCEventServer::CreateEventSubscription. 

pdwMaxSize The current max number of events that will be sent in a 
single IOPCEventSink::OnEvent callback. See the 
discussion in 
IOPCEventServer::CreateEventSubscription. 

phClientSubscription The client supplied subscription handle 

HRESULT Return Codes 

Return Code Description 
S_OK The function was successful. 
E_FAIL The function was unsuccessful.  

Comments 

This function is typically called to obtain the current values of this information prior to calling 
SetState. This information was all supplied by the client when the subscription was created. This 
function is also useful for debugging. 



OPC Alarms and Events Version 1.01 06/02/99 

 68 

5.5.1.8 IOPCEventSubscriptionMgt::SetState 
HRESULT SetState(  
 [unique, in] BOOL * pbActive,  
 [unique, in] DWORD * pdwBufferTime, 

[unique, in] DWORD * pdwMaxSize, 
[in] OPCHANDLE hClientSubscription  
[out] DWORD * pdwRevisedBufferTime, 
[out] DWORD * pdwRevisedMaxSize, 
); 

Description 

Client can set various properties of the event subscription. Pointers to items are used so that the client 
can omit properties he does not want to change by passing a null pointer. 

Parameters Description 

pbActive TRUE (non-zero) to activate the subscription. FALSE (0) 
to deactivate the subscription. 

If the client deactivates the subscription, then the server 
will no longer send event notifications to the client based 
on that subscription, and has no responsibility to buffer or 
maintain the event notifications.  Thus event notifications 
may be lost. 

Even if the subscription is inactive, the Refresh method 
will still function.  In effect, this allows a client to obtain 
current condition states from time to time (by invoking 
Refresh) without the need to process event notifications in 
“real time”.  

pdwBufferTime New buffer time requested for the subscription by the 
client. See the discussion in 
IOPCEventServer::CreateEventSubscription. 

pdwMaxSize New maximum number of event notifications to send with 
a single IOPCEventSink::OnEvent callback. See the 
discussion in IOPCEventServer::CreateEventSubscription. 

phClientSubscription New client supplied handle for the subscription. This 
handle is returned in the data stream provided to the 
client’s IOPCEventSink by the subscription’s 
IConnectionPoint. 

pdwRevisedBufferTime The buffer time that the server is actually providing, which 
may differ from dwBufferTime. 

pdwRevisedMaxSize The maximum number of events that the server will 
actually be sending in a single IOPCEventSink::OnEvent 
callback, which may differ from dwMaxSize. 



OPC Alarms and Events Version 1.01 06/02/99 

 69 

HRESULT Return Codes 

Return Code Description 
S_OK The function was successful. 
E_INVALIDARG A bad parameter was passed. 
E_FAIL The function was unsuccessful.  
OPC_S_INVALIDBUFFERTIME The buffer time parameter was invalid . 
OPC_S_INVALIDMAXSIZE The max size parameter was invalid. 

Comments 



OPC Alarms and Events Version 1.01 06/02/99 

 70 

5.5.2 IConnectionPointContainer 
The general principles of ConnectionPoints are not discussed here as they are covered very clearly in 
the Microsoft Documentation. The reader is assumed to be familiar with this technology.  

Likewise the details of the IEnumConnectionPoints, IConnectionPoint and IEnumConnections 
interfaces and their proper use in this context are well defined by Microsoft and are not discussed here. 

The IConnectionPointContainer interface discussed here is implemented on an OPCEventSubscription 
object as obtained from IOPCEventServer::CreateEventSubscription(). This EventSubscription object 
will support at least the IOPCEventSubscriptionMgt and IConnectionPointContainer. Note that in 
theory, the Advise and Unadvise methods of the connection points could be implemented within the 
IOPCEventSubscriptionMgt interface however use of a separate ConnectionPoint implementation is 
more in keeping with state of the art Microsoft implementations. 

One callback object implemented by the client application can be used to service multiple Alarm 
Servers.  Therefore, information about the server must be provided to the client application for it to be 
able to successfully interpret the items that are contained in the callback.  Each callback will contain 
only items from within the specified Server.  

Note: OPC Compliant servers are not required to support more than one connection between each 
Subscription Object and the Client (although they do need to support creation of multiple Subscription 
Objects by a client in case the client wants to monitor them based on more than one set of filter 
criteria).  Given this and the fact that Subscription Objects are client specific entities it is expected that 
a single connection will be sufficient for virtually all applications. For this reason (as per Microsoft 
Recommendations) the EnumConnections method for the IConnectionPoint interface for 
IOPCEventSink::OnEvent callback is allowed to return E_NOTIMPL. 

IEnumConnectionPoints 

See the Microsoft documentation for a description of this method. 

OPC Event Subscriptions must return an enumerator that includes IOPCEventSink.  Additional vendor 
specific callbacks are also allowed. 

FindConnectionPoint 

See the Microsoft documentation for a description of this method. 

OPC Event Subscriptions must support IID_ IOPCEventSink. Additional vendor specific callbacks are 
also allowed. 

 



OPC Alarms and Events Version 1.01 06/02/99 

 71 

5.5.3 IConnectionPoint 
An IConnectionPoint for IOPCEventSink is returned from the Event Subscription’s 
ConnectionPointContainer.  Refer to the Microsoft documentation of this interface for additional 
information on its methods, which include Advise and Unadvise. 

The data returned to the Advise connection is returned via IOPCEventSink, which receives both new 
and refresh event notifications.  

The registered callback function may be specified by the client application such that it spans multiple 
event subscriptions.  Therefore, information about the event subscription must be provided to the client 
application to be able to successfully interpret the items that are contained in the event stream.  Each 
event stream must only contain the items defined within the specified event subscription.  



OPC Alarms and Events Version 1.01 06/02/99 

 72 

5.6 Client Side Interfaces  

5.6.1 IOPCEventSink 
In order to use connection points, the client must create an object which supports both the IUnknown 
and IOPCEventSink interfaces. The client would pass a pointer to the IUnknown interface (NOT the 
IOPCEventSink) to the Advise method of the proper IConnectionPoint in the event subscription (as 
obtained from IConnectionPointContainer:: FindConnectionPoint or EnumConnectionPoints). The 
event server will call QueryInterface on the client object to obtain the IOPCEventSink interface. Note 
that the transaction must be performed in this way in order for the interface marshalling to work 
properly for Local or Remote servers.   

The event server invokes the OnEvent method to notify the client of events which satisfy the filter 
criteria for the particular event subscription. 

The client need only provide a full implementation of OnEvent. There are no other methods of 
IOPCEventSink. 

Note that callbacks can occur for two reasons: event notification or refresh.  A server can be written 
such that it performs several of these operations in parallel.  In this case the client can determine the 
‘cause’ of a particular callback by examining the bRefresh parameter in the OnEvent callback. 



OPC Alarms and Events Version 1.01 06/02/99 

 73 

5.6.1.1 IOPCEventSink::OnEvent 
HRESULT OnEvent( 
 [in] OPCHANDLE hClientSubscription, 
 [in] BOOL bRefresh, 
 [in] BOOL bLastRefresh, 
 [in] DWORD dwCount, 
 [in, size_is(dwCount)] ONEVENTSTRUCT* pEvents, 
 ); 

 

Description 

This method is provided by the client to handle notifications from the OPCEventSubscription for 
events.  This method can be called whether this is a refresh or standard event notification. 

Parameters Description 

hClientSubscription the client handle for the subscription object sending the 
event notifications. 

bRefresh TRUE if this is a subscription refresh 

bLastRefresh TRUE if this is the last subscription refresh in response 
to a specific invocation of the 
IOPCEventSubscriptionMgt::Refresh method. 

dwCount number of event notifications  

pEvents array of event notifications 

HRESULT Return Codes 

Return Code Description 
S_OK The client must always return S_OK. The server will 

get an error following the call if the client or the 
connection has failed. 

Comments 

The server needs to free pEvents after the client returns from this function. 

Also – as per the COM specification, the client is restricted in what functions are allowed within the 
callback.  For example, no blocking function may be called. 

Callbacks can occur for one of the following reasons: 

• One or more new events have occurred.   

• This is a response to a Refresh. 

5.6.1.1.1 ONEVENTSTRUCT 
typedef  struct { 
 WORD wChangeMask, 
 WORD wNewState, 
 LPWSTR  szSource, 
 FILETIME ftTime, 
 LPWSTR szMessage, 
 DWORD dwEventType, 



OPC Alarms and Events Version 1.01 06/02/99 

 74 

 DWORD dwEventCategory, 
 DWORD dwSeverity,  
 LPWSTR szConditionName, 
 LPWSTR szSubConditionName, 
 WORD wQuality, 
 BOOL  bAckRequired, 
 FILETIME ftActiveTime, 
 DWORD dwCookie, 
 DWORD dwNumEventAttrs, 
 [size_is (dwNumEventAttrs)] VARIANT* pEventAttributes, 
 LPWSTR szActorID, 
} ONEVENTSTRUCT; 

 

Member Description 

 The following items are present for all event 
types. 

szSource The source of event notification. This Source can be 
used in the IOPCEventServer::TranslateToItemIDs 
method to determine any related OPC Data Access 
itemIDs. 

ftTime Time of the event occurrence - for conditions, time that 
the condition transitioned into the new state or sub-
condition.  For example, if the event notification is for 
acknowledgment of a condition, this would be the time 
that the condition became acknowledged.  

szMessage Event notification message describing the event. 

dwEventType OPC_SIMPLE_EVENT, OPC_CONDITION_EVENT, 
or OPC_TRACKING_EVENT for Simple, Condition-
Related, or Tracking events, respectively. 

dwEventCategory Standard and Vendor-specific event category codes.  
See section 2.5.3 

dwSeverity Event severity (0..1000).  See section 2.4.3.2. 

dwNumEventAttrs The length of the vendor specific event attribute array. 

pEventAttributes Pointer to an array of vendor specific event attributes 
returned for this event notification. See the 
IOPCEventSubscriptionMgt::SelectReturnedAttributes 
method. 

The order of the items returned matches the order that 
was specified by the select. 

 The following items are present only for Condition-
Related Events (see dwEventType) 

szConditionName The name of the condition related to this event 
notification.  

szSubConditionName The name of the current sub-condition, for multi-state 
conditions.  For a single-state condition, this contains 
the condition name. 



OPC Alarms and Events Version 1.01 06/02/99 

 75 

wChangeMask Indicates to the client which properties of the condition 
have changed, to have caused the server to send the 
event notification.  It may have one or more of the 
following values: 

OPC_CHANGE_ACTIVE_STATE 
OPC_CHANGE_ACK_STATE 
OPC_CHANGE_ENABLE_STATE 
OPC_CHANGE_QUALITY 
OPC_CHANGE_SEVERITY 
OPC_CHANGE_SUBCONDITION 
OPC_CHANGE_MESSAGE 
OPC_CHANGE_ATTRIBUTE 

If the event notification is the result of a Refresh, these 
bits are to be ignored. 

For a “new event”, 
OPC_CHANGE_ACTIVE_STATE is the only bit 
which will always be set.  Other values are server 
specific.  (A “new event” is any event resulting from 
the related condition leaving the Inactive and 
Acknowledged state.) 

wNewState A WORD bit mask of three bits specifying the new 
state of the condition:  OPC_CONDITION_ACTIVE, 
OPC_CONDITION_ENABLED, 
OPC_CONDITION_ACKED. 

See section 2.4.9 and Figure 2-2 for exactly which state 
transitions generate event notifications. 

wQuality Quality associated with the condition state. See Section 
2.4.2.1.  Values are as defined for the OPC Quality 
Flags in the OPC Data Access Server specification. 

bAckRequired This flag indicates that the related condition requires 
acknowledgment of this event.  The determination of 
those events which require acknowledgment is server 
specific.  For example, transition into a LimitAlarm 
condition would likely require an acknowledgment, 
while the event notification of the resulting 
acknowledgment would likely not require an 
acknowledgment. 

ftActiveTime Time that the condition became active (for single-state 
conditions), or the time of the transition into the current 
sub-condition (for multi-state conditions).  This time is 
used by the client when acknowledging the condition 
(see IOPCEventServer::AckCondition method). 

dwCookie Server defined cookie associated with the event 
notification.  This value is used by the client when 
acknowledging the condition (see 
IOPCEventServer::AckCondition method).  This value 
is opaque to the client. 

 The following is used only for Tracking Events and 
for Condition-Related Events which are 
acknowledgment notifications (see dwEventType). 



OPC Alarms and Events Version 1.01 06/02/99 

 76 

szActorID For tracking events, this is the actor ID for the event 
notification. 

For condition-related events, this is the 
AcknowledgerID when OPC_CONDITION_ACKED 
is set in wNewState.  If the AcknowledgerID is a 
NULL string, the event was automatically 
acknowledged by the server. 

For other events, the value is a pointer to a NULL 
string. 

Event Type Values 

Event Type Value Description 

OPC_SIMPLE_EVENT 1 Simple event. 

OPC_TRACKING_EVENT 2 Tracking event. 

OPC_CONDITION_EVENT 4 Condition-Related event. 

Change Mask Values 

Change Mask Item Value Description 

OPC_CHANGE_ACTIVE_STATE 1 The condition’s active state has 
changed. 

OPC_CHANGE_ACK_STATE 2 The condition’s acknowledgment 
state has changed. 

OPC_CHANGE_ENABLE_STATE 4 The condition’s enabled state has 
changed. 

OPC_CHANGE_QUALITY 8 The ConditionQuality has 
changed. 

OPC_CHANGE_SEVERITY 16 The severity level has changed. 

OPC_CHANGE_SUBCONDITION 32 The condition has transitioned 
into a new sub-condition. 

OPC_CHANGE_MESSAGE 64 The event message has changed 
(compared to prior event 
notifications related to this 
condition). 

OPC_CHANGE_ATTRIBUTE 128 One or more event attributes have 
changed (compared to prior event 
notifications related to this 
condition). 

New State Values 

New State Value Description 

OPC_CONDITION_ENABLED 1 The condition has been enabled. 

OPC_CONDITION_ACTIVE 2 The condition has become active. 

OPC_CONDITION_ACKED 4 The condition has been 
acknowledged. 



OPC Alarms and Events Version 1.01 06/02/99 

 77 

5.6.2 IOPCShutdown 
In order to use this connection point, the client must create an object that supports both the IUnknown 
and IOPCShutdown Interface. The client would pass a pointer to the IUnknown interface (NOT the 
IOPCShutdown) to the Advise method of the proper IConnectionPoint in the server (as obtained from 
IConnectionPointContainer:: FindConnectionPoint or EnumConnectionPoints). The Server will call 
QueryInterface on the client object to obtain the IOPCShutdown interface. Note that the transaction 
must be performed in this way in order for the interface marshalling to work properly for Local or 
Remote servers.   

The ShutdownRequest method on this interface will be called when the event server needs to 
shutdown. The client should release all connections and interfaces for this event server. 

A client which is connected to multiple servers (for example event servers and/or other servers such as 
data access servers from one or more vendors) should maintain separate shutdown callbacks for each 
object since any server can shut down independently of the others. 



OPC Alarms and Events Version 1.01 06/02/99 

 78 

5.6.2.1 IOPCShutdown::ShutdownRequest 
HRESULT ShutdownRequest ( 

[in, string] LCPWSTR szReason 
); 

Description 

This method is provided by the client so that the server can request that the client disconnect from the 
server. The client should UnAdvise all connections and release all interfaces. 

Parameter Description 
szReason A text string indicating the reason for the shutdown 

request. 

HRESULT Return Codes 

Return Code Description 
S_OK The client must always return S_OK. 

Comments 

The shutdown connection point is on a ‘per server object’ basis. That is, it relates to the object created by 
CoCreate… If a client connects to multiple server objects then it should monitor each one separately (using 
separate callbacks) for shutdown requests. 



OPC Alarms and Events Version 1.01 06/02/99 

 79 

6. Installation Issues 
It is assumed that the server vendor will provide a SETUP.EXE to install the needed components for 
their server.  This will not be discussed further.  Other than the actual components, the main issue 
affecting OLE software is management of the Windows Registry and Component Catagories.  The 
issues here are (a) what entries need to be made and (b) how they can be made. 

6.1 Common Topics 
Certain installation and registry topics are common to all of the OPC Servers.  These include self 
registration, automatic proxy/stub registration, and registry reference counting.  These topics are 
discussed in the OPC Common Specification and are not repeated here.  Instead, the server developer 
should refer to the OPC Common Specification for guidelines in these areas. 

6.2 Component Categories Registration 
During the registration process, each OPC Alarm and Events Server must register itself with the 
Component Categories Manager, a Microsoft supplied system COM object. OPC Alarm and Events 
Clients will query the Components Category Manager to enumerate the CLSIDs of all registered OPC 
Alarm and Events Servers.  

Note: At this time the Component Categories Manager stores its information in the registry, 
however this will change in the near future.  Please use the Component Categories Manager 
API to access this information rather than using the registry directly. 

6.2.1 Server Registration 
To Register with the Component Categories Manager, a server should first register the OPC defined 
Category ID (CATID) and the OPC defined Category Description by calling ICatRegister:: 
RegisterCategories(), and then register its own CLSID as an implementation of the CATID with a call 
to ICatRegister:: RegisterClassImplCategories(). 

To get an interface pointer to ICatRegister, call CoCreateInstance() as in this example: 

#include <comcat.h> 
 
CoCreateInstance(CLSID_StdComponentCategoriesMgr, NULL, CLSCTX_INPROC_SERVER, 
IID_ICatRegister, (void**)&pcr); 

 

The sample server code uses helper functions defined in CATHELP.CPP to make the actual calls to 
ICatRegister.  Here is how the sample server registers and un-registers the component categories: 

#include "cathelp.h" 
#include "opc_ae.h" 
#include "opcaedef.h" 
 
void RegisterServer() 
{ 
 // register component categories 
 HRESULT hr; 
 
 // IID_OPCEventServerCATID is the Category ID (a GUID) defined in opc_ae.idl. 
 // OPC_EVENTSERVER_CAT_DESC is the category description defined in opcaedef.h 
 // All servers should register the categogy this way  
 
 hr = CreateComponentCategory( IID_OPCEventServerCATID, 
OPC_EVENTSERVER_CAT_DESC); 
 
 // CLSID_OPCEventServer is the CLSID for this sample server.  Each server 
 // will need to register its own unique CLSID here with the component manager. 
 
 hr = RegisterCLSIDInCategory( CLSID_OPCEventServer, IID_OPCEventServerCATID ); 



OPC Alarms and Events Version 1.01 06/02/99 

 80 

} 
 
 
void UnregisterServer() 
{ 
 UnRegisterCLSIDInCategory( CLSID_OPCEventServer, IID_OPCEventServerCATID ); 
} 

6.2.2 Client Enumeration 
Editor’s Note: This section will change if the TSC adopts the proposed DCOM aware remote OPC 

browse server. 

To get a list of CLSIDs of all OPC Alarm and Event Servers registered with the Component Categories 
Manager, the client calls ICatInformation::EnumClassesOfCategories() to return an enumerator 
interface, IEnumCLSID as in this code snippet: 

ICatInformation* pcr = NULL ;  
HRESULT hr = S_OK ;  
  
hr = CoCreateInstance(CLSID_StdComponentCategoriesMgr,   
   NULL, CLSCTX_INPROC_SERVER, IID_ICatInformation, (void**)&pcr); 
 
IEnumCLSID* pEnumCLSID; 
 
CLSID catid = IID_OPCEventServerCATID; 
pcr->EnumClassesOfCategories(1, &catid, 1, &catid, &pEnumCLSID);  
 
// get 10 at a time for efficiency 
unsigned long c; 
CLSID clsids[10]; 
 
while (SUCCEEDED(hr = pEnumCLSID->Next(10, clsids, &c))) 
{ 
 for( unsigned long i = 0; i < c; i++ ) 
{ 
 // clsid[i] is a CLSID that implements the component category ...  
  . 
  . 
  . 
} 

} 
 



OPC Alarms and Events Version 1.01 06/02/99 

 81 

7. Summary of OPC Error Codes 
We have attempted to minimize the number of unique errors by identifying common generic problems 
and defining error codes that can be reused in many contexts. An OPC server should only return those 
OPC errors that are listed for the various methods in this specification or are standard Microsoft errors. 
Note that OLE itself will frequently return errors (such as RPC errors) in addition to those listed in this 
specification. 

The most important thing for a client is to check FAILED for any error return. Other than that, (the 
statements above not withstanding)  a robust, user friendly client should assume that the server may 
return any error code and should call the GetErrorString function to provide user readable information 
about those errors. 

Standard COM errors that are 
commonly used by OPC Servers 

Description 

E_FAIL  Unspecified error 
E_INVALIDARG The value of one or more parameters was not valid.  This is 

generally used in place of a more specific error where it is expected 
that problems are unlikely or will be easy to identify (for example 
when there is only one parameter). 

E_NOINTERFACE  No such interface supported 
E_NOTIMPL  Not implemented 
E_OUTOFMEMORY Not enough memory to complete the requested operation.  This can 

happen any time the server needs to allocate memory to complete 
the requested operation. 

 

OPC Specific Errors Description 

OPC_E_BUSY A refresh operation is currently in progress on the event 
subscription object. 

OPC_E_INVALIDBRANCHNAME The string was not recognized as an area name 

OPC_S_INVALIDBUFFERTIME The specified buffer time parameter was invalid. 

OPC_S_INVALIDMAXSIZE The specified max size parameter was invalid. 

OPC_E_INVALIDTIME The specified time does not match the latest sub-condition active 
time for the condition being acknowledged. 

OPC_E_NOINFO No information is currently available for the specified condition. 

OPC_S_ALREADYACKED The condition has already been acknowledged. 

 
You will see in the appendix that these error codes use ITF_FACILITY. This means that they are 
context specific (i.e. OPC specific). The calling application should check first with the server 
providing the error (i.e. call GetErrorString).  

The OPC Specific error codes and their associated strings (English) are embedded in the resource of 
the proxy/stub (opc_aeps.dll) so FormatMessage() can be called to retrieve the strings: 

   rtn = FormatMessage(  
FORMAT_MESSAGE_ALLOCATE_BUFFER | 
FORMAT_MESSAGE_IGNORE_INSERTS |FORMAT_MESSAGE_FROM_HMODULE, 

    GetModuleHandle(_T("opc_aeps")),  
    GetScode( dwError ),  
    MAKELANGID(LANG_NEUTRAL, SUBLANG_NEUTRAL),  
    (LPTSTR) &lpMsgBuf, 0, NULL );  



OPC Alarms and Events Version 1.01 06/02/99 

 82 

 

 

 
Error codes (the low order word of the HRESULT) from 0000 to 0200 are reserved for Microsoft use 
(although some were inadverdantly used for OPC 1.0 errors). Codes from 0200 through 8000 are 
reserved for future OPC use. Codes from 8000 through FFFF can be vendor specific. 



OPC Alarms and Events Version 1.01 06/02/99 

 83 

Appendix A – Sample String Filter Function 
This function provides essentially the same functionality as the LIKE operator in Visual Basic. 

 

MatchPattern 
 
Syntax 

BOOL MatchPattern(  LPCTSTR string, LPCTSTR pattern , BOOL bCaseSensitive ) 

Return Value 

If string matches pattern , return is TRUE; if there is no match, return is FALSE. If either string or 
pattern  is Null, return is FALSE; 

Parameters 

string String to be compared with pattern. 

pattern    Any string conforming to the pattern-matching conventions described in Remarks. 

bCaseSensitive TRUE if comparison should be case sensitive. 

Remarks 

A versatile tool used to compare two strings. The pattern-matching features allow you to use wildcard 
characters, character lists, or character ranges, in any combination, to match strings. The following 
table shows the characters allowed in pattern  and what they match: 

Characters in pattern Matches in string  

? Any single character. 

* Zero or more characters. 

# Any single digit (0-9). 

[charlist] Any single character in charlist. 

[!charlist] Any single character not in charlist. 

A group of one or more characters (charlist) enclosed in brackets ([ ]) can be used to match any single 
character in string and can include almost any charcter code, including digits.  

Note To match the special characters left bracket ([), question mark (?), number sign (#), and asterisk 
(*), enclose them in brackets. The right bracket (]) can't be used within a group to match itself, but it 
can be used outside a group as an individual character. 

By using a hyphen (-) to separate the upper and lower bounds of the range, charlist can specify a range 
of characters. For example, [A-Z] results in a match if the corresponding character position in string 
contains any uppercase letters in the range A-Z. Multiple ranges are included within the brackets 
without delimiters.  

Other important rules for pattern matching include the following: 

• An exclamation point (!) at the beginning of charlist means that a match is made if any 
character except the characters in charlist is found in string. When used outside brackets, the 
exclamation point matches itself.  



OPC Alarms and Events Version 1.01 06/02/99 

 84 

• A hyphen (-) can appear either at the beginning (after an exclamation point if one is used) or at 
the end of charlist to match itself. In any other location, the hyphen is used to identify a range of 
characters.  

• When a range of characters is specified, they must appear in ascending sort order (from lowest 
to highest). [A-Z] is a valid pattern, but [Z-A] is not.  

• The character sequence [] is considered a zero-length string ("").  

 
------------------------- 
 
Here is the code: 
 
 
// matchpattern.h 
 
#ifndef __MATCHPATTERN_H 
#define __MATCHPATTERN_H 
 
// By redefining MCHAR, _M and _ismdigit you may alter the type 
// of string MatchPattern() works with. For example to operate on 
// wide strings, make the following definitions: 
// #define MCHAR  WCHAR 
// #define _M(x)  L ## x 
// #define _ismdigit   iswdigit 
 
 
 
#ifndef MCHAR 
 
#define MCHAR  TCHAR 
#define _M(a)  _T(a) 
#define _ismdigit   _istdigit 
 
#endif 
 
 
 
extern BOOL  MatchPattern( const MCHAR* String, const MCHAR * Pattern, BOOL 
bCaseSensitive = FALSE ); 
 
 
#endif 
 
 
 
 
// matchpattern.cpp 
#include "MatchPattern.h" 
 
 
 
inline int ConvertCase( int c, BOOL bCaseSensitive ) 
{ 
 return bCaseSensitive ? c : toupper(c); 
} 
 
 
 



OPC Alarms and Events Version 1.01 06/02/99 

 85 

//*************************************************************************           
// return TRUE if String Matches Pattern --  
// -- uses Visual Basic LIKE operator syntax 
// CAUTION: Function is recursive 
//*************************************************************************           
BOOL MatchPattern( const MCHAR *String, const MCHAR *Pattern, BOOL 
bCaseSensitive ) 
{  
 if( !String ) 
  return FALSE; 
 if( !Pattern ) 
  return TRUE; 
 MCHAR   c, p, l; 
 for (; ;) 
 { 
  switch (p = ConvertCase( *Pattern++, bCaseSensitive ) ) 
  { 
  case 0:                             // end of pattern 
   return *String ? FALSE : TRUE;  // if end of string TRUE 
 
  case _M('*'): 
   while (*String)  
   {               // match zero or more char 
    if (MatchPattern (String++, Pattern, bCaseSensitive)) 
     return TRUE;  
   } 
   return MatchPattern (String, Pattern, bCaseSensitive ); 
 
  case _M('?'): 
   if (*String++ == 0)             // match any one char  
    return FALSE;                   // not end of string  
   break;  
 
  case _M('['):  
   if ( (c = ConvertCase( *String++, bCaseSensitive) ) == 0)      // match 
char set  
    return FALSE;                   // syntax  
   l = 0;  
   if( *Pattern == _M('!') )  // match a char if NOT in set [] 
   { 
    ++Pattern; 
 
    while( (p = ConvertCase( *Pattern++, bCaseSensitive) ) != _M('\0') )  
    { 
     if (p == _M(']'))               // if end of char set, then  
      break;           // no match found  
 
     if (p == _M('-'))  
     {            // check a range of chars?  
      p = ConvertCase( *Pattern, bCaseSensitive );   // get high 
limit of range  
      if (p == 0  ||  p == _M(']'))  
       return FALSE;           // syntax  
 
      if (c >= l  &&  c <= p)  
       return FALSE;              // if in range, return FALSE  
     }  
     l = p; 
     if (c == p)                 // if char matches this element  
      return FALSE;                  // return false  
    }  
   } 
   else // match if char is in set [] 



OPC Alarms and Events Version 1.01 06/02/99 

 86 

   { 
    while( (p = ConvertCase( *Pattern++, bCaseSensitive) ) != _M('\0') )  
    { 
     if (p == _M(']'))               // if end of char set, then  
      return FALSE;           // no match found  
 
     if (p == _M('-'))  
     {            // check a range of chars?  
      p = ConvertCase( *Pattern, bCaseSensitive );   // get high 
limit of range  
      if (p == 0  ||  p == _M(']'))  
       return FALSE;           // syntax  
 
      if (c >= l  &&  c <= p)  
       break;              // if in range, move on  
     }  
     l = p; 
     if (c == p)                 // if char matches this element  
      break;                  // move on  
    }  
 
    while (p  &&  p != _M(']'))         // got a match in char set  
     p = *Pattern++;             // skip to end of set  
   } 
 
   break;  
 
  case _M('#'): 
   c = *String++;  
   if( !_ismdigit( c ) ) 
    return FALSE;  // not a digit 
 
   break; 
 
  default:  
   c = ConvertCase( *String++, bCaseSensitive );  
   if( c != p )            // check for exact char  
    return FALSE;                   // not a match  
 
   break;  
  }  
 }  
}  
 



OPC Alarms and Events Version 1.01 06/02/99 

 87 

Appendix B – Event Types, Event Categories, and Conditions 
The following table shows recommended event categories for each event type, and recommended 
conditions corresponding to each event category.  It is recommended that OPC condition names 
leverage Foundation Fieldbus naming as appropriate.  As an example, the condition indicating a PV 
has entered into a High High Alarm condition is named HI_HI which then matches the Foundation 
Fieldbus HI_HI Alarm Type. 

 

Event Type Event Category CONDITION 

   

Condition Related Level PVLEVEL (Multi State) 

  SPLEVEL (Multi State) 

  LO_LO (Single State) 

  LO (Single State) 

  HI (Single State) 

  HI_HI  (Single State) 

 Deviation DV_LO (Single State) 

 Deviation DV_HI (Single State) 

 Discrete CFN 

  TRIP 

  COS 

 Statistical  

 System Failure SYSTEM_FAILURE 

   

Simple Device Failure  

 Batch Status  

 System Message  

   

Tracking Operator Process Change  

 System Configuration  

 Advanced Control  

 



OPC Alarms and Events Version 1.01 06/02/99 

 88 

Appendix C – Event Attributes 
The following are recommended attributes for the event categories listed in Appendix B. 

Event Type.Category ATTRIBUTE NOTES 

ACK COMMENT Latest comment from 
IOPCEventServer::AckCondition() 

ALL 

AREAS SAFEARRAY of BSTRS.  Each string 
is a Qualified Area Name to which this 
Source belongs. 

CV Current Value 

LIMIT VALUE EXCEEDED  

NEXT LIM  

PREV LIM  

DEADBAND  

Condition.Level 

LOOP DESC  

NORMAL STATE  

CV Current Value 

Condition.Discrete 

LOOP DESC  

CV Current Value 

LIMIT EXCEEDED  

NEXT LIM  

PREV LIM  

Condition.Deviation 

LOOP DESC  

Condition.System HELPFILE  

DEVICE NAME  Simple.Devicefailed 

ERROR CODE/STRING  

Simple.Batch BATCHID  

Simple.System ?  

PREV VALUE  

NEW VALUE  

NAME OF PARAMETER  

Tracking. Operator 
Process Change 

COMMENT  

PREV VALUE  

NEW VALUE  

Tracking.Advanced 

NAME OF PARAMETER  

PREV VALUE  

NEW VALUE  

Tracking.Sysconfig 

NAME OF PARAMETER  
 



OPC Alarms and Events Version 1.01 06/02/99 

 89 

Appendix D – Event Server IDL Specification 
The current files require MIDL compiler 3.00.15 or later and the WIN NT 4.0 release SDK. 

Use the command line MIDL /ms_ext /c_ext /app_config opc_ae.idl. 

The resulting  OPC_AE.H  file can be included in clients and servers. The resulting  OPC_AE_I.C  
file defines the interface IDs and can be linked into clients and servers that include OPC_AE.H. 

Alternatively, clients and servers may choose to use the Type Library that is embedded in the resource 
of the proxy/stub DLL (OPC_AEPS.DLL). In Visual C++ this is accomplished with the #import 
statement: 

#import "opc_aeps.dll" exclude("_FILETIME") 
using namespace OPC_AE; 

 

NOTE: This IDL file and the Proxy/Stub generated from it should NEVER be 
modified in any way. If you add vendor specific interfaces to your server (which 
is allowed) you must generate a SEPARATE vendor specific IDL file to describe 
only those interfaces and a separate vendor specific ProxyStub DLL to marshall 
only those interfaces. 

 
// opc_ae.idl : IDL source for opc_aeps.dll 
// 
// REVISION:  05/25/99 09:32 AM (GMT) 
// VERSIONINFO 1.0.5.0 
//  
// This file will be processed by the MIDL tool to 
// produce the type library (opc_ae.tlb) and marshalling code (opc_aeps.dll). 
// The type library is embedded in the resource of opc_aeps.dll 
 
import "oaidl.idl"; 
import "ocidl.idl"; 
 
 
// define OPC Alarm & Events Component Categories 
 
 
 [ 
  uuid(58E13251-AC87-11d1-84D5-00608CB8A7E9), 
  helpstring("OPC Event Server Category ID (CATID)"), 
  pointer_default(unique) 
 ] 
 interface OPCEventServerCATID 
 { 
  // This empty interface is here so that  
  // IID_OPCEventServerCATID will be defined 
 }; 
 
 
 
typedef DWORD OPCHANDLE; 
 
typedef enum { OPCAE_BROWSE_UP = 1, 
   OPCAE_BROWSE_DOWN,  
   OPCAE_BROWSE_TO 
} OPCAEBROWSEDIRECTION; 
 
typedef enum { OPC_AREA = 1, 



OPC Alarms and Events Version 1.01 06/02/99 

 90 

   OPC_SOURCE 
} OPCAEBROWSETYPE; 
 
 
typedef enum { OPCAE_STATUS_RUNNING = 1, 
   OPCAE_STATUS_FAILED, 
   OPCAE_STATUS_NOCONFIG, 
   OPCAE_STATUS_SUSPENDED, 
   OPCAE_STATUS_TEST 
} OPCEVENTSERVERSTATE; 
 
 
 
 
 
typedef  struct { 
    WORD   wChangeMask; 
    WORD   wNewState; 
 [string] LPWSTR    szSource; 
    FILETIME  ftTime; 
 [string] LPWSTR   szMessage; 
    DWORD   dwEventType; 
    DWORD   dwEventCategory; 
    DWORD   dwSeverity;  
 [string] LPWSTR   szConditionName; 
 [string] LPWSTR   szSubconditionName; 
    WORD   wQuality; 
    WORD   wReserved;  // added for natural alignment 
    BOOL    bAckRequired; 
    FILETIME  ftActiveTime; 
    DWORD   dwCookie; 
    DWORD   dwNumEventAttrs; 
 [size_is(dwNumEventAttrs)] VARIANT*  pEventAttributes; 
 [string] LPWSTR   szActorID; 
} ONEVENTSTRUCT; 
 
 
typedef struct { 
 FILETIME    ftStartTime; 
 FILETIME    ftCurrentTime; 
 FILETIME    ftLastUpdateTime; 
 OPCEVENTSERVERSTATE dwServerState; 
 WORD    wMajorVersion; 
 WORD    wMinorVersion; 
 WORD    wBuildNumber; 
 WORD    wReserved;  // added for natural alignment 
 [string] LPWSTR  szVendorInfo; 
} OPCEVENTSERVERSTATUS; 
 
 
typedef  struct { 
 WORD wState; 
 WORD wReserved1;  // added for natural alignment 
 LPWSTR  szActiveSubCondition; 
 LPWSTR szASCDefinition; 
 DWORD dwASCSeverity; 
 LPWSTR szASCDescription; 
 WORD wQuality; 
 WORD wReserved2;  // added for natural alignment 
 FILETIME ftLastAckTime; 
 FILETIME ftSubCondLastActive; 
 FILETIME ftCondLastActive; 
 FILETIME ftCondLastInactive; 



OPC Alarms and Events Version 1.01 06/02/99 

 91 

 LPWSTR szAcknowledgerID; 
 LPWSTR szComment; 
 DWORD dwNumSCs; 
 [size_is (dwNumSCs)] LPWSTR * pszSCNames; 
 [size_is (dwNumSCs)] LPWSTR * pszSCDefinitions; 
 [size_is (dwNumSCs)] DWORD  * pdwSCSeverities; 
 [size_is (dwNumSCs)] LPWSTR * pszSCDescriptions; 
 DWORD dwNumEventAttrs; 
 [size_is(dwNumEventAttrs)] VARIANT*  pEventAttributes; 
 [size_is(dwNumEventAttrs)] HRESULT*  pErrors; 
} OPCCONDITIONSTATE; 
 
 
 
 [ 
  uuid(65168851-5783-11D1-84A0-00608CB8A7E9), 
  
  helpstring("IOPCEventServer Interface"), 
  pointer_default(unique) 
 ] 
 interface IOPCEventServer : IUnknown 
 { 
  HRESULT GetStatus( 
   [out] OPCEVENTSERVERSTATUS **ppEventServerStatus 
   ); 
 
 
  HRESULT CreateEventSubscription( 
   [in] BOOL bActive, 
   [in] DWORD dwBufferTime,  
   [in] DWORD dwMaxSize, 
   [in] OPCHANDLE hClientSubscription, 
   [in] REFIID riid, 
   [out, iid_is(riid)] LPUNKNOWN * ppUnk, 
   [out] DWORD *pdwRevisedBufferTime, 
   [out] DWORD *pdwRevisedMaxSize 
   ); 
 
  HRESULT QueryAvailableFilters( 
   [out] DWORD* pdwFilterMask 
   ); 
 
 
  HRESULT QueryEventCategories( 
   [in]  DWORD  dwEventType,  
   [out] DWORD* pdwCount,  
   [out, size_is(,*pdwCount)] DWORD** ppdwEventCategories, 
   [out, size_is(,*pdwCount)] LPWSTR** ppszEventCategoryDescs 
    ); 
 
  HRESULT QueryConditionNames( 
   [in]  DWORD  dwEventCategory,  
   [out] DWORD* pdwCount,  
   [out, size_is(,*pdwCount)] LPWSTR** ppszConditionNames 
   ); 
 
 
  HRESULT QuerySubConditionNames( 
   [in]  LPWSTR szConditionName,  
   [out] DWORD* pdwCount,  
   [out, size_is(,*pdwCount)] LPWSTR** ppszSubConditionNames 
    ); 
 



OPC Alarms and Events Version 1.01 06/02/99 

 92 

 
  HRESULT QuerySourceConditions( 
   [in]  LPWSTR szSource,  
   [out] DWORD* pdwCount,  
   [out, size_is(,*pdwCount)] LPWSTR** ppszConditionNames 
    ); 
  
 
  HRESULT QueryEventAttributes( 
   [in]  DWORD dwEventCategory,  
   [out] DWORD* pdwCount,  
   [out, size_is(,*pdwCount)] DWORD** ppdwAttrIDs, 
   [out, size_is(,*pdwCount)] LPWSTR** ppszAttrDescs, 
   [out, size_is(,*pdwCount)] VARTYPE** ppvtAttrTypes 
   ); 
 
  HRESULT TranslateToItemIDs( 
   [in] LPWSTR szSource, 
   [in] DWORD dwEventCategory, 
    [in] LPWSTR szConditionName, 
    [in] LPWSTR szSubconditionName, 
   [in] DWORD  dwCount,  
   [in, size_is(dwCount)] DWORD* pdwAssocAttrIDs,  
   [out, size_is(,dwCount)] LPWSTR** ppszAttrItemIDs, 
   [out, size_is(,dwCount)] LPWSTR** ppszNodeNames, 
   [out, size_is(,dwCount)] CLSID** ppCLSIDs 
   ); 
 
  HRESULT GetConditionState ( 
   [in]  LPWSTR szSource, 
   [in]  LPWSTR szConditionName, 
   [in]  DWORD dwNumEventAttrs, 
   [in, size_is(dwNumEventAttrs)] DWORD* pdwAttributeIDs, 
   [out] OPCCONDITIONSTATE ** ppConditionState 
   ); 
 
  HRESULT EnableConditionByArea( 
   [in] DWORD dwNumAreas,  
   [in, size_is(dwNumAreas)] LPWSTR* pszAreas 
   ); 
 
 
  HRESULT EnableConditionBySource( 
   [in] DWORD dwNumSources,  
   [in, size_is(dwNumSources)] LPWSTR* pszSources 
   ); 
 
  HRESULT DisableConditionByArea( 
   [in] DWORD dwNumAreas,  
   [in, size_is(dwNumAreas)] LPWSTR* pszAreas 
   ); 
 
  HRESULT DisableConditionBySource( 
   [in] DWORD dwNumSources,  
   [in, size_is(dwNumSources)] LPWSTR* pszSources 
   ); 
 
  HRESULT AckCondition( 
   [in] DWORD dwCount, 
   [in, string] LPWSTR szAcknowledgerID , 
   [in, string] LPWSTR szComment , 
   [in, size_is(dwCount)] LPWSTR* pszSource, 
   [in, size_is(dwCount)] LPWSTR* pszConditionName, 



OPC Alarms and Events Version 1.01 06/02/99 

 93 

   [in, size_is(dwCount)] FILETIME* pftActiveTime, 
   [in, size_is(dwCount)] DWORD* pdwCookie, 
   [out, size_is(,dwCount)] HRESULT **ppErrors  
   ); 
 
  HRESULT CreateAreaBrowser( 
   [in] REFIID riid, 
   [out, iid_is(riid)] LPUNKNOWN* ppUnk 
   ); 
 
 }; 
 [ 
  
  uuid(65168855-5783-11D1-84A0-00608CB8A7E9), 
  
  helpstring("IOPCEventSubscriptionMgt Interface"), 
  pointer_default(unique) 
 ] 
 interface IOPCEventSubscriptionMgt : IUnknown 
 { 
  HRESULT SetFilter(  
   [in] DWORD  dwEventType,  
   [in] DWORD dwNumCategories,   
   [in, size_is(dwNumCategories)] DWORD* pdwEventCategories,  
   [in] DWORD dwLowSeverity, 
   [in] DWORD dwHighSeverity, 
   [in] DWORD dwNumAreas,   
   [in, size_is(dwNumAreas)] LPWSTR* pszAreaList, 
   [in] DWORD dwNumSources, 
   [in, size_is(dwNumSources)] LPWSTR* pszSourceList 
   ); 
 
  HRESULT GetFilter(  
   [out] DWORD* pdwEventType,  
   [out] DWORD* pdwNumCategories,   
   [out, size_is(,*pdwNumCategories)] DWORD** ppdwEventCategories,  
   [out] DWORD* pdwLowSeverity, 
   [out] DWORD* pdwHighSeverity, 
   [out] DWORD* pdwNumAreas,   
   [out, size_is(,*pdwNumAreas)] LPWSTR** ppszAreaList, 
   [out] DWORD* pdwNumSources, 
   [out, size_is(,*pdwNumSources)] LPWSTR** ppszSourceList 
   ); 
 
  HRESULT SelectReturnedAttributes(  
   [in] DWORD dwEventCategory,   
   [in] DWORD dwCount,   
   [in, size_is(dwCount)] DWORD* dwAttributeIDs 
   ); 
 
  HRESULT GetReturnedAttributes(  
   [in]  DWORD dwEventCategory,   
   [out] DWORD * pdwCount,   
   [out, size_is(,*pdwCount)] DWORD** ppdwAttributeIDs 
  ); 
 
 
  HRESULT Refresh( 
   [in] DWORD dwConnection 
   ); 
 
  HRESULT CancelRefresh( 
   [in] DWORD dwConnection 



OPC Alarms and Events Version 1.01 06/02/99 

 94 

   ); 
 
  HRESULT GetState( 
   [out] BOOL * pbActive,  
   [out] DWORD * pdwBufferTime,   
   [out] DWORD * pdwMaxSize, 
   [out] OPCHANDLE * phClientSubscription 
   ); 
 
  HRESULT SetState(  
   [unique, in] BOOL *  pbActive,  
   [unique, in] DWORD * pdwBufferTime, 
   [unique, in] DWORD * pdwMaxSize, 
   [in] OPCHANDLE hClientSubscription, 
   [out] DWORD * pdwRevisedBufferTime, 
   [out] DWORD * pdwRevisedMaxSize 
   ); 
 }; 
 [ 
  
  uuid(65168857-5783-11D1-84A0-00608CB8A7E9), 
  
  helpstring("IOPCEventAreaBrowser Interface"), 
  pointer_default(unique) 
 ] 
 interface IOPCEventAreaBrowser : IUnknown 
 { 
  HRESULT ChangeBrowsePosition( 
      [in]  OPCAEBROWSEDIRECTION dwBrowseDirection,   
      [in, string] LPCWSTR  szString 
   ); 
 
  HRESULT BrowseOPCAreas( 
      [in] OPCAEBROWSETYPE   dwBrowseFilterType, 
      [in, string] LPCWSTR  szFilterCriteria,   
      [out] LPENUMSTRING  * ppIEnumString 
   );   
 
  HRESULT GetQualifiedAreaName(  
   [in] LPCWSTR szAreaName, 
   [out, string] LPWSTR *pszQualifiedAreaName 
   ); 
 
  HRESULT GetQualifiedSourceName(  
   [in] LPCWSTR szSourceName, 
   [out, string] LPWSTR *pszQualifiedSourceName 
   ); 
 
 }; 
 [ 
  
  uuid(6516885F-5783-11D1-84A0-00608CB8A7E9), 
  
  helpstring("IOPCEventSink Interface"), 
  pointer_default(unique) 
 ] 
 interface IOPCEventSink : IUnknown 
 { 
  HRESULT OnEvent( 
   [in] OPCHANDLE hClientSubscription, 
   [in] BOOL bRefresh, 
   [in] BOOL bLastRefresh, 
   [in] DWORD dwCount, 



OPC Alarms and Events Version 1.01 06/02/99 

 95 

   [in, size_is(dwCount)] ONEVENTSTRUCT* pEvents 
   ); 
 
 }; 
 
 
 
[ 
 uuid(65168844-5783-11D1-84A0-00608CB8A7E9), 
 version(1.0), 
 helpstring("opc_ae 1.0 Type Library") 
] 
library OPC_AE 
{ 
 importlib("stdole32.tlb"); 
 importlib("stdole2.tlb"); 
 
 interface IOPCEventServer; 
 interface IOPCEventSubscriptionMgt; 
 interface IOPCEventAreaBrowser; 
 interface IOPCEventSink; 
 interface OPCEventServerCATID; 
 
}; 
 
 
 



OPC Alarms and Events Version 1.01 06/02/99 

 96 

Appendix E – OPCAEDEF.H 
 

/*++ 
 
Module Name: 
 
    opcaedef.h 
 
Abstract: 
  
 Macros defined for OPC Alarm & Events Clients and Servers 
 
Author: 
 
    Jim Luth - OPC Alarm & Events Committee 
 
Revision History: 
 
--*/ 
 
#ifndef __OPCAEDEF_H 
#define __OPCAEDEF_H 
 
 
 
// OPC Alarm & Event Component Category Description 
#define OPC_EVENTSERVER_CAT_DESC L"OPC Alarm & Event Server Version 1.0" 
 
 
//**************************************************** 
// OPC Quality flags  
// 
// Masks for extracting quality subfields 
// (note 'status' mask also includes 'Quality' bits) 
// 
#define    OPC_QUALITY_MASK            0xC0 
#define    OPC_STATUS_MASK             0xFC 
#define    OPC_LIMIT_MASK              0x03 
 
// Values for QUALITY_MASK bit field 
// 
#define    OPC_QUALITY_BAD             0x00 
#define    OPC_QUALITY_UNCERTAIN       0x40 
#define    OPC_QUALITY_GOOD            0xC0 
 
// STATUS_MASK Values for Quality = BAD 
// 
#define    OPC_QUALITY_CONFIG_ERROR    0x04 
#define    OPC_QUALITY_NOT_CONNECTED   0x08 
#define    OPC_QUALITY_DEVICE_FAILURE  0x0c 
#define    OPC_QUALITY_SENSOR_FAILURE  0x10 
#define    OPC_QUALITY_LAST_KNOWN      0x14 
#define    OPC_QUALITY_COMM_FAILURE    0x18 
#define    OPC_QUALITY_OUT_OF_SERVICE  0x1C 
 
// STATUS_MASK Values for Quality = UNCERTAIN 
// 
#define    OPC_QUALITY_LAST_USABLE     0x44 
#define    OPC_QUALITY_SENSOR_CAL      0x50 
#define    OPC_QUALITY_EGU_EXCEEDED    0x54 



OPC Alarms and Events Version 1.01 06/02/99 

 97 

#define    OPC_QUALITY_SUB_NORMAL      0x58 
 
// STATUS_MASK Values for Quality = GOOD 
// 
#define    OPC_QUALITY_LOCAL_OVERRIDE  0xD8 
 
 
// State bit masks 
#define OPC_CONDITION_ENABLED   0x0001 
#define OPC_CONDITION_ACTIVE   0x0002 
#define OPC_CONDITION_ACKED   0x0004 
 
 
// bit masks for m_wChangeMask 
#define OPC_CHANGE_ACTIVE_STATE  0x0001 
#define OPC_CHANGE_ACK_STATE   0x0002 
#define OPC_CHANGE_ENABLE_STATE  0x0004 
#define OPC_CHANGE_QUALITY    0x0008 
#define OPC_CHANGE_SEVERITY   0x0010 
#define OPC_CHANGE_SUBCONDITION  0x0020 
#define OPC_CHANGE_MESSAGE    0x0040 
#define OPC_CHANGE_ATTRIBUTE   0x0080 
 
 
// dwEventType 
#define OPC_SIMPLE_EVENT    0x0001 
#define OPC_TRACKING_EVENT    0x0002 
#define OPC_CONDITION_EVENT   0x0004 
 
#define OPC_ALL_EVENTS (OPC_SIMPLE_EVENT | OPC_TRACKING_EVENT | 
OPC_CONDITION_EVENT ) 
 
 
// QueryAvailableFilters() bit masks 
#define OPC_FILTER_BY_EVENT   0x0001 
#define OPC_FILTER_BY_CATEGORY  0x0002 
#define OPC_FILTER_BY_SEVERITY  0x0004 
#define OPC_FILTER_BY_AREA    0x0008 
#define OPC_FILTER_BY_SOURCE   0x0010 
 
 
#endif 
 



OPC Alarms and Events Version 1.01 06/02/99 

 98 

Appendix F – OPCAE_ER.H 
 
/*++ 
 
Module Name: 
 
    opcae_er.h 
 
Abstract: 
 
    This file is generated by the MC tool from the opcae_er.mc message 
    file. 
 
Author: 
 
    Jim Luth - OPC Alarm & Events Committee 
 
Revision History: 
 
--*/ 
/* 
Code Assignements: 
  0000 to 0200 are reserved for Microsoft use  
  (although some were inadverdantly used for OPC Data Access 1.0 errors).  
  0200 to 8000 are reserved for future OPC use.  
  8000 to FFFF can be vendor specific. 
 
*/ 
 
 
#ifndef __OPCAE_ER_H 
#define __OPCAE_ER_H 
 
// Since we use FACILITY_ITF our codes must be in the range 0x200 - 0xFFFF 
// success codes 
// 
//  Values are 32 bit values layed out as follows: 
// 
//   3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 
//   1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 
//  +---+-+-+-----------------------+-------------------------------+ 
//  |Sev|C|R|     Facility          |               Code            | 
//  +---+-+-+-----------------------+-------------------------------+ 
// 
//  where 
// 
//      Sev - is the severity code 
// 
//          00 - Success 
//          01 - Informational 
//          10 - Warning 
//          11 - Error 
// 
//      C - is the Customer code flag 
// 
//      R - is a reserved bit 
// 
//      Facility - is the facility code 
// 
//      Code - is the facility's status code 
// 



OPC Alarms and Events Version 1.01 06/02/99 

 99 

// 
// Define the facility codes 
// 
 
 
// 
// Define the severity codes 
// 
 
 
// 
// MessageId: OPC_S_ALREADYACKED 
// 
// MessageText: 
// 
//  The condition has already been acknowleged 
// 
#define OPC_S_ALREADYACKED               ((HRESULT)0x00040200L) 
 
// 
// MessageId: OPC_S_INVALIDBUFFERTIME 
// 
// MessageText: 
// 
//  The buffer time parameter was invalid 
// 
#define OPC_S_INVALIDBUFFERTIME          ((HRESULT)0x00040201L) 
 
// 
// MessageId: OPC_S_INVALIDMAXSIZE 
// 
// MessageText: 
// 
//  The max size parameter was invalid 
// 
#define OPC_S_INVALIDMAXSIZE             ((HRESULT)0x00040202L) 
 
// error codes 
// 
// MessageId: OPC_E_INVALIDBRANCHNAME 
// 
// MessageText: 
// 
//  The string was not recognized as an area name 
// 
#define OPC_E_INVALIDBRANCHNAME          ((HRESULT)0xC0040203L) 
 
// 
// MessageId: OPC_E_INVALIDTIME 
// 
// MessageText: 
// 
//  The time does not match the latest active time 
// 
#define OPC_E_INVALIDTIME                ((HRESULT)0xC0040204L) 
 
// 
// MessageId: OPC_E_BUSY 
// 
// MessageText: 
// 
//  A refresh is currently in progress 
// 



OPC Alarms and Events Version 1.01 06/02/99 

 100 

#define OPC_E_BUSY                       ((HRESULT)0xC0040205L) 
 
// 
// MessageId: OPC_E_NOINFO 
// 
// MessageText: 
// 
//  Information is not available 
// 
#define OPC_E_NOINFO                     ((HRESULT)0xC0040206L) 
 
#endif 
 


