OPC Common Definitions

_d
OLE tm' Process Gontrol

OPC Common Definitions and
| nter faces

Version 1.0

October 27, 1998

OPC Common Definitions

Specification Type Industry Standard Specification
Title: OPC Common Definitions Date: October 27, 1998
Verson: 10 Soft MSWord
Source: OpcComn.doc
Author: Opc Task Force Status: Release
Synopsis.

Thisisthe specification of rules, design criteria and interfaces that are common

to developers of OPC clients and OPC servers. The specification is aresult of

an analysis and design process to develop a standard interface to facilitate the

development of servers and clients by multiple vendors that shall inter-operate

seamlessly together.

Trademarks:

Most computer and software brand names have trademarks or registered
trademarks. Theindividual trademarks have not been listed here.

Required Runtime Environment:

This specification requires Windows 95, Windows NT 4.0 or later

OPC Common Definitions

NON-EXCLUSVE LICENSE AGREEMENT

The OPC Foundation, a non-profit corporation (the “OPC Foundation™), has established a set of standard
OLE/COM interface protocols intended to foster greater interoperability between automation/control
applications, field systems/devices, and business/office applications in the process control industry.

The current OPC specifications, prototype software examples and related documentation (collectively, the
“OPC Materials"), form a set of standard OLE/COM interface protocols based upon the functional
requirements of Microsoft's OLE/COM technology. Such technology defines standard objects, methods,
and properties for servers of real-time information like distributed process systems, programmable logic
controllers, smart field devices and analyzersin order to communicate the information that such servers
contain to standard OLE/COM compliant technologies enabled devices (e.g., servers, applications, etc.).

The OPC Foundation will grant to you (the “User”), whether an individual or legal entity, alicenseto use,
and provide User with a copy of, the current version of the OPC Materials so long as User abides by the
terms contained in this Non-Exclusive License Agreement (“ Agreement”). If User does not agreeto the
terms and conditions contained in this Agreement, the OPC Materials may not be used, and all copies (in all
formats) of such materialsin User’s possession must either be destroyed or returned to the OPC
Foundation. By using the OPC Materials, User (including any employees and agents of User) agreesto be
bound by the terms of this Agreement.

LICENSE GRANT:

Subject to the terms and conditions of this Agreement, the OPC Foundation hereby grantsto User anon-
exclusive, royalty-free, limited license to use, copy, display and distribute the OPC Materialsin order to
make, use, sell or otherwise distribute any products and/or product literature that are compliant with the
standards included in the OPC Materials.

All copies of the OPC Materials made and/or distributed by User must include all copyright and other
proprietary rightsnoticesinclude on or in the copy of such materials provided to User by the OPC
Foundation.

The OPC Foundation shall retain al right, title and interest (including, without limitation, the copyrights) in
the OPC Materials, subject to the limited license granted to User under this Agreement.

WARRANTY AND LIABILITY DISCLAIMERS:

User acknowledges that the OPC Foundation has provided the OPC Materials for informational purposes
only in order to help User understand Microsoft’s OLE/COM technology. THE OPC MATERIALSARE
PROVIDED “ASIS’ WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING, BUT
NOT LIMITED TO, WARRANTIES OF PERFORMANCE, MERCHANTABILITY, FITNESSFOR A
PARTICULAR PURPOSE OR NON-INFRINGEMENT. USER BEARSALL RISK RELATING TO QUALITY,
DESIGN, USE AND PERFORMANCE OF THE OPC MATERIALS. The OPC Foundation and its members do
not warrant that the OPC Materials, their design or their use will meet User’ s requirements, operate without
interruption or be error free.

IN NO EVENT SHALL THE OPC FOUNDATION, ITSMEMBERS, ORANY THIRD PARTY BELIABLE
FOR ANY COSTS, EXPENSES, LOSSES, DAMAGES (INCLUDING, BUT NOT LIMITED TO, DIRECT,
INDIRECT, CONSEQUENTIAL, INCIDENTAL, SPECIAL OR PUNITIVE DAMAGES) OR INJURIES
INCURRED BY USER OR ANY THIRD PARTY ASA RESULT OF THISAGREEMENT OR ANY USE OF
THE OPC MATERIALS.

OPC Common Definitions

GENERAL PROVISONS

This Agreement and User’ s license to the OPC Materials shall be terminated (a) by User ceasing all use of
the OPC Materials, (b) by User obtaining a superseding version of the OPC Materials, or (c) by the OPC
Foundation, at its option, if User commits a material breach hereof. Upon any termination of this Agreement,
User shall immediately cease all use of the OPC Materials, destroy all copies thereof then in its possession
and take such other actions as the OPC Foundation may reasonably request to ensure that no copies of the
OPC Materiaslicensed under this Agreement remain in its possession.

User shall not export or re-export the OPC Materials or any product produced directly by the use thereof to
any person or destination that is not authorized to receive them under the export control laws and
regulations of the United States.

The Software and Documentation are provided with Restricted Rights. Use, duplication or disclosure by the
U.S. government is subject to restrictions as set forth in (a) this Agreement pursuant to DFARs 227.7202-
3(a); (b) subparagraph (c)(1)(i) of the Rightsin Technical Data and Computer Software clause at DFARS
252.227-7013; or (c) the Commercial Computer Software Restricted Rights clause at FAR 52.227-19
subdivision (c)(1) and (2), as applicable. Contractor/ manufacturer isthe OPC Foundation, P.O. Box 140524,
Austin, Texas 78714-0524.

Should any provision of this Agreement be held to be void, invalid, unenforceable or illegal by acourt, the
validity and enforceability of the other provisions shall not be affected thereby.

This Agreement shall be governed by and construed under the laws of the State of Minnesota, excluding its
choice or law rules.

This Agreement embodies the entire understanding between the parties with respect to, and supersedes any
prior understanding or agreement (oral or written) relating to, the OPC Materials.

OPC Common Definitions

Table of Contents

1. INTRODUCTION ..ottt sesss st ss st sess s ses e es s ses st b bbb enans 1
11 READERS GUIDE.......c..ttuttueeeteseeseeseessessessssessesssss s s s st sse s st
2. OPC DESIGN FUNDAMENTALS ..ottt sttt sssesssessssssans
21 INTERFACE DEFINITIONS .. covututiutestesteseesessessesessesssssesssessssesssssessssssss s s sssnssssnsans
211 Required Interface Definition
212 Optional Interface Definition
213 Which interface should the client appliCation USE.ocreirreerieeneeneene s 2
22 UNICODE, NT AND WINDScoiiieitieiereieree s seses st ssss s ssessssssssssssssssns 2
23 THREADS AND MULTITASKING.....cttteueeeeseeseesessessessessessesssseesessessessessessessessesssssssessessessesessessessessssssssssessens 3
3. OPC COMMON INTERFACE ISTUEScoostrretiieinieeere et sesss s sssessssssaes 4
31 COMMON INTERFACE ISSUES.....coteutreerieeriesessessesessessssessssess sttt s ssssss s sssssssssssssssssssssesanes
311 Custom vs. Automation Interface...........c.eveeverrnernencrnesceneenn:
312 Required vs Optional Interface Definition
313 OWNErshiP Of MEMOTYcoviereerreerieeie e
314 NUll StriNgS and NUIT POINTENS ..ot es e
315 RELUMNEA ATTEYS ...ttt b es e
316 Errors and FEIUM COUBSceuiermiiriierieereice sttt
4. SHUTDOWN OF OPCSERVERS.ccotrtitintientie ittt ss s ssssssssssnssenns 6
41 ICONNECTIONPOINT CONTAINER (ON OPCSERVER)covvttieriaerieeseeemsisesssessssssse s ssesessesssssssessssessens 6
411 | ConnectionPointContainer::ENUmMCONNECE ONPOINESccvrevireecriereer e seeseeesessssesseseseseeenees 6
412 I ConnectionPointContainer:: FindConnectionPoint
4.2 IOPCSHUTDOWN. c..ceveesesereseeseseeseseestssassseasss s ses s ses s ses sttt sae s s s s ss e s
421 [OPCShutdown:: SHUAOWNREQUESEc.cvieiierictrieieicsie e naes
5. TOPCCOMMON ...ttt stssesseses st sstse st st te ettt b e p e r s 9
511 [OPCCOMMON::SELOCAIEID ...t 9
512 [OPCCOMMON:IGEILOCAEIDcocvieireieireerretrieee e 10
513 [OPCCommon::QUErYAVaIlaDIEL OCAIEIDS ... 10
514 [OPCComMMON::GELEITOrSIriNg.........ccvveeerreeeeriereneeneseseseeseeesnseenns
515 IOPCCommon::SetClientName
6. INSTALLATION AND REGISTRATION ISSUES........ccontrierieriernissnisessisesssesssess s s ssssssenns 13
6.1 COMPONENT CATEGORIES......cctteuetieresesessssesseessesesstsesssssssssssssssssssssss s ssssesssssssssssesssssssssssnssessssesssenas
6.11 Component Categories RegiStration...........couerveverrercrrecereenne
6.2 REGISTRY ENTRIES FOR THE PROXY/STUB DLL
6.3 CREATING THE REGISTRY ENTRIES......ccceviemrerrererreseenesennesssnseessseens
6.4 VERSION CONVENTION ..ttttueeseeseeessessetsesseesesseseessesesses et bbb sesseses s s bbbt ssssessesssssssssns
6.5 INSTALLING OPC BINARIES......ccrutieutreeereeersese s s sssssessssessssssssssss st ssssssssssssssssssessssesssssssssssnssessssenas
7. OPC SERVER BROWSER......ccoostiitirieee et 19
71 OVERVIEW ..oucttueseeseeseeseesessessesseseeseesessessssses st ses st essessessessesses e ee bbb eesess e s bbb bbb na bbb
7.2 INFORMATION FOR USERS......cotuiuimiieeesessessetsesesssssesseesessesses st sttt essessssssssessessessessssssssssessessessesssesnes
73 INFORMATION FOR SERVER PROGRAMMERS
74 INFORMATION FOR CLIENT PROGRAMMERS
75 IOPCSERVERLIST REFERENCEcottiutteeeree s ssese s sssssessssesssssssasssssssesssssssssssssssssesssssssssssssssssssssssessssenas
751 |OPCServerList::EnumClassesof Category
752 IOPCServerList::GetClassDetails.........ccvrnerneerereenicenienieens
753 IOPCServerList::CLSIDFIOMPYOQID ..ot sessssessssessessssesssessssssessssessssenns

OPC Common Definitions

8.

9.

APPENDIX A —OPC COMMON IDL SPECIFICATION

APPENDIX B—-SAMPLE STRING FILTER FUNCTION

Vi

OPC Common Definitions

1. Introduction

1.1 Readers Guide

This document contains common rules and design criteria and the specification of interfaces which are
common for several topics.

Specific interface specifications to develop OPC clients and/or OPC Servers (e.g., for DataAccess,
Alarm& Event Handling or Historical DataAccess) are available as separate documents.

Chapter 1 isthis Readers Guide.

Chapter 2 describes the fundamentals of the design and characteristics of OPC components.
Chapter 3 describes issues that are common to all OPC interfaces.

Chapter 4 specifies the shutdown capability of OPC Servers.

Chapter 5 specifies IOPCCommon, an interface that isalso “common” to all types of OPC Servers.
Chapter 6 gives general information about OPC Server registration.

Chapter 7 specifies the interface for OPC Server Browsing.

Appendix A containsthe IDL of the common interfaces.

Finally, Appendix B specifies a sample string filter function. It defines the minimum filtering required on
various methods of the OPC Server Interfaces.

OPC Common Definitions

2. OPC Design Fundamentals
OPC isbased on Microsoft's OLE/COM technology.

2.1 Interface Definitions

OPC specifications always contain two sets of interfaces; Custom Interfaces and Automation
interfaces. Thisis shown inFigure 2-1.

C++ Application

OPC Server
(In-Proc, Local, Remote,
Handler)

Vendor Specific Logi

VB Application

Figure 2-1 - The OPC Interfaces

An OPC client application communicates to an OPC server through the specified custom and
automation interfaces. OPC servers must implement the custom interface, and optionally may implement
the automation interface. In some cases the OPC Foundation provides a standard automation interface
wrapper. This“wrapperDLL" can be used for any vendor-specific customserver.

2.1.1 Required Interface Definition

OPC server developers must implement all functionality of required interfaces. An OPC client
communicates to an OPC server by calling functions from the OPC required interfaces.

2.1.2 Optional Interface Definition
OPC server developers may implement the functionality of the optional interfaces

An optional interfaceis one that the server developer may elect to implement. When an OPC Server
supports an optional interface, all functions within that optional interface must be implemented, even if
the function just returns E_NOTIMPL. An OPC client that wishesto use the functionality of an optional
interface will query the OPC server for the optional interface. The client must be designed to not require
that this optional interface exist.

2.1.3 Which interface should the client application use.

In general, client programs which are created using scripting languages will use the automation
interface. Client programswhich are created in C++ will find it easiest to use the custom interface for

maximum performance.

2.2 UNICODE, NT and WIN95

All string parameters to the OPC Interfaces are UNICODE, because the native OLE APIsare all
UNICODE. Microsoft Visua Basic 4.0 and higher is UNICODE internally and, while it normally converts

OPC Common Definitions

stringsto ANSI when calling aDLL, it will pass strings directly as UNICODE where a corresponding
TYPELIB indicates this should be done (asit will for OPC).

At thetime of thiswriting, MIDL 3.0 or later isrequired in order to correctly compile the IDL code and
generate proxy/stub software. Microsoft Windows NT 4.0 (or later), or Windows 95 with DCOM
support isrequired to properly handle the marshaling of OPC parameters.

Note that in order to implement OPC servers which will run on both Microsoft Windows NT and
Microsoft Windows 95 it is necessary for these servers to test the platform at runtime. In the case of
Microsoft Windows 95, conversion of any stringsto be passed to Win32 from UNICODE to ANSI
needs to be done.

2.3 Threads and Multitasking

This specification does NOT require any particular threading model for the server.

The topic of multiple threads and their relationship to OLE isimportant. While theseissues are al'so
difficult to summarize, the performance gains for amedium to large scale server are worth the
investment.

For OPC Servers

For servers, the default handling of threads by OLE isvery simplistic. OLE will use onethread per local
or remote server to handle al requestsfor al clients. An alternate approach isreferred to ‘ Apartment
Model Threading’ where all OLE callsinto an OLE server are guaranteed to be serialized. The apartment
model simplifiesthe issues surrounding. multiple client access.

An advantage to this single threaded approach is that it simplifiesimplementation of serverswith
respect to reentrancy issues. Since all method calls are serialized automatically by the message loop,
methods are never reentered or interrupted by other methods. Another advantage isthat it insures (as
required by COM) that all accessto an object is done by the thread that created the object.

The major disadvantage of this single threaded approach is that all method calls must run to completion
without significant delay. Any delay by acall prevents execution of the message |oop and dispatch of
additional requests, thus blocking al clients of the server. This meansthat a dataread or write will need
to be buffered so as not to seriously compromise speed. In particular, this means that physical
communications (unless they are very fast) should be handled by a separate thread within the server
(clearly logic related to data handling by thisthread would need to be thread safe). Thisin turn makes
write verification and error handling for writes more difficult. These issues are reflected in the design of
the interfaces, particularly in the areas of ‘allowed behavior’. It will be noted later that the design allows
for optional Read and Write modes where the datais read or written directly to the device.

For OPC Clients

Itiscurrently arequirement of COM that an object be accessed only by the thread that created it. This
applies both to the actual objectsin the server and to any ‘proxy’ objects represented by a marshaling
stub or handler. Note that there are waysto partially relax this constraint (e.g. through the use of
CoMarshallInterThreadl nterfacel nStream()) however,this simply routes all method calls back through
the thread that created the object and thisinvolves considerable overhead. In addition, no matter how
many threads attempt to access the objectsin parallel, they will all be gated by the operation of the
dispatch loop in the thread owning the object which will tend to negate any performance improvement.

Note the general OLE rule that code within asynchronous OL E methods (e.g. OnDataChange) cannot
make synchronous or asynchronous OLE calls.

OPC Common Definitions

3. OPC Common Interface Issues

3.1 Common Interface Issues

This section describes issues which are common to all interfaces, and some background information
about how the designers of OPC expected these interfaces to be implemented and used.

3.1.1 Custom vs. Automation Interface

OPC specifications always contain two sets of interfaces; Custom Interfaces and Automation
Interfaces. It has been found that it is not possible to define a single (dual-automation) interface which
is both highly efficient and provides the look-and-feel of typical automation servers, like Excel.

In general, client programs which are created using scripting languages, like Visual Basic (or VBA) will
use the automation interface. Client programs which are created in C++ will find it easiest to use the
custom interface for maximum performance.

OPC servers must implement the custom interface, and optionally may implement the automation
interface. The OPC Foundation provides a standard automation interface wrapper. This“wrapperDLL"
can be used for any vendor-specific customserver.

3.1.2 Required vs Optional Interface Definition

OPC server developers must implement all functionality of required interfaces. An OPC client
communicates to an OPC server by calling functions from the OPC required interfaces.

OPC server developers may implement the functionality of the optional interfaces.

An optional interface is one that the server devel oper may elect to implement. When an OPC Server
supports an optional interface, all functions within that optional interface must be implemented, even if
the function just returnsE_NOTIMPL. An OPC client that wishes to use the functionality of an optional
interface will query the OPC server for the optional interface. The client must be designed to not require
that this optional interface exist.

3.1.3 Ownership of memory

Per the COM specification, clients must free all memory associated with ‘out’ or ‘in/out’ parameters.
Thisincludes memory that is pointed to by elements within any structures. Thisisvery important for
client writersto understand, otherwise they will experience memory leaksthat are difficult to find. See
the IDL files to determine which parameters are out parameters. The recommended approach isfor a
client to create asubroutinethat is used for freeing each type of structure properly.

Independent of success/failure, the server must always return well defined valuesfor ‘out’ parameters.
Releasing the allocated resources isthe client’ s responsibility.

Note: Iftheerror resultisany FAILED error such asE_OUTOFMEMORY , the OPC server should
return NULL for all “out' pointers (thisis standard COM behavior). Thisrule also appliesto the error
arrays (ppErrors) returned by many of the functions below. In general, arobust OPC client should
check each out or in/out pointer for NULL prior to freeing it.

3.1.4 Null Strings and Null Pointers

Both of thesetermsare used. They are NOT the samething. A NULL Pointer isan invalid pointer (0)
which will cause an exception if used. A NUL String isavalid (non zero) pointer to a1 character array
where that character isaNUL (i.e. 0). If aNUL string isreturned from amethod as an [out] parameter (or
as an element of a structure) it must be freed, otherwise the memory containing the NUL will belost.

OPC Common Definitions

Also note that aNULL pointer cannot be passed for an [in,string] argument due to COM marshalling
restrictions. In this case a pointer to aNUL string should be passed to indicate an omitted parameter.

3.1.5 Returned Arrays

Y ou will notethe syntax size is(,dwCount) inthe IDL of several interfaces used in combination with
pointersto pointers. Thisindicates that the returned item is a pointer to an actual array of the indicated
type, rather than a pointer to an array of pointersto items of theindicated type. Thissimplifies
marshaling , creation, and access of the data by the server and client.

3.1.6 Errors and return codes

The OPC specifications describe interfaces and corresponding behavior that an OPC server implements,
and an OPC client application dependson. A list of errorsand return codesis contained in each
specification. For each method described alist of all possible OPC error codes as well asthe most
common OLE error codesisincluded. It islikely that clientswill encounter additional error codes such
as RPC and Security related codes in practice and they should be prepared to deal with them.

Inall cases ‘E’ error codeswill indicate FAILED typeerrorsand ‘S’ error codeswill indicate at |east
partial success.

OPC Common Definitions

4. Shutdown of OPCServers

The shutdown capability allows an OPC Server to request that all clients disconnect from the server. It
isprovided for all types of OPC Servers (DataAccess, Alarm& Event, ...).

The functionality is available viaa Connection point on the Server object and a corresponding Client
side |OPCShutdown interface. Clients should make use of this feature to support graceful shutdown.

4.1 1ConnectionPointContainer (on OPCServer)
Thisinterface provides access to the connection point for |OPCShutdown.

The general principles of ConnectionPoints are not discussed here asthey are covered very clearly in
the Microsoft Documentation. The reader is assumed to be familiar with this technology.

Likewise the details of the | EnumConnectionPoints, | ConnectionPoint and | EnumConnections
interfaces are well defined by Microsoft and are not discussed here.

Note: OPC Compliant servers are not required to support more than one connection between each
Server and the Client. Given that servers are client specific entitiesit is expected that asingle
connection will be sufficient for virtually all applications. For this reason (as per the COM Specification)
the EnumConnections method for | ConnectionPoint interface for the |lOPCShutdown is allowed to
return E_NOTIMPL.

4.1.1 IConnectionPointContainer::EnumConnectionPoints

HRESULT EnumConnectionPoints(
| EnumConnectionPoints ** ppEnum

)

Description

Create an enumerator for the Connection Points supported between the OPC Group and the Client.

Parameters Description

ppEnum Where to save the pointer to the connection point enumerator. See
the Microsoft documentation for a discussion of
|EnumConnectionPoints.

OPC Common Definitions

HRESULT Return Codes

Return Code Description

S OK The function was successful.
For other codes seethe OLE
programmers reference

Comments

OPCServers must return an enumerator that includes! OPCShutdown. Additional vendor specific
callbacks are also allowed.

4.1.2 IConnectionPointContainer:: FindConnectionPoint

HRESULT FindConnectionPoint(
REFIID riid,
| ConnectionPoint ** ppCP

);

Description

Find aparticular connection point between the OPC Server and the Client.

Parameters Description

ppCP Where to store the Connection Point. See the Microsoft
documentation for a discussion of | ConnectionPoint.

riid The 1D of the Connection Point. (e.g.

I1D_IOPCShutdown)

HRESULT Return Codes

Return Code Description

S OK The function was successful.
For other codes see the
OLE programmers
reference

Comments

OPCServers must support 11D_IOPCShutdown. Additional vendor specific callbacks are also allowed.

4.2 10PCShutdown

In order to use this connection point, the client must create an object that supports both the IlUnknown
and | OPCShutdown Interface. The client would pass a pointer to the lUnknown interface (NOT the
|OPCShutdown) to the Advise method of the proper | ConnectionPoint in the server (as obtained from

I ConnectionPointContainer:: FindConnectionPoint or EnumConnectionPoints). The Server will call
Querylnterface on the client object to obtain the IOPCShutdown interface. Note that the transaction
must be performed in thisway in order for the interface marshalling to work properly for Local or
Remote servers.

OPC Common Definitions

The ShutdownRequest method on this Interface will be called when the server needs to shutdown. The
client should release all connections and interfaces for this server.

A client which is connected to multiple OPCServers (for example Data access and/or other servers such
as Alarms and events servers from one or more vendors) should maintain separate shutdown callbacks
for each object since any server can shut down independently of the others.

4.2.1 IOPCShutdown::ShutdownRequest

HRESULT ShutdownRequest (
[in] LPWSTR szReason

);

Description

This method is provided by the client so that the server can request that the client disconnect from the
server. The client should UnAdvise all connections, Remove all groups and release all interfaces.

Parameters Description

szReason An optional text string provided by the server
indicating the reason for the shutdown. The server may
pass a pointer to aNUL string if no reason is provided.

HRESULT Return Codes

Return Code Description
S OK The client must alwaysreturn S OK.
Comments

The shutdown connection point ison a‘per COM object’ basis. That is, it relates to the object created by
CoCreate... If aclient connects to multiple COM objects then it should monitor each one separately for
shutdown requests.

OPC Common Definitions

5. IOPCCommon

Thisinterfaceisused by all OPC Server types (DataAccess, Alarm& Event, Historical Data). It provides
the ability to set and query aLocalelD which would bein effect for the particular client/server session.
That is, the actions of one client do not affect any other clients.

Aswith other interfaces such as |Unknown, the instance of thisinterface for each server is unique.
That is, an OPC Data Access server object and and OPC Alarms and Eventsserver object might both
provide an implementation of IOPCCommon. A client which is maintaining connections to both servers
would, aswith any other interface, use the interfaces on these two objects independently.

5.1.1 IOPCCommon::SetLocalelD
HRESULT SetLocalelD (

[in] LCID dwLcid

)

Description

Set the default Localel D for this server/client session. Thislocaleid will be used by the GetErrorString
method on thisinterface. It should also be used asthe *default’ localeid by any other server functions
that are affected by localid. Other OPC interfaces may provide additional Localel D capability by
allowing this LocalID to be overridden either via a parameter to a method or via a property on achild

object.

Parameters Description

dwLcid The default LocalelD for this server/client session
Return Codes

Return Code Description

E FAIL The operation failed.

E_INVALIDARG An argument to the function wasinvalid. (For

example, the Localel D specified isnot valid.)

S OK The operation succeeded.

Comments

The default value for the server should be LOCALE_SYSTEM_DEFAULT.

OPC Common Definitions

5.1.2 I0OPCCommon::GetLocalelD

HRESULT GetLocaelD (
[out] LCID *pdwLcid
);

Description

Return the default Localel D for this server/client session.

Parameters Description
pdwLcid Whereto return the default Localel D for this server/client
session
Return Codes
Return Code Description
E_FAIL The operation failed.
E INVALIDARG An argument to the function wasinvalid. (For
example, the passed pointer is not valid.)
S OK The operation succeeded.
Comments

5.1.3 IOPCCommon::QueryAvailableLocalelDs

HRESULT QueryAvailablelLocalel Ds (
[out] DWORD * pdwCount,
[out, sizeis(dwCount)] LCID **pdwLcid

)

Description

Return the available Localel Ds for this server/client session.

Parameters Description
pdwCount Where to return the Localel D count
pdwLcid Whereto return the LocalelD list.

10

OPC Common Definitions

Return Codes
Return Code Description
E_FAIL The operation failed.
E_INVALIDARG An argument to the function wasinvalid. (For
example, the passed pointer is not valid.)
S OK The operation succeeded.
Comments

5.1.4 IOPCCommon::GetErrorString

HRESULT GetErrorString(
[in] HRESULT dweError,
[out, string] LPWSTR *ppString
);

Description

Returns the error string for a server specific error code.

Parameters Description

dwError A server specific error code that the client application had
returned from an interface function from the server, and for
which the client application is requesting the server’ s textual
representation.

ppString Pointer to pointer where server supplied result will be saved
Return Codes

Return Code Description

E FAIL The operation failed.

E OUTOFMEMORY Not enough memory

E INVALIDARG An argument to the function wasinvalid. (For

example, the error code specified is not valid.)

S OK The operation succeeded.

Comments

The expected behavior is that thiswill include handling of Win32 errors aswell (such as RPC errors).
Client must free the returned string.

It is recommended that the server put any OPC specific stringsinto an external resource to simplify
translation.

11

OPC Common Definitions

Notethat if this method isbeing called viaDCOM theniit is very possible that RPC or other network
related errorswill be returned. For thisreason it is probably good practice for the client to attempt to call
alocal Win32 function such as FormatMessage if this function fails.

5.1.5 IOPCCommon::SetClientName

HRESULT SetClientName (
[in, string] LPCWSTR szName

);

Description

Allowsthe client to optionally register aclient name with the server. Thisisincluded primarily for
debugging purposes. The recommended behavior isthat the client set his Node name and EXE name

here.
Parameters Description
szName An arbitrary string containing information about the client
task.
Return Codes
Return Code Description
E FAIL The operation failed.
E INVALIDARG An argument to the function wasinvalid. (For
example, the pointer specified isnot valid.)
S OK The operation succeeded.
Comments

OPC Common Definitions

6. Installation and Registration Issues

This section describes all installation i ssues which are common to all OPC Servers (no matter which
interfaces they implement). Specific installation and registration issues will be described in the interface-
specific documents.

It is assumed that the server vendor will provide a SETUP.EXE to install the needed components for
their server. Thiswill not be discussed further. Other than the actual components, the main issue
affecting OL E software is management of the Windows Registry and Component Catagories. The
issues here are () what entries need to be made and (b) how they can be made.

6.1 Component Categories

With the possibly huge amount of available components on a single computer system, their
management becomes increasingly difficult. OPC Clients often need to enumerate the OPC Serversthat
they want to use in a certain context. Initsfirst version, OPC specified a sub-key called OPC to tag the
OPC Server entriesin theregistry. Clients have to browse for this subkey. This method isinefficient as
it requires browsing all CLSID entriesin the registry. Name collisions may occur. And finally, access to
remote registries will be restricted in NT5.0.

For all server specifications past DataAccess 1.0A, OPC uses Component Categories as away to
categorize OPC Servers by their implemented functionality. Clients can use the new interface
IOPCServerList to obtain alist of serverswith the required functionality. See the following chapter for
the specification of thisinterface

OPC defines “implemented categories’ for each version of each OPC Interface specification. Each
category isidentified by aglobally unique identifier (GUID), the CATID. CATIDs are specified in the
registry section of each specification.

It is expected that a server will first create any category it uses and then will register for that category.
Unregistering a server should cause it to be removed from that category. See the | CatRegister
documentation for additional information.

A single server may belong to more than one category. |.e., it may support DataAccess Versions 1.0A
and 2.0 and in addition Alarm& Event Handling.

6.1.1 Component Categories Registration

During the registration process, each OPC Server must register itself with the Component Categories
Manager, a Microsoft supplied system COM object. OPC Clients will query the Components Category
Manager to enumerate the CLSIDs of all registered OPC Servers.

6.1.1.1 Server Registration

To Register with the Component Categories Manager, a server should first register the OPC defined
Category ID (CATID) and the OPC defined Category Description by calling | CatRegister::
RegisterCategories(), and then register its own CLSID as an implementation of the CATID with acall to
| CatRegister:: RegisterClasslmpl Categories().

To get an interface pointer to | CatRegister, call CoCreatel nstance() asin this example from the Alarm &
Events Sample Server:

#i ncl ude <conctat. h>

CoCr eat el nst ance(CLSI D_St dConmponent Cat egori esMgr, NULL,
CLSCTX_| NPROC_SERVER, |1D_| Cat Regi ster, (void**)&pcr);

13

OPC Common Definitions

The OPC Alarm & Events Sample Server code uses helper functions defined in CATHEL P.CPP to make
the actual callsto ICatRegister. Hereis how the sample server registers and un-registers the component
categories:

#i ncl ude "cathel p. h"
#i ncl ude "opc_ae. h"
#i ncl ude "opcaedef. h"

voi d Regi sterServer()

{
/1l register conponent categories
HRESULT hr;

/1 11D _OPCEvent ServerCATID is the Category ID (a GUI D) defined in
opc_ae. idl

/1 OPC_EVENTSERVER_CAT_DESC is the category description defined in
opcaedef . h

/1 Al servers should register the categogy this way

hr = Creat eConmponent Cat egory(|1 D_OPCEvent Server CATI D,
OPC_EVENTSERVER_CAT_DESC) ;

/1 CLSI D OPCEvent Server is the CLSID for this sanple server. Each server

/1 will need to register its own unique CLSID here with the conponent
manager .
hr = Regi st er CLSI DI nCat egory(CLSID_OPCEvent Server, || D_OPCEvent Server CATI D

)
}

voi d Unregi sterServer()

{
UnRegi st er CLSI DI nCat egory(CLSI D_OPCEvent Server, || D_OPCEvent Server CATID)

}

6.1.1.2 Client Enumeration

Clientswill use the Interface IOPCServerList to obtain alist of servers either locally or on aremote host.
Thisinterface basically provides the functionality of the Component Categories Manager. It has been
defined by OPC, because access to the Component Categories Manager does not work for remote
machines.

See the following chapter for the specification of IOPCServerList.

6.2 Registry Entries for the Proxy/Stub DLL
The proxy/stub DLLs are used for marshalling interfacesto LOCAL or REMOTE servers. It is generated
directly from the IDL code and should be the same for every OPC Server. In general the Proxy/Stub will
use self registration. (Define REGISTER_PROXY _DLL during the build). Sincethisiscompletely
automatic and transparent it is not discussed further.
Also note that a prebuilt and tested proxy/stub DLL will be provided at the OPC Foundation Web site
making it unnecessary for vendorsto rebuild thisDLL.

Although vendors are allowed to add their own interfaces to OPC objects (as with any COM object)
they should NEV ER modify the standard OPC IDL files or Proxy/Stub DLLsto include such interfaces.

14

OPC Common Definitions

Such interfaces should ALWAY S be defined in a separate vendor specific IDL file and should be
marshalled by a separate vendor specific Proxy/Stub DLL.

6.3 Creating the Registry Entries

COM defines a“ self-registration” mechanism that enables you to encapsul ate registry needsintoaDLL
or EXE, providing clients and servers an easy way to make sure that any given moduleisfully and
accurately registered. Inaddition, COM also includes “ unregistration” so that a server can remove all

of itsregistry entrieswhen the DLL or EXE isremoved from the file system, thereby keeping the registry
clean from useless entries.

When asked to self-register, aserver must create all entries for every component that it supports,
including any entries for type libraries. When asked to “un-register” the server must remove those
entriesthat it created in its self-registration.

For aDLL server, these requests are made through calls to the exported functions DIl Register Server
and DIlUnregister Server, which must exist in the DLL under these exact names. Both functions take no
arguments and return an HRESULT to indicate the result. Thetwo applicable error codes are
SELFREG_E CLASS (failure to register/unregister CLSID information) and SELFREG _E TYPELIB
(failure to register/unregister TypeLibinformation).*

If the server is packaged in an EXE module, then the application wishing to register the server launches
the EXE server with the command-line argument /RegServer or -RegServer (case-insensitive). If the
application wishes to unregister the server, it launches the EXE with the command-line argument
/UnregServer or -UnregServer. The self-registering EXE detects these command-line arguments and
invokes the same operations asa DLL would within DIIRegisterServer and DIIUnregisterServer,
respectively, registering its module path under L ocal Server32 instead of InprocServer32 or
InprocHandler32.

The server must register the full path to the installation location of the DLL or EXE module for their
respective InprocServer32, InprocHandler32, and L ocal Server32 keys in the registry. The module path is
easily obtained through the Win32 API function GetM odul eFileName.

NOTE: The server should NOT register the proxy/stub interfaces. They should be registered by the
proxy/stub DLL as discussed earlier.

Theregistry entries for proxy interfaces can be easily generated when compiling the proxy dll. Simply
define the constant REGISTER_PROXY _DLL during compilation, and export DIIRegisterServer and
DllUnregisterServer during the link. One can now populate the registry by executing regsvr32 and
passing the proxy dll name as an argument.

Thefollowing are the Microsoft COM required registry entries for alocal server (EXE) shownin
Registry File (.reg) format:
REGEDIT

HKEY_CLASSES_ROOT\MyVendor .ServerName.1l = My OPC Server Description
HKEY_CLASSES_ROOT\MyVendor .ServerName.1\CLSID = { Your Server”s unique CLSID }

HKEY_CLASSES_ROOT\CLSID\{ Your Server”s umique CLSED } = My OPC Server Description
HKEY_CLASSES_ROOT\CLSID\{ Your Server”s umique CLSED }\ProglD = MyVendor.ServerName.1l
HKEY_CLASSES_ROOT\CLSID\{ Your Server”s umnique CLSED }\LocalServer32 = c:\FULLPATH\MyOPCserver.exe

Thefollowing are the Microsoft COM required registry entries for an Inproc server (DLL) shownin
Registry File (.reg) format:
REGEDIT

HKEY_CLASSES_ROOT\MyVendor .ServerName.1l = My OPC Server Description
HKEY_CLASSES_ROOT\MyVendor .ServerName.1\CLSID = {_Your Server’s unique CLSID }

HKEY_CLASSES_ROOT\CLSID\{ Your Server”s umique CLSED } = My OPC Server Description
HKEY_CLASSES_ROOT\CLSID\{ Your Server”s umnigue CLSED }\ProglD = MyVendor.ServerName.1l

! SELFREG_E_CLASSand SELFREG_E_TYPELIB are defined in the OLE Control’s header OLECTL.H.

15

OPC Common Definitions

HKEY_CLASSES_ROOT\CLSID\{ Your Handler”s umnique CLSED }\InprocServer32 = c:\FULLPATH\MyOPCserver.dll

Thefollowing are the OPC required registry entriesfor al Data Access 1.0 servers shown in Registry
File (.reg) format. Only serversthat support the Data Access 1.0 interface should make these entries:

REGEDIT

HKEY_CLASSES_ROOT\MyVendor . ServerName . 1\OPC
HKEY_CLASSES_ROOT\MyVendor . ServerName.1\OPC\Vendor = My Vendor Name

6.4 Version Convention

All OPC provided runtime files (DLLs and EXES) will contain version information embedded in thefile's
resource. By convention, the version number will use the following format:

MM mm bb

Where:

MM == Major Version
mm == Minor Version
bb == Build Number

The version resource provides two version numbers, one for file and one for product. The same version
number will be used for both fields. In the resource, the version numbers are represented by four
commadelimited integers. To represent our three-part version number, the third integer will always be
zero. For example, if the version is 5.2.41 then the version resource (in the source .RC file) will 1ook like
this:

16

OPC Common Definitions

VS_VERSI ON_I NFO VERSI ONI NFO
FI LEVERSION 5, 2,0, 41
PRODUCTVERSI ON 5, 2, 0, 41
FI LEFLAGSMASK 0x3f L

#i f def _DEBUG
FI LEFLAGS 0Ox1L

#el se
FI LEFLAGS 0xO0L

#endi f
FI LEOS 0x40004L
FI LETYPE 0x2L
FI LESUBTYPE 0xOL

BEG N
BLOCK "StringFil el nfo"
BEGI N
BLOCK "040904b0"
BEG N

VALUE " ConpanyName",

Proxy/ St ub\ 0"
VALUE "Fil eVersion",

VALUE "I nt er nal Nanme",
VALUE "Legal Copyright",
VALUE " Ori gi nal Fil ename",

VALUE " Product Nanme",

END
END
BLOCK "Var Fi | el nf 0"
BEG N
VALUE "Transl ation", 0x409
END
END

"OPC Al arm and Event
VALUE " Product Versi on",

"OPC Foundation \0"
VALUE "Fil eDescri ption"

"OPC Al arm and Event Server

"5.2.41\0"
"opc_aeps\ 0"

"Copyright © 1997 OPC Foundati on\ 0"
"opc_aeps.dl I\ 0"
Server Proxy/ Stub\0"

"5.2.41\0"

1200

The version information will be used to insure that during installation, an older version of afilewill not

overwrite anewer version.

6.5 Installing OPC Binaries

All OPC vendorswill need to install the appropriate OPC Foundation provided components (proxy/stub
DLLs, Automation wrappers etc.) to work with their components.

Since multiple vendorswill be installing identical OPC Foundation components, it isimperative
that all vendorsfollow theseinstallation instructions exactly without deviation:

All OPC Foundation binaries must be installed and registered in the Windows Systems directory.
Thisisthe directory returned by the WIN32 function GetSystemDirectory. If agiven file already exists
in this directory, the program should overwrite it with your application file only if your fileisamore
recent version. The GetFileTime, GetFileVersioninfo, and GetFilel nformationByHandl e functions can be

used to determine which file is more recent.

All OPC Foundation binaries must be installed/uninstalled with reference counting.

After copying afile, your installation program must make sure to increment the usage counter for that
filein the registry. When removing an application, it should decrement the use counter. If theresultis
zero, the user should be giventhe option of unregistering and deleting the file. The user should be
warned that other applications may actually use thisfile and will not work if it is missing. The registry

key used for reference counting of all filesis:

\ HKEY_LOCAL_MACHI NE\ SOFTWARE\ M cr osof t \ W ndows\ Cur r ent Ver si on\ Shar edDLLs

17

OPC Common Definitions

The following example shows areference count of 5 for OPCPROXY .DLL and areference count of 3 for
OPCENUM.EXE:

\ HKEY_LOCAL_MACHI NE\ SOFTWARE\ M cr osof t \ W ndows\ Cur r ent Ver si on\ Shar edDLLs
C: \ W NNT\ Syst enB2\ OPCPROXY. DLL=5
C: \ W NNT\ Syst en82\ OPCENUM EXE=3

Most installation utilities like Install Shield handle the install ation of shared, version checked files easily.

18

OPC Common Definitions

7. OPC Server Browser

7.1 Overview

The OPC Foundation supplied Server Browser OPCENUM .EXE can reside on any machine, will access
the local Component Categories Manger and provides a new interface |OPCServerList which can be
marshaled and used by remote clients. This server has a published classid (see below) and can be
installed once on any machine which hosts OPC servers. The client still needs to know the nodename of
the target machine however he can now create this object remotely and use it's|OPCServerList
interface to determine what types and brands of servers are available on that machine.

7.2 Information for Users

The OPC Server Browser (OPCENUM.EXE) and the required proxy/stub (OPCCOMN_PS.DLL) can be
obtained from the OPC Foundation Web Site. The EXE and DLL should be copied to the main
WINDOWS directory (see the section “Installing OPC Binaries’, above).

The EXE isinstalled by running
OPCENUM / RegSer ver
or
OPCENUM / Servi ce toinstall the server asaservice on Windows NT.

TheDLL isinstalled by running
REGSVR32 OPCComm_ps. dl |

No further user action isrequired. Doing the steps above will allow Client programs you have
purchased which support this server browser capability to function properly. Note that the OPC Server
Browser is designed to allow access by any user regardless of the DCOM security setup.

7.3 Information for Server Programmers

Note that the OPC Foundation provides the OPC Browser Object. OPC Servers should NOT implement
thisinterface. OPC Servers should simply register themselves with the appropriate component category
as described on the appropriate OPC Specification.

7.4 Information for Client Programmers

Client programmers should create the OPC Server Browser Object on the target machine by passing its
classid (CLSID_OPCsServerList asdefined inopc_cats.c) to CoCreatel nstanceEx. They should obtain
the OPCServerList interface (I1D_IOPCServerList as defined in opccomn_i.c). They can then use this
interface to obtain lists of the available serversfor particular component categories. The OPC
Component categories for the various OPC Server types are defined inopc_cats.c. The marshalling for
thisinterfaceisincluded in the OPCComn_ps.dil.

19

OPC Common Definitions

7.5 IOPCServerList Reference

Theinterfaceis designed to be as simple as possible to use. It is similar to the standard | Catl nformation
but has been simplified and also modified so that it can work remotely. It provides just the minimum
functionality required for this particular application. It provides the methods which are described in
more detail |ater.

7.5.1 IOPCServerList::EnumClassesofCategory

HRESULT EnuntCl assesOf Cat egori es(
[in] ULONG cl npl enent ed,
[in,size_is(clnplenmented)] CATID rgcatidlnpl[],
[in] ULONG cRequired,
[in,size_is(cRequired)] CATID rgcatidReq[],
[out] 1 Enum&Ul D** ppenunCl sid);

Description

Returns a standard EnumCL SID containing the CL SIDs of the servers that implement any of thelisted
categories on the target machine. This method is similar to the method of the same name provided in

| Catlnformation except that the caller should use avalue of 0 instead of —1 for the clmplemented and
cRequired arguments to include classes regardless of which classes they implement or require
(respectively).

Note that the easiest way to use this method isto passin asingle CATID (such as an OPC Data Access
2.0 Server) and to pass a0 for Required IDs. Thiswill give you an enumeration of the CLSIDsof the
servers that implement the specified category.

Parameters Description
clmplemented 0 (see description, above)

The number of category IDsin the rgcatidimpl array
rgcatidimpl An array of category identifiers.
cRequired 0 (see description, above)

The number of category IDsin the rgcatidReq array.
rgcatidReq An array of category identifiers.
ppenumClsid The location in which to return an IEnumGUID interface that

can be used to enumerate the CL SIDs of the classes that
implement category rcatid.

Return Codes

Return Code Description

E FAIL The operation failed.

REGDB_E CLASSNOTREG Unable to create an instance of the Component
Categories Manager on the remote machine.

E INVALIDARG One or more arguments are incorrect.

E OUTOFMEMORY Insufficient memory to create and return an
enumerator object.

S OK The operation succeeded.

20

OPC Common Definitions

7.5.2 I0PCServerList::GetClassDetails

HRESULT Get Cl assDet ai | s(
[in] REFCLSID clsid,
[out] LPOLESTR* ppszProgl D,
[out] LPOLESTR* ppszUser Type);

Description

Given aclass ID, obtain the Progl D and the User Readable Name of the associated server.

Parameters Description
clsid One of the CLSIDs returned by EnumClassesOf Category
(above).
ppszProglD [out] ProglID for the specified CLSID.
ppszUserType [out] User Readable Name for the specified CLSID.
Return Codes

Return Code Description

E FAIL The operation failed.

REGDB_E CLASSNOTREG Thereisno CLSID registered for the class object.

REGDB_E READREGDB There was an error reading the registry.

OLE _E REGDB_KEY The ProglD = MainUser TypeName or CLSID =
MainUser TypeName keys are missing from the
registry.

E_INVALIDARG One or more arguments are incorrect.

E OUTOFMEMORY Insufficient memory to create and return an
enumerator object.

S OK The operation succeeded.

21

OPC Common Definitions

7.5.3 IOPCServerList::CLSIDFromProgID

HRESULT CLSI DFr onPr ogl D(
[in] LPCOLESTR szProgld,
[out] LPCLSID clsid);

Description

Given the Progl D which as astring, return the CLSID whichisaGUID. Thisisuseful when the client
(e.g. an Automation Wrapper DLL) already knows the PROGID of the target server on aremote
machine. ProgID isastring and thus easy to deal with however this needsto be translated to aCLSID
to be passed to CoCreatel nstanceEx.

Parameters Description

szProgld ProglD string for which to read the CLSID.

clsid [out] CLSID which isregistered for the given ProgID.

Return Codes

Return Code Description

E FAIL The operation failed.

REGDB_E CLASSNOTREG Thereisno CLSID registered for the class object.

REGDB_E READREGDB Therewas an error reading the registry.

OLE E REGDB_KEY The ProglD = MainUser TypeName or CLSID =
MainUser TypeName keys are missing from the
registry.

E INVALIDARG One or more arguments are incorrect.

E OUTOFMEMORY Insufficient memory to create and return an
enumerator object.

S OK The operation succeeded.

OPC Common Definitions

11
11
11
11
11
11
11
11
11
11

. Appendix A — OPC Common IDL Specification

The current filesrequire MIDL compiler 3.00.15 or later and the WIN NT 4.0 release SDK.
Use the command line MIDL /ms_ext /c_ext /app_config opcda.idl.
Theresulting OPCCOMN.H file should be includedin all clients and servers.

Theresulting OPCCOMN_I.C file definesthe interface IDs and should be linked into all clients and
servers.

NOTE: ThisIDL fileand the Proxy/Stub generated from it should NEVER be
modified in any way. If you add vendor specific interfacesto your server (whichis
allowed) you must generate a SEPARATE vendor specific IDL fileto describe only
those interfaces and a separate vendor specific ProxyStub DLL to marshall only
those interfaces.

OPCCOWN. | DL
REVI SI ON: 04/ 06/ 98 08: 00 PM (EST)
VERSI ONI NFO 1.0.0.0

04/ 09/ 98 acc inmport unknwn.idl rather than oaidl.idl
06/15/98 acc add 'library' object at end to allow typelib generation
06/ 19/ 98 acc change V2 uuids prior to final release
to avoid conflict with 'old OPCDA Automation uuids
09/ 18/ 98 acc add OPCServerList IDL (with help from Gary Kl assen)

i mport "unknwn.idl";
i mport “"concat.idl";

11
11
11
11
11

[

]

EZR R S S S S S I I S
Al'l servers except OPCDAL.0 have the ability to
make cal | backs into the client on shutdown via
| OPCShut down

EZR R S S S S S I I S
obj ect,

uui d(F31DFDE1- 07B6- 11d2- B2D8- 0060083BA1FB) ,
poi nt er _defaul t (uni que)

i nterface | OPCShut down : | Unknown

{

}

11
11
11

[

HRESULT Shut downRequest (
[in, string] LPCWSTR szReason

)

ERE R R R R R R R R R R R R R R R R

All servers except OPCDAl.0 support | OPCComrn

ERE R R R R R R R R R R R R R R R R

23

OPC Common Definitions

obj ect,
uui d(F31DFDE2- 07B6- 11d2- B2D8- 0060083BA1FB) ,
poi nt er _defaul t (uni que)

]

i nterface | OPCConmmon : | Unknown

{

HRESULT Set Local el D (
[in] LCID dwLcid
)

HRESULT Get Local el D (
[out] LCID *pdwlcid
)

HRESULT QueryAvai |l abl eLocal el Ds (
[out] DWORD *pdwCount,
[out, size_is(,*pdwCount)] LCID **pdwL.cid
)

HRESULT GetError String(
[in] HRESULT dwError,
[out, string] LPWSTR *ppString

)

HRESULT Set Cl i ent Nanme (
[in, string] LPCWSTR szNane

)

//**

/1 The OPCEnum EXE obj ect provided by the OPC Foundation
/'l supports the |1 OPCServerlList interface via DCOM
/1 to allow clients to determ ne avail able OPC servers

/1 on renote machi nes
//**

[
obj ect,
uui d(13486D50- 4821- 11D2- A494- 3CB306C10000) ,
poi nt er _defaul t (uni que)

]

interface | OPCServerList : |Unknown
{
HRESULT Enuntl assesOf Cat egori es(

[in] ULONG cl npl enent ed,
[in,size_is(clnplenmented)] CATID rgcatidlinpl[],
[in] ULONG cRequired,
[in,size_is(cRequired)] CATID rgcatidReq[],
[out] 1 Enum@UI D** ppenunCl sid);

HRESULT Get Cl assDetai | s(

24

OPC Common Definitions

[in] REFCLSID clsid,
[out] LPOLESTR* ppszProgl D,
[out] LPOLESTR* ppszUser Type);

HRESULT CLSI DFr onPr ogl D(
[in] LPCOLESTR szProgld,
[out] LPCLSID clsid);

//**

/1 This TYPELIB is generated as a conveni ence to users of high |evel
tool s

/1 which are capabl e of using or browsing TYPELI Bs.

/1 "Smart Pointers' in VC5 is one exanple.
//**

[
uui d(B28EEDB1- AC6F- 11d1- 84D5- 00608CB8A7E9) ,

version(1l.0),
hel pstring("OPCCOW 1.0 Type Library")

]
i brary OPCCOWN

{
i mportlib("stdole32.tlb");
i mportlib("stdole2.tlb");
i nterface | OPCCommon;
i nterface | OPCShut down;
interface | OpcServerlList;
1

25

OPC Common Definitions

9. Appendix B — Sample String Filter Function

Thisfunction provides essentially the same functionality asthe LIKE operator in Visual Basic.

MatchPattern

Syntax
BOOL MatchPattern(LPCTSTR string, LPCTSTR pattern, BOOL bCaseSensitive)
Return Value

If string matches pattern, return isTRUE; if thereis no match, returnisFAL SE If either string or pattern is
Null, return isFALSE;

Parameters

string String to be compared with pattern.

pattern Any string conforming to the pattern-matching conventions described in Remarks.
bCaseSensitive TRUE if comparison should be case sensitive.

Remarks

A versatile tool used to compare two strings. The pattern-matching features allow you to use wildcard

characters, character lists, or character ranges, in any combination, to match strings. The following table
shows the characters allowed in pattern and what they match:

Charactersin pattern Matchesin string

? Any single character.

* Zero or more characters.

Any single digit (0-9).

[charlist] Any single character incharlist.
['charlist] Any single character not incharlist.

A group of one or more characters (charlist) enclosed in brackets ([]) can be used to match any single
character instring and can include ailmost any charcter code, including digits.

Note To match the special characters left bracket ([), question mark (?), number sign (#), and asterisk (*),
enclose them in brackets. The right bracket (]) can't be used within a group to match itself, but it can be used
outside agroup as an individual character.

By using a hyphen (-) to separate the upper and lower bounds of the range, charlist can specify arange of
characters. For example, [A- Z] resultsin amatch if the corresponding character position instring contains
any uppercase lettersin therange A -Z. Multiple ranges are included within the brackets without delimiters.

Other important rules for pattern matching include the following:

26

OPC Common Definitions

An exclamation point (!) at the beginning of charlist means that amatch is made if any character
except the charactersin charlist isfound instring. When used outside brackets, the exclamation
point matches itself.

A hyphen (-) can appear either at the beginning (after an exclamation point if oneis used) or at the
end of charlist to match itself. In any other location, the hyphen is used to identify arange of
characters.

When arange of charactersis specified, they must appear in ascending sort order (from lowest to
highest). [A- Z] isavalid pattern, but[Z- A] isnot.

The character sequence|] isconsidered a zero-length string ("*").

Here is the code:

inline int ConvertCase(int c, BOOL bCaseSensitive)
{

}

return bCaseSensitive ? ¢ : toupper(c);

//****'k*******'k*******'k*******'k*******'k*******'k****************************

/1 return TRUE if String Matches Pattern --
/l -- uses Visual Basic LIKE operator syntax
/1 CAUTION: Function is recursive

//***

BOOL MatchPattern(LPCTSTR String, LPCTSTR Pattern, BOOL bCaseSensitive)
{

TCHAR ¢, p, |;

for (5 1)

{
switch (p = ConvertCase(*Pattern++, bCaseSensitive))
{
case 0: /1 end of pattern

return *String ? FALSE : TRUE;, // if end of string TRUE

case _T('*'):
while (*String)

{ [/l match zero or nore char
if (MatchPattern (String++, Pattern, bCaseSensitive))
return TRUE;
}

return MatchPattern (String, Pattern, bCaseSensitive);

case _T('?'):

if (*String++ == 0) /1 match any one char
return FALSE; /1 not end of string
br eak;
case _T('["):

/1 match char set
if ((c = ConvertCase(*String++, bCaseSensitive)) == 0)
return FALSE; /1 syntax

27

OPC Common Definitions

I =0;
if(*Pattern == _T('!")) [// match a char if NOT in set []
{
++Pattern;
while((p = ConvertCase(*Pattern++, bCaseSensitive))
= _T('\0'))
{
if (p=_T(1")) /1 if end of char set, then
br eak; /! no match found
it (p==_T(-"))
{ /1 check a range of chars?
p = ConvertCase(*Pattern, bCaseSensitive);
/1 get highlimt of range
if (p==0 [] p==_T(01"))
return FALSE; /1 syntax
if (c>1 & c <=p)
return FALSE; I/l if in range, return FALSE
}
I = p;
if (c ==p) /1 if char matches this el enent
return FALSE; /1 return fal se
}
}
el se [/ match if char is in set []
{
while((p = ConvertCase(*Pattern++, bCaseSensitive))
= _T('\0'))
{
if (p=_T(1")) /1 if end of char set, then
return FALSE; /1 no match found
it (p==_T(-"))
{ /1 check a range of chars?
p = ConvertCase(*Pattern, bCaseSensitive);
/1 get high limt of range
it (p=0 [p==_T("1"))
return FALSE; /1 syntax
if (c>1 & c <=p)
br eak; // if in range, nove on
}
I = p;
if (c ==p) /1 if char matches this el ement
br eak; // nove on
}
while (p & p!'= _T('1")) /1 got a match in char set
p = *Pattern++; /1 skip to end of set
}
br eak;
case T('#'):

C = *String++;

28

OPC Common Definitions

if(! istdigit(c))

return FALSE; /[l not a digit
br eak;
defaul t:
¢ = ConvertCase(*String++, bCaseSensitive);
if(cl=p) /1 check for exact char
return FALSE; // not a match
br eak;
}

29

