OPC Data Access Custom Interface Specification 2.03

_d
OLE I‘m1 Process Gontrol

Data Access Custom I nterface
Standard

Verson 2.03

July 27, 1999

OPC Data Access Custom | nterface Specification 2.03

Specification Type Industry Standard Specification
Title: OPC Data Access Custom Date: July 27,1999
Interface Specification
Veson: 202 Soft M S-Word
Source: opcda203_cust
Author: Opc Foundation Status: Released
Synopsis

This specification is the specification of the interface for developers of OPC

Data Access clients and OPC servers.. The specification is aresult of an

analysis and design process to develop a standard interface to facilitate the

development of servers and clients by multiple vendors that shall inter-operate

seamlessly together.

Trademarks:

Most computer and software brand names have trademarks or registered
trademarks. Theindividual trademarks have not been listed here.

Required Runtime Environment:

This specification requires Windows 95, Windows NT 4.0 or later

OPC Data Access Custom | nterface Specification 2.03

NON-EXCLUSVE LICENSE AGREEMENT

The OPC Foundation, a non-profit corporation (the “OPC Foundation™), has established a set of standard
OLE/COM interface protocols intended to foster greater interoperability between automation/control
applications, field systems/devices, and business/office applications in the process control industry.

The current OPC specifications, prototype software examples and related documentation (collectively, the
“OPC Materials"), form a set of standard OLE/COM interface protocols based upon the functional
requirements of Microsoft’s OLE/COM technology. Such technology defines standard objects, methods,
and properties for servers of real-time information like distributed process systems, programmable logic
controllers, smart field devices and analyzersin order to communicate the information that such servers
contain to standard OLE/COM compliant technologies enabled devices (e.g., servers, applications, etc.).

The OPC Foundation will grant to you (the “User”), whether an individual or legal entity, alicenseto use,
and provide User with acopy of, the current version of the OPC Materials so long as User abides by the
terms contained in this Non-Exclusive License Agreement (“ Agreement”). If User does not agreeto the
terms and conditions contained in this Agreement, the OPC Materials may not be used, and all copies (in
all formats) of such materialsin User’s possession must either be destroyed or returned to the OPC
Foundation. By using the OPC Materials, User (including any employees and agents of User) agreesto be
bound by the terms of this Agreement.

LICENSE GRANT:

Subject to the terms and conditions of this Agreement, the OPC Foundation hereby grantsto User anon-
exclusive, royalty-free, limited license to use, copy, display and distribute the OPC Materialsin order to
make, use, sell or otherwise distribute any products and/or product literature that are compliant with the
standards included in the OPC Materials.

All copies of the OPC Materials made and/or distributed by User must include all copyright and other
proprietary rights notices include on or in the copy of such materials provided to User by the OPC
Foundation.

The OPC Foundation shall retain al right, title and interest (including, without limitation, the copyrights) in
the OPC Materials, subject to the limited license granted to User under this Agreement.

WARRANTY AND LIABILITY DISCLAIMERS:

User acknowledges that the OPC Foundation has provided the OPC Materials for informational purposes
only in order to help User understand Microsoft’ s OLE/COM technology. THE OPC MATERIALS ARE
PROVIDED “ASIS’ WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,

INCLUDING, BUT NOT LIMITED TO, WARRANTIES OF PERFORMANCE, MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT. USER BEARSALL RISK
RELATING TO QUALITY, DESIGN, USE AND PERFORMANCE OF THE OPC MATERIALS. The

OPC Foundation and its members do not warrant that the OPC Materials, their design or their use will meet
User’ srequirements, operate without interruption or be error free.

IN NO EVENT SHALL THE OPC FOUNDATION, ITSMEMBERS, ORANY THIRD PARTY BE
LIABLE FOR ANY COSTS, EXPENSES, LOSSES, DAMAGES (INCLUDING, BUT NOT LIMITED
TO, DIRECT, INDIRECT, CONSEQUENTIAL, INCIDENTAL, SPECIAL OR PUNITIVE DAMAGES)
ORINJJRIESINCURRED BY USEROR ANY THIRD PARTY ASA RESULT OF THIS
AGREEMENT OR ANY USE OF THE OPC MATERIALS.

OPC Data Access Custom | nterface Specification 2.03

GENERAL PROVISONS

This Agreement and User’ s license to the OPC Materials shall be terminated (a) by User ceasing all use of
the OPC Materials, (b) by User obtaining a superseding version of the OPC Materials, or (c) by the OPC
Foundation, at its option, if User commits amaterial breach hereof. Upon any termination of this
Agreement, User shall immediately cease all use of the OPC Materials, destroy all copiesthereof thenin its
possession and take such other actions as the OPC Foundation may reasonably request to ensure that no
copies of the OPC Materials licensed under this Agreement remain in its possession.

User shall not export or re-export the OPC Materials or any product produced directly by the use thereof to
any person or destination that is not authorized to receive them under the export control laws and
regulations of the United States.

The Software and Documentation are provided with Restricted Rights. Use, duplication or disclosure by
the U.S. government is subject to restrictions as set forth in (a) this Agreement pursuant to DFARs
227.7202-3(a); (b) subparagraph (c)(1)(i) of the Rightsin Technical Data and Computer Software clause at
DFARs 252.227-7013; or (c) the Commercial Computer Software Restricted Rights clause at FAR 52.227-
19 subdivision (c)(1) and (2), as applicable. Contractor/ manufacturer isthe OPC Foundation, P.O. Box
140524, Augtin, Texas 78714-0524.

Should any provision of this Agreement be held to be void, invalid, unenforceable or illegal by acourt, the
validity and enforceability of the other provisions shall not be affected thereby.

This Agreement shall be governed by and construed under the laws of the State of Minnesota, excluding its
choice or law rules.

This Agreement embodies the entire understanding between the parties with respect to, and supersedes any
prior understanding or agreement (oral or written) relating to, the OPC Materials.

OPC Data Access Custom | nterface Specification 2.03

Revision 2.03 Highlights

Thisrevision includes minor clarificationsto the Deadband discussion (4.5.1.6). It also clarifiesthe
behavior of empty enumerators; The descriptions of |OPCServer::CreateGroupEnumerator and

| OPCBrowseServerAddressSpace::BrowseA ccessPaths have been clarified and corrected. They are now
consistant with the existing description of IOPCBrowseServerAddressSpace::BrowseOPCltemIDs.

Revision 2.02 Highlights

Thisrevision includes minor clarifications to the OPCltemProperties Interface discussions (4.4.6),
GroupStateM gt:: SetState (4.5.3.2) and the old (1.0) Stream Marshalling Discussion (4.6.4.6).

Revision 2.01 Highlights

This revision includes clarifications to the dwA ccessRightsFilter in IOPCBrowseServerAddressSpace and
also the discussion of access rightsin general (section 6.7.6).

Revision 2.0 Highlights
Thisrevision includes enhancementsto the 1.0A Specification. Although changes were made throughout
the document, the following areas are or particular importance:

Thisisnow refered to as the OPC Data A ccess Specification as there are other OPC efforts underway.
The Automation I nterface specification has been separated into a separate document.

All previous (1.0A) Custom Interfaces remain in place and unchanged except for minor clarifications.
Async and exception based connections should now be done using ConnectionPoints rather than
IDataObject. The existing IOPCAsynclO, I DataObject and Client side |AdviseSink interfaces support
‘old style’ (Version 1.0) connections. The new |OPCAsyncl O2, | ConnectionPointContainer and Client
side |OPCDataCallback interfaces support the ‘ new style’ Version 2.0 connections.

The behavior of the existing IOPCAsyncl O, | DataObject and Client side |AdviseSink interfacesis
unchanged however their support isoptional for OPC 2.0 complaint software. The new

IOPCAsyncl O2, | ConnectionPointContainer and Client side |OPCDataCallback interfaces are required
for 2.0 compliant software.

A new ‘convenience’ interfaceis defined. |OPCltemProperties allows easy access to common and
vendor specific properties or attributes of an Item or Tag.

A ShutdownRequest capability is added viaa Connection point on the Server object and a Client side
|OPCshutdown interface that allows the server to request that all clients disconnect from the server.
Thisinterface will also be used by other OPC server types.

An 1OPCCommon interface is added to the server. Thisinterface provides several common LocalelD
related functions. Thisinterface will also be used by other OPC server types.

The OPC_BROWSE_TO capability is added to BrowseServerAddressSpace.

OPC Data Access Custom | nterface Specification 2.03

Table of Contents

1 INTRODUGCTION .ottt e bbb bbbt bbbttt 1
11 AVUDIENCEettetee ettt eset sttt 4R e e ee bbb bbb bbbttt
12 DELIVERABLES. ..ottt st eess e sess s sssssssssssssssssens
2 OPC DATA ACCESSFUNDAMENTALS
21 OPC OVERVIEW. ...etrtuertieesteeestiesssisessssessssesessesessessssesssssssesssstssssssssssssssssesssssssssssassassesssssssssssssssssssnsssssssssssesases 2
22 QT @ O = T
23 GENERAL OPC ARCHITECTURE AND COMPONENTS....ccvureierereresnenessesensssensssessssesssssssessssessssssssssssssssesnes
24 OVERVIEW OF THE OBJECTS AND INTERFACES.......covurireresrersenesenesesessssesssssssssesssssssssssssssssessssssssssssssssesnes
25 THE ADDRESS SPACE AND CONFIGURATION OF THE SERVER..........
26 APPLICATION LEVEL SERVERAND NETWORK NODE SELECTION
2.7 SYNCHRONIZATION AND SERIALIZATION ISSUES......ccitturiuririueenteeersesestsessssessssessssessssesssssssesssssssssessssssesnes 8
28 PUBLIC (AKA SHARED) GROUPS
29 PERSISTENT STORAGE STORYcuuiueiteresttresstsesstsessssessssessesessesssesssssssssssessnes
3 OPC DATA ACCESS QUICK REFERENCEcccootrireireeireeiresireiee sttt 10
31 CUSTOM INTERFACE......c.cutueerteresttreastsesssesessesssssssesessesesstsesstsessssssssssssssasssssssssassssssssssessssssssssssssssssesssesnssesns
311 (15 G357 aV= S © o] 1= ot TR
312 (O] G{CTo!0] 0 J® o)1= ot TR
313 EnumOPCItemAttributes Object
32 CUSTOM INTERFACE/CLIENT SIDE....cuctrtuetrrerersereseressesssssssssssssssssssessessssesssesns
4 OPC CUSTOM INTERFACE ...ttt aseseessssessssessssessssssssssssssssssssssssssssssssessssessssssssnes 16
41 OVERVIEW OF THE OPC CUSTOM INTERFACEccititieeeirereeeesesessisesstsessssessssssssssssesssssssssssssssssssssesssecns 16
42 GENERAL INFORMATION
421 Version INLErOPEraDilityccceieeeieiirieis sttt sa st s et s s sasses s nennes 17
422 OWNEISNIP Of MEMOTY ..ottt s sttt en st s s 18
423 Standard I nterfaces
424 NUIl Strings and NUI POINEErS.........c.ccuiieieirecessescs s ssss s s s ssssss s sssssessssssssesssssssseses 18
425 LS U1 1o [N 4 - Y2 T T 18
426 Public Groups
427 CACHE data, DEVICE dataand TimeStamPS.......cccvreeererereerrerensssenesessssssesessssssssesssssessesssssssseees 19
428 TIME SEIMES VBIUBS ...ttt ssas et as s e snsnsesnensnsnsnenssnsns
429 Asynchronous vs. Synchronous Interfaces
42.10 The ACTIVE flags, Deadband and Update RELE............c.cveerreeernerernereenersenerseesseesseesseseessseeseeens 19
4211 Errors and FELUM COUES ..ottt bbbttt 20
4212 Startup Issues
4213 VARIANT Data Types and INteroperabilityc.ccvveiveniieesiscessssesssesessssssesssssssssssssssenens 20
43 DATA ACQUISITION AND ACTIVE STATE BEHAVIOR......cturiuieriurereesireesinetsasisestsessssessssessssessssesssssssssssnens 22
431 IOPCSynclO
432 [OPCASYNCIO2Z ...ttt bbb bbb 23
433 SUBSCRIPTION vial OPCDataCallDaCKcccveuriririerririeireeineicseie e seseesenes 24
434 IOPCASynclO (old)
435 SUBSCRIPTION via |IDataObjCt (01d)cuvvuereeeerieeirieeireereseireseseseseie e sses e sesesseassseses 26
44 OPCSERVER OBUJIECTutuuurteesreressesessesssssssssassssassssassessssessssssssssssssssssssssessssessssesns 27
441 Overview
442 IUnknown
443 |OPCCommon
444 |OPCServer

445 I ConnectionPointContainer (on OPCSErVer)ccoovveveverenene
446 |OPCHEMPIOPEITIES. ..ottt
447 |OPCServerPublicGroups (0ptional)ccccevevereerrerereecinnens
448 |OPCBrowseServerAddressSpace (OPLIONal)cccceveeeeiercsienenes s ssssessssseses

Vi

OPC Data Access Custom | nterface Specification 2.03

449 B e TS Lo (o o1 o] = T
45 OPCGROUP OBECT ...vveeerirrerrerenseressssessssessssssssssssssssssssssssssssssssssessssesnns
451 General Properties
452 1@ @1} (=001, o | TR
453 [OPCGroupStateM gLcccvuririccrereicr e
454 |OPCPUbIi CGroupStatEMQL.........cvreerreeerrieeereerereeseeereeeeseeessseennns
455 [OPCSYNCIO ..ottt ssese st ssssesns
456 IOPCAsyncl 02
457 | ConnectionPointContainer (on OPCGroup)cccveeeeevennn.
458 [ENUMOPCIEMA tHHIDULES ...
459 0= ©728=\Y o To @ 1 (o] o) SO
45.10 BT 7@ o=t (o] e) FES O
46 CLIENT SIDE INTERFACES......cotuttreeireeetrese s ssessesessessssessssessssssessssesns
46.1 [OPCD@ACAIDACK.ceveeereeererieeseseseseseseessssessssessssesssessssesssssssssssessssssssssssssssssssssssssssssssessssesssesnns
462 [OPCSNULAOWN......ceceeceeeeeeee st esessesessesessesssssssssesssssssssssssssssssssessssessnssssssssssssessssssssssesnsessssesnns
463 |AdviseSink (old)
464 [AdviseSink - Data Stream FOrmats (01d)........coueerrrreirrecrneeeeeneresersesersees s
5 INSTALLATION ISSUES......ccoiirreeereeereiseneesesesessesess s ssssesssssennes
51
5.2
53
6
6.1
6.2
6.3
6.4
6.5 VARIANT DATA TYPESFOR OPC DATA ITEMSi..uciiicrireeeresireseesesssssssessssessssessssessssssssssssssssesssssssssssnees 148
6.6 CONSTANTS .ot cctreeereseeseseessseesseessssess s sesessesessssssssssessssesssssssssnsesnsesns
6.6.1 OPCHANDLE
6.7 STRUCTURES AND MASKS.....ccueuitrereirenstresserensesessesessesessessssessssesssssssssssssassssassssssssssssssssssssssssssssssssssessnsesnns
6.7.1 OPCITEMSTATE. ...ttt sees sttt
6.7.2 OPCITEMDEF ...ttt
6.7.3 OPCITEMRESULT ..ottt sees et
6.74 OPCITEMATTRIBUTES ...t
6.7.5 OPCSERVERSTATUS.......oirrtenee et
6.7.6 Access Rights........
6.8 OPC QUALITY FLAGS
7 SUMMARY OF OPC ERROR CODES ...ttt issssssssessssesssssssssssssssssssssesssssssssssssssssessssns 161
8 APPENDIX A - OPCERROR . H...ooiiricrieseessisesisesstsess s sssssssssssssssesssssssssssssssssssssessssessssessssssssssssessssns 163
9 APPENDIX B - DATA ACCESS IDL SPECIFICATION ..ooirrerrreseeresenessesseeessseessesesesessssesesnenns 167
10 APPENDIX D - OPCPROPS.H ..ottt sess st ssss sttt ssssssessssesssssssssneas 180

vii

OPC Data Access Custom | nterface Specification 2.03

1 Introduction

A General Introduction to OPC is contained in a separate OPC Overview Document
(OPCOVW.DOC). This particular document deals specifically with the OPC Data Access I nterfaces.

11 Audience

This specification isintended as reference material for developers of OPC compliant Clients and
Servers. It isassumed that the reader is familiar with Microsoft OLE/COM technology and the needs
of the Process Control industry.

This specification isintended to facilitate development of OPC Serversin C and C++, and of OPC
client applicationsin the language of choice. Therefore, the devel oper of the respective component is
expected to be fluent in the technology required for the specific component.

1.2 Deliverables

The deliverables from the OPC Foundation with respect to the OPC Data A ccess Specification 2.0
include the OPC Specification itself, OPC IDL files (included in this document as Appendices) and the
OPC Error header files (included in this document). As a convenience, standard proxystub DLLsand a
standard Data Access Header file for the OPC interfaces generated directly from the IDL will be
provided at the OPC Foundation Web Site.

This OPC Data Access specification contains design information for the following:

1. TheOPC Data Access Custom Interface- This document will describe the Interfaces and
Methods of OPC Components and Objects.

2. TheOPC Data Access Automation Interface- A Separate Document (The OPC Data Access
Automation Specification 2.0) will describe the OPC Automation Interfaces which facilitate the
use of Visual Basic, Delphi and other Automation enabled products to interface with OPC Servers.

OPC Data Access Custom | nterface Specification 2.03

2 OPC Data Access Fundamentals

This section introduces OPC Data Access and covers topics which are specific to OPC Data Access.

Additional common topicsincluding Windows NT, UNICODE, Threading Models, etc are discussed
in the OPC Overview Document (OPCOVW.DOC).

2.1 OPC Overview

This specification describes the OPC COM Objects and their interfaces implemented by OPC Servers.
An OPC Client can connect to OPC Servers provided by one or more vendors.

OPC Client

Figure 2-1 OPC Client

Different vendors may provide OPC Servers. Vendor supplied code determines the devices and datato
which each server has access, the data names, and the details about how the server physically accesses
that data. Specifics on naming conventions are supplied in a subsequent section.

o
~ Server —
N 2

oOoPC
Server
Vendor B

OPC Client #1

OPC Client #H#2

P

Server
@Fy

OPC Client #BI

Figure 2-2 OPC Client/Server Relationship

At ahighlevel, an OPC server is comprised of several objects: the server, the group, and theitem. The
OPC server object maintains information about the server and serves as a container for OPC group

objects. The OPC group object maintainsinformation about itself and provides the mechanism for
containing and logically organizing OPC items.

The OPC Groups provide away for clientsto organize data. For example, the group might represent
itemsin aparticular operator display or report. Data can be read and written. Exception based

OPC Data Access Custom | nterface Specification 2.03

connections can also be created between the client and the items in the group and can be enabled and
disabled as needed. An OPC client can configure the rate that an OPC server should provide the data
changesto the OPC cleint.

There are two types of groups, public and local (or ‘private’). Public isfor sharing across multiple
clients, local islocal to aclient. Refer to the section on public groups for the intent, purpose, and
functionality and for further details. There are also specific optional interfaces for the public groups.

Within each Group the client can define one or more OPC Items.

Group

Item 1

Item 2

Item 3

Figure 2-3 - Group/ltem Relationship

The OPC Items represent connections to data sources within the server. An OPC Item, from the custom
interface perspective, is not accessible as an object by an OPC Client. Therefore, thereis no external
interface defined for an OPC Item. All accessto OPC Itemsisviaan OPC Group object that

“contains’ the OPC item, or simply where the OPC Item is defined.

Associated with each item isaValue, Quality and Time Stamp. Thevalueisintheform of a
VARIANT, and the Quality is similar to that specified by Fieldbus.

Note that the items are not the data sources- they are just connectionsto them. For example, the tags
in aDCS system exist regardless of whether an OPC client is currently accessing them. The OPC Item
should be thought of as simply specifying the address of the data, not as the actual physical source of
the data that the address references.

2.2 Where OPC Fits

Although OPC is primarily designed for accessing data from a networked server, OPC interfaces can
be used in many places within an application. At the lowest level they can get raw data from the
physical devicesinto a SCADA or DCS, or from the SCADA or DCS system into the application.. The
architecture and design makes it possible to construct an OPC Server which allows a client application
to access data from many OPC Servers provided by many different OPC vendors running on different
nodes viaa single object.

Physical
1/0

OPC
Server

Application

Physical
170

Figure 2-4 - OPC Client/Server Relationship

OPC Data Access Custom | nterface Specification 2.03

2.3 General OPC Architecture and Components
OPC is a specification for two sets of interfaces, the OPC Custom Interfaces and the OPC Automation
interfaces. A revised automation interface will be provided with release 2.0 of the OPC specification.
Thisis shown below.

C++ Application

OPC Server T
(In-Proc, Local, Remote, Vendi; Eemflc /
Handler) —

VB Application

OPC Automation I/F

Figure 2-5 - The OPC Interfaces

The OPC Specification specifies COM interfaces (what theinterfacesare), not the
implementation (not the how of theimplementation) of those interfaces. It specifies the behavior
that the interfaces are expected to provide to the client applications that use them.

Included are descriptions of architectures and interfaces that seemed most appropriate for those
architectures. Like all COM implementations, the architecture of OPC is a client-server model where
the OPC Server component provides an interface to the OPC objects and manages them.

There are several unique considerationsin implementing an OPC Server. The main issueisthe
frequency of datatransfer over non-sharable communications paths to physical devices. Thus, we
expect that the OPC Server will either be alocal or remote EXE which includes code that is
responsible for efficient data collection from a physical device.

An OPC client application communicates to an OPC server through the specified OPC custom and
automation interfaces. OPC servers must implement the custom interface, and optionally may
implement the automation interface.

Aninproc (OPC handler) may be used to marshal the interface and provide the additional Item level
functionality of the OPC Automation Interface. Refer to the figure below: Typical OPC Architecture.

VB OPC Automation OPC Automation
Application [T Wrapper Local or Remote
(Shared by many clients)
C++
Application OPC Custom Interface > Server Data Cache

1l

Physical
Device

Device Data

Figure 2-6 - Typical OPC Architecture

OPC Data Access Custom | nterface Specification 2.03

It is also expected that the server will consolidate and optimize data accesses requested by the various
clients to promote efficient communications with the physical device. For inputs (Reads), data
returned by the device is buffered for asynchronous distribution or synchronous collection by various
OPC clients. For outputs (writes), the OPC Server updates the physical device data on behalf of OPC
Clients.

OPC Data Access Custom | nterface Specification 2.03

2.4 Overview of the Objects and Interfaces

The OPC Server object provides away to access (read/write) or communicate to a set of data sources..
Thetypes of sources available are afunction of the server implementation.

An OPC client connects to an OPC server and communicates to the OPC server through the interfaces.
The OPC server object provides functionality to an OPC client to create and manipulate OPC group
objects. These groups allow clients to organize the data they want to access. A group can be activated
and deactivated asaunit. A group also provides away for the client to ‘ subscribe’ to thelist of items
so that it can be notified when they change.

Note: All COM objects are accessed through Interfaces. The client sees only the interfaces. Thus, the
objects described here are ‘logical’ representations which may not have anything to do with the actual
internal implementation of the server. The following figure is a summary of the OPC Objects and their
interfaces. Note that some of the interfaces are Optional (asindicated by []).

IUnknown

7
4 N

loPcCommon (O—
loPcServer O—
[lOPCServerPublicGroups] (O— Standard
[|OPCBrowseServerAddressSpace] (O— OPC Server
[IPersistFile) O— Object
O_

|ConnectionPointContai ner

N J

Figure 2-7 - Standard OPC Server Object

OPC Data Access Custom | nterface Specification 2.03

IUnknown

T

4 N

|OPCltemMgt
IOPCGroupStateM gt
[IOPCPublicGroupStateMgt]
IOPCSynclO

Standard
OPC Group

Object

IOPCASynclO2
| ConnectionPointContai ner

[TOPCASynclO] old

PTPPPPPPY

[IDataObject] old

-)

Figure 2-8 - Standard OPC Group Object

25 The Address Space and Configuration of the Server

Thisrelease of the OPC specification assumes that a server configuration address space may be
managed and persistently stored using the I PersistFile interface. Only the server specific information
is persistently stored. All client configuration information (Group and Item Definitions) must be
persistently stored by the respective client application. All Handlesthat are defined in the system are
not guaranteed to have the same val ue between sessions of the client and server conversation.

It isimportant to distinguish the address space of the server (also known as the server configuration)
from the small subsets of this space that a particular client may be interested in at aparticular time
(also known asthe ‘groups’ and ‘items’). The details of how these client specific groups are
maintained are discussed in detail in this specification. The persistent storage of groupsisthe
responsibility of the respective clients. The details of how the server address space is defined and
configured are intentionally left unspecified. For example the server address space might be:

Entirely fixed (e.g. for adedicated interface to a particular device such asascale).

Configured entirely outside of the OPC environment (e.g. for an interface to an
existing external DCS system).

Automatically configured at startup by an ‘intelligent’ server which can poll the
existing system for installed hardware or interfaces.

Automatically configured on the fly by an ‘intelligent’ server based on the names of
the data items the client applications are currently requesting.

OPC Data Access Custom | nterface Specification 2.03

It is expected that this server address spaceis stable and is managed within the server. The clientswill
define and manage the relatively small lists of items called ‘ groups’ as needed from timeto time. The
interfaces described here provide the client the ability to easily define, manage, and recreate these lists
as needed through the use of ‘OPCGroups’. The clientsdirect the server to create, manage and delete
these groups on their behalf (persistence of the groups is the responsibility of the client application).
Although it is possible, with the usage of public groups, that the server could provide persistent storage
of these type of groups, or treat them as server defined groups.

2.6 Application Level Server and Network Node Selection

OPC Data Access supports the concept of organizing client requestsinto groups within aserver. Such
groups can contain requests for data from only one particular OPC Server object. In order to access
data, aclient application will need to specify the following:

The name of the OPC Data A ccess Server (for use by CoCreatel nstance, CoCreatel nstanceEx,
etc.)

The name of the machine hosting the OPC Data Access Server (for use by
CoCreatel nstanceEx)

The vendor specific OPC Item Definition (the name of the specific dataitem in the server’s
address space)

It is beyond the scope of this specification to discuss the implications of this on the architecture and
user interface of the client program.

2.7 Synchronization and Serialization Issues

By ‘synchronization’ we mean the ability of aclient to read or write values and attributesin asingle
transaction. For example, most applications want to insure that the value, quality and time stamp
attributes of aparticular item arein ‘sync’. Also, areporting package might want to insure that a
group of several values read together as part of a‘Batch Report’ are in fact part of the same batch.
Finally, arecipe download package would want to insure that all of the valuesin the group were sent
together and that the recipe was not started until all of the values had been received. Thesearejust a
few examples where synchronization isimportant.

The short answer isthat OPC itself cannot insure that all of these synchronization tasks can be
accomplished. Additional handshaking and flag passing between the client application and the device
server to signal such states as ‘ready’ and ‘ complete’ will berequired. There are also things that need
to be specified about the behavior of OPC serversto assure that OPC does not prevent this sort of
synchroni zation from being done.

It will be seen later that OPC allows explicit reads and writes of groups of items or of individual items
aswell as exception based data connections (OnDataChange). Without jumping ahead too far itis
possible to make some general observations about these issues and about server behavior.

1. Ingeneral, OPC Serversshould try to preserve synchronization of dataitems and attributesthat are
read or written in asingle operation. Synchronization of items read or written individually in
separate operationsis not required. Clearly, dataread from different physical devicesis difficult
to synchronize.

2. Readsand writes of dataitemswhich can be accessed by more than one thread must be
implemented to be thread safe, to the extent that data synchronization is preserved as specified in
this specification. Examples of wherethisisimportant might include: logic within a server where
one thread services method executions while a separate thread performs the physical
communications and writes the received datainto a buffer areawhich is shared with the first
thread. Another example might be the logic in ahandler or proxy where a‘hidden’ RPC thread
servicing an OnDataChange subscription iswriting datainto a shared buffer which athread in the
client might be reading.

OPC Data Access Custom | nterface Specification 2.03

3. Threading issues are always important but thisis especially true on SMP systems.
By ‘ Serialization’ we mean the ability of the client to control the order in which writes are performed.

1. ItisSTRONGLY RECOMMENDED that write requests to the same device be handled ‘in-order’
by any server implementation. For example, an application might use a‘ recipe download
complete’ flag which is set by the application after theindividual recipeitems are sent. In this
case, the data must be transmitted to the physical devicein the same order it was output to insure
that the ‘complete’ flag isnot set before all the data has actually arrived. Where the server buffers
the outgoing data and i mplements a separate communications manager thread to send these
outputs to the physical device (asis often the case), the server implementation must take extra care
toinsure that the order of the outputsis preserved.

2. Where aclient can both read values explicitly or receive updates via a callback attention must be

given to defining exactly when a callback will or will not occur. Thisis discussed in more detail
later.

Many of theseissueswill be clarified in the detailed descriptions of the methods below.

2.8 Public (aka shared) Groups

The purpose of the public group concept isto provide away to share data configuration information
across multiple client applications. Typically, in process control systems, multiple client applications
are configured to monitor or control the same process control data using the same applications or tools.
A public group can be created, such that only one application / end-user defines theitems, and other
client applications access the information in the public group by connecting to it. Thisfacilitates
keeping the definitions of the same datain sync, since only one client has to create and configure the
attributes of the dataitems.

Because the information is shared across multiple clients, some restrictions may be required to make
sure that the configuration information across multiple clients remains consistent.

2.9 Persistent Storage Story

OPC Servers may implement an optional interface to facilitate OPC clients telling an OPC server to
persistent (store) the OPC server configuration information. OPC Server configuration information
may include information about the devices and data source necessary to facilitate communication
between the data source and the OPC server. Client configuration information, including the groups
and items, are not persistently stored by an opc server.

Clients are responsible for the configuration and persistent storage of the groups and itemsthat are
required by their application..

OPC Data Access Custom | nterface Specification 2.03

3 OPC Data Access Quick Reference

This section includes a quick reference for the methods on the Custom Interface. These interfaces, their
parameters and behavior are defined in more detail later in the reference sections.

3.1 Custom Interface

Note: This section does not show additional standard COM Interfaces such as |Unknown, | EnumString
and |EnumUnknown used by OPC Data Access.

OPCServer
|OPCServer
| OPCServer PublicGroups (optional)
| OPCBrowseSer ver Addr essSpace (optional)
| OPCltemProperties (new 2.0)
| ConnectionPointContainer (new 2.0)
|OPCCommon (new 2.0)
| PersistFile (optional)
OPCGroup
|OPCGroupStateM gt
| OPCPublicGroupStateM gt (optional)
|OPCASynclO2 (new 2.0)
|OPCAsyncl O (obsolete- V1)
|OPCltemM gt
| ConnectionPointContainer (new 2.0)
|OPCSynclO
| DataObject (obsolete- V1)
EnumOPCltemAttributes
| EnumOPCltemAttributes

10

OPC Data Access Custom | nterface Specification 2.03

3.1.1 OPCServer Object

OPCCommon

HRESULT SetLocalelD (dwLcid)

HRESULT GetLocaelD (pdwLcid)

HRESULT QueryAvailablel ocalel Ds (pdwCount, pdwLcid)

HRESULT GetErrorString (dwError, ppString)

HRESULT SetClientName (szName)

|OPCServer

HRESULT AddGroup(szName, bActive, dwRequestedUpdateRate, hClientGroup, pTimeBias,
pPercentDeadband, dwL CID, phServerGroup, pRevisedUpdateRate, riid, ppUnk)

HRESULT GetErrorString(dwError, dwL ocale, ppString)

HRESULT GetGroupByName(szName, riid, ppUnk)

HRESULT GetStatus(ppServerStatus)

HRESULT RemoveGroup(hServerGroup, bForce)

HRESULT CreateGroupEnumerator(dwScope, riid, ppUnk)

| ConnectionPointContainer

HRESULT
HRESULT

EnumConnecti onPoints(| EnumConnectionPoints ppEnum);
FindConnectionPoint(REFIID riid, | ConnectionPoint ppCP);

|OPCltemProperties

HRESULT

HRESULT

HRESULT

QueryAvailableProperties(szltemI D, pdwCount,
ppPropertyl Ds, ppDescriptions, ppvtDataTypes);
GetltemProperties (szlteml D, dwCount, pdwPropertyl Ds,
ppvData, ppErrors);

Lookuplteml Ds(szIteml D, dwCount, pdwPropertylDs,
ppszNewltemlI Ds, ppErrors);

11

OPC Data Access Custom | nterface Specification 2.03

| OPCBrowseSer ver Addr essSpace (optional)

HRESULT
HRESULT
HRESULT

HRESULT
HRESULT

QueryOrgani zation(pNameSpaceType);
ChangeBrowsePosition(dwBrowseDirection, szString);

BrowseOPCltemlI Ds(dwBrowseFilterType, szFilterCriteria, vtDataTypeFilter,
dwA ccessRightsFilter, ppl EnumString);

Getlteml D(szltemDatal D, szltemID);

BrowseA ccessPaths(szIteml D, ppl EnumString);

| OPCServer PublicGroups (optional)

HRESULT
HRESULT

GetPublicGroupByName(szName, riid, ppUnk);
RemovePublicGroup(hServerGroup, bForce);

| PersistFile (optional)

HRESULT
HRESULT
HRESULT
HRESULT
HRESULT

ISDirty();

Load(pszFileName, dwMode);
Save(pszFileName, fRemember);
SaveCompl eted(pszFileName);
GetCurFileName(ppszFileName);

OPC Data Access Custom | nterface Specification 2.03

3.1.2 OPCGroup Object

|OPCGroupStateM gt

HRESULT GetState(pUpdateRate, pActive, ppName, pTimeBias, pPercentDeadband, pLCID,
phClientGroup, phServerGroup)

HRESULT SetState(pRegquestedUpdateRate, pRevisedUpdateRate, pActive, pTimeBias,
pPercentDeadband, pL CID, phClientGroup)

HRESULT SetName(szName);

HRESULT CloneGroup(szName, riid, ppUnk);

|OPCPublicGroupStateM gt (optional)

HRESULT GetState(pPublic);

HRESULT MoveToPublic(void);

IOPCSynclO

HRESULT Read(dwSource, dwCount, phServer, ppltemValues, ppErrors)

HRESULT Write(dwCount, phServer, pltemV alues, ppErrors)

IOPCAsyncl O2

HRESULT Read(dwCount, phServer, dwTransactionl D, pdwCancelID, ppErrors,)

HRESULT Write(dwCount, phServer, pltemVaues, dwTransactionl D, pdwCancelID, ppErrors);
HRESULT Cancel2 (dwCancelID);

HRESULT Refresh2(dwSource, dwTransactionl D, pdwCancel I D);

HRESULT SetEnable(bEnable);

HRESULT GetEnable(pbEnable);

|OPCltemMgt

HRESULT Additems(dwCount, pltemArray, ppAddResults, ppErrors)

HRESULT Vaidatel tems(dwCount, pltemArray, bBlobUpdate, ppV alidationResults, ppErrors)
HRESULT Removeltems(dwCount, phServer, ppErrors)

HRESULT SetActiveState(dwCount, phServer, bActive, ppErrors)

HRESULT SetClientHandles(dwCount, phServer, phClient, ppErrors)

HRESULT SetDatatypes(dwCount, phServer, pRequestedDatatypes, ppErrors)

HRESULT CreateEnumerator(riid, ppuUnk)

| ConnectionPointContainer

HRESULT EnumConnectionPoints(| EnumConnectionPoints ppEnum);
HRESULT FindConnectionPoint(REFIID riid, | ConnectionPoint ppCP);

13

OPC Data Access Custom | nterface Specification 2.03

|OPCAsyncl O (old)

HRESULT
HRESULT
HRESULT
HRESULT

Read(dwConnection, dwSource, dwCount, phServer, pTransactionl D, ppErrors,)
Write(dwConnection, dwCount, phServer, pltemValues, pTransactionl D, ppErrors);
Cancel (dwTransactionlD);

Refresh(dwConnection, dwSource, pTransactionl D);

| DataObject (old)

HRESULT
HRESULT

Dadvise(pFmt, adv, pSnk, pConnection);
Dunadvise(Connection);

Note: al other functions can be stubs which return E_NOTIMPL.

3.1.3 EnumOPCIltemAttributes Object
| EnumOPCIltemAttributes

HRESULT
HRESULT
HRESULT
HRESULT

Next(celt, ppltemArray, pceltFetched);
Skip(celt);

Reset(void);
Clone(ppEnumlitemAttributes);

14

OPC Data Access Custom | nterface Specification 2.03

3.2 Custom Interface/Client Side

| OPCDataCallback

HRESULT OnReadComplete(dwTransid, hGroup, hrMasterquality, hrMastererror, dwCount,
phClientltems, pvValues, pwQualities, pftTimeStamps, pErrors,);

HRESULT OnWriteComplete(dwTransid, hGroup, hrMastererr, dwCount, phClientltems,
pErrors);

HRESULT OnCancel Complete(dwTransid, hGroup);

HRESULT OnDataChange(dwTransid, hGroup, hrMasterquality, hrMastererror, dwCount,

phClientltems, pvValues, pwQualities, pftTimeStamps, pErrors,);

| OPCShutdown

void ShutdownReguest(szReason);
|AdviseSink (old)
void OnDataChange(pFE, pSTM);

Note: al other functions can be stubs which return E_NOTIMPL.

15

OPC Data Access Custom | nterface Specification 2.03

4 OPC Custom Interface

4.1 Overview of the OPC Custom Interface
The OPC Custom I nterface Objects include the following custom objects:

OPCServer
OPCGroup

The interfaces and behaviors of these objects are described in detail in this chapter. Developers of
OPC servers are required to implement the OPC objects by providing the functionality defined in this
chapter.

This chapter also references and defines expected behavior for the standard OLE interfaces. Interfaces
that an OPC server and an OPC client are required to implement when building OPC compliant
components.

Also, standard and custom Enumerator objects are created, and interfaces to these objects are returned.
In general the enumerator objects and interfaces are described briefly since their behavior iswell
defined by OLE.

The OPC specification follows the preferred approach that enumerators are created and returned from
methods on objects rather than through Querylnterface. The enumerators are as follows:

Group Enumerator - (see |OPCServer::CreateGroupEnumerator)

Item Attribute Enumerator - (see |OPCltemMgt:: CreateEnumerator)

Server Address Space Enumerator - (see | OPCBrowseServerAddressoace::BrowseOPClteml Ds)
AccessPath Enumerator - (see |OPCBrowseServerAddressSpace:: BrowseA ccessPaths)

Also you will note that in some cases lists of things are returned via enumerators and in other cases as
simple lists of items. Our choice depends on the expected number of itemsreturned. ‘Large’ listsare
best returned through enumerators while ‘small’ lists are more easily and efficiently returned via
explicit lists.

16

OPC Data Access Custom | nterface Specification 2.03

4.2 General Information

This section provides general information about the OPC Interfaces, and some background information
about how the designers of OPC expected these interfaces to be implemented and used.

4.2.1 Version Interoperability

Data Access Servers may be compatible with the requirements of Version 1.0a of the specification or
with Version 2.0 of the specification or both. Data Access Clients may also be compatible with the
requirements of Version 1.0a of the specification or with Version 2.0 of the specification or both.

The best migration strategy for server and client vendors will depend on their particular business
situation. For example a vendor who mostly sells his own client and server components as a packaged
system and for whom OPC Compatability represents along term strategy will have less need to
support multiple versions of the interfaces.

Asageneral guidelineit is recommended that existing server vendors add version 2.0 support and
leave version 1.0 support in place to support existing Version 1.0 Clients.

Data Access Server 1.0 20
Required Interfaces

OPCServer

IUnknown Required Required
|OPCServer Required Required
IOPCCommon N/A Required
I ConnectionPointContai ner N/A Required
|OPCltemProperties N/A Required
| OPCServerPublicGroups Optional Optional
| OPCBrowseServerAddressSpace Optional Optional
OPCGroup

IUnknown Required Required
IOPCltemMgt Required Required
|OPCGroupStateM gt Required Required
| OPCPublicGroupStateM gt Optional Optional
IOPCSynclO Required Required
IOPCAsynclO2 N/A Required
I ConnectionPointContainer N/A Required
IOPCAsynclO Required N/A

| DataObject Required N/A

17

OPC Data Access Custom | nterface Specification 2.03

4.2.2 Ownership of memory

Per the COM specification, clients must free all memory associated with ‘out’” or ‘in/out’ parameters.
Thisincludes memory that is pointed to by elements within any structures. Thisisvery important for
client writers to understand, otherwise they will experience memory leaksthat are difficult to find. See
the IDL filesto determine which parameters are out parameters. The recommended approachisfor a
client to create asubroutine that is used for freeing each type of structure properly.

Independent of success/failure, the server must always return well defined valuesfor ‘out’ parameters.
Releasing the allocated resourcesis the client’ s responsibility.

Note: If theerror result isany FAILED error such asE_ OUTOFMEMORY , the OPC server should
return NULL for all “out' pointers (thisis standard COM behavior). Thisrule also appliesto the error
arrays (ppErrors) returned by many of the functions below. In general, arobust OPC client should
check each out or in/out pointer for NULL prior to freeing it.

4.2.3 Standard Interfaces
Per the COM specification, all methods must be implemented on each required interface.

Per the COM specification, any optional interfaces that are supported must have all functions within
that interface implemented, even if the implementation is only a stub implementation returning
E _NOTIMPL.

4.2.4 Null Strings and Null Pointers

Both of these terms are used below. They are NOT the samething. A NULL Pointer isaninvalid
pointer (0) which will cause an exception if used. A NUL Stringisavalid (non zero) pointer toal
character array where that character isaNUL (i.e. 0). If aNUL string is returned from amethod as an
[out] parameter (or as an element of a structure) it must be freed, otherwise the memory containing the
NUL will belost. Also note that aNULL pointer cannot be passed for an [in,string] argument due to
COM marshalling restrictions. In this case apointer to aNUL string should be passed to indicate an
omitted parameter.

4.25 Returned Arrays

Y ou will notethe syntax size is(,dwCount) in the IDL used in combination with pointers to pointers.
Thisindicates that the returned item is a pointer to an actual array of theindicated type, rather than a
pointer to an array of pointersto items of the indicated type. This simplifiesmarshaling, creation, and
access of the data by the server and client.

4.2.6 Public Groups

Public groups are optional. The server vendor and the client vendor may elect to support this behavior
as appropriate for their application. There are some specific rules that must be adhered to if the public
group capability is supported. This are discussed in detail later in the method descriptions but in
general:

A public group must have a unique name relative to al other public groups. If aclient adds aprivate
group which will later be converted to a public group, the client should insure that this name is unique
or an error will occur later in MoveToPublic.

Once a group has been made public, the items within that group can not be changed. |f changes need
to be made to a public group, anew group must be created with the items (e.g. through the use of
CloneGroup), and made public after the modificationsto theitems are in place

Once aclient has connected to a public group, most of that group’ properties (client handles, update
rates, etc) will be maintained as unique instance data for that client to group connection.

18

OPC Data Access Custom | nterface Specification 2.03

4.2.7 CACHE data, DEVICE data and TimeStamps

For the most part the terms CACHE and DEVICE are treated as ‘ abstract’ within this specification.
That is, reading CACHE or DEVICE data simply affects the described behavior of various interfaces
in awell defined way. The implementation details of these capabilitiesis not dictated by this
specification.

In practice, however, it is expected that most servers will read datainto some sort of CACHE. Also,
most clients will read data from this cache via one of several mechanisms discussed later. Accessto
DEVICE datais expected to be ‘slow’ and is expected to be used primarily for diagnostics or for
particularly critical operations.

The CACHE should reflect the latest value of the data (subject to update rate and deadband
optimizations as discussed later) as well as the quality and timestamp. The Timestamp should indicate
the time that the value and quality was obtained by the device (if thisis available) or the time the
server updated or validated the value and quality in its CACHE. Note that if adevice or server is
checking avalue every 10 seconds then the expected behavior would be that the timestamp of that
value would be updated every 10 seconds (even if the value is not actually changing). Thusthe time
stamp reflects the time at which the server knew the corresponding value was accurate.

Thisisalso true regardless of wether the physical deviceto system interfaceis exception based. For
example suppose it is known that () an exception based device is checking values every 0.5 second
and that (b) the connection to the device is good and (c) that device sent an update for item FIC101
three minutes ago with avalue of 1.234. In this case the value returned from a cache read would be
1.234 and more important, the timestamp returned for this value would be the current time (within 0.5
second) sinceit is known that the value for theitemisin fact still 1.234 as of 0.5 seconds ago.

4.2.8 Time Series Values
The OPC Data Access interfaces are designed primarily to take snapshots of current real time process
or automation data. The Timestamp returned with those valuesis intended primarily as an indication of
the quality of that ‘current’ data. These interfaces are not really intended to deal with buffered time
series datafor asingle point such as historical data.

4.2.9 Asynchronous vs. Synchronous Interfaces

Assuming that most clients want to access Cached data, there are several ways for aclient to obtain
that datafrom a server.

It can perform a synchronous read from cache (simple and reasonably efficient). This may be
appropriate for fairly simple clientsthat are reading relatively small amounts of dataand where
maximum efficiency is not aconcern. A client that operatesin thisway is essentially duplicating
the ‘scanning’ that the server is already doing.

It can ‘subscribe’ to cached data using |AdviseSink or |OPCDataCallback which is more complex
but very efficient. Thisisthe recommended behavior for clients because it will minimize use of
CPU and NETWORK resources.

4.2.10 The ACTIVE flags, Deadband and Update Rate

These attributes of groups and items can be used to reduce resource use by clients and servers. They
are discussed in more detail later under GROUPS. In general, they affect how often the cached data
and quality information is updated and how often calls are made to the client’ s IAdviseSink or
|OPCDataCallback.

19

OPC Data Access Custom | nterface Specification 2.03

4.2.11 Errors and return codes

The OPC specification describes interfaces and corresponding behavior that an OPC server
implements, and an OPC client application dependson. A list of OPC Specific errors and return codes
is contained in the summary of OPC error codes section inthis specification. For each method
described below alist of all possible OPC error codes as well asthe most common OLE error codesis
included. Itislikely that clients will encounter additional error codes such as RPC and Security related
codes in practice and they should be prepared to deal with them.

In two cases (Read and Write) it is also allowed for aserver to return Vendor Specific error codes.
Such codes can be passed to GetErrorString method. Thisis discussed in more detail later.

Inal cases ‘E’ error codeswill indicate FAILED typeerrorsand ‘S’ error codes will indicate at least
partial success.

4.2.12 Startup Issues

After Items are added to a group, it may take some time for the server to actually obtain valuesfor
these items. In such cases the client might perform aread (from cache), or establish an AdviseSink or
ConnectionPoint based subscription and/or execute a Refresh on such a subscription before the values
are available. You will seeinthelater discussions of subscriptions that an initial callback is expected
which contains all valuesin a Group. The expected behavior in this situation is summarized by saying
that asitems are added to agroup, their initial state should be set to OPC_QUALITY_BAD witha
NON_SPECIFIC (00) or optionally aOPC_QUALITY_LAST_KNOWN (14) substate. Any client
operation on the group will then behave as it normally would for a group with a mixed set of GOOD
and BAD qualities. Note that in the case of the sync read and also asyncio2 operations the server can
return vendor specific error information which could indicate a vendor specific error such as
"SERVER WAITING FOR INITIAL DATA".

4.2.13 VARIANT Data Types and Interoperability
In order to promote interoperability, the following rules and recommendations are presented.

Rules:

Servers are allowed to maintain and return any legal Canonical Data Type (any legal permutation
of VT _ flags).

Clients are allowed to request any legal Requested Data Type.

Servers should be prepared todeal in an elegant way with requested types even when they are
unable to convert their datato thistype. That is, they should not malfunction, return incorrect
results or lose memory. As mentioned el sewhere they may return avariety of errorsincluding any
error returned by the Microsoft function: VariantChangeType.

Clients should always be prepared to deal with servers which are unable to handle any requested
datatype. That is, they should not malfunction or lose memory when an error isreturned.

Clientswhich request VT_EMPTY (which by convention indiciates that the server should return
it's canonical type) should likewise be prepared to deal with any returned type. That is, even if

they find that they are not be able to use or display the returned data, they should properly free the
data (using VariantClear) and should probably indicate to the user that a datatype was returned
which is not usable by thisclient.

Recommendations:

The VARIANT typesVT_12, 14, R4, R8, CY, DATE, BSTR, BOOL, Ul1 aswell assingle arrays
of thesetypes (VT_ARRAY) are expected to be most commonly used (in part because these are
the legal typesin Visua Basic).

20

OPC Data Access Custom | nterface Specification 2.03

It isrecommended that whenever possible, clients request datain one of these formats and that
whenever possible, servers be prepared to return datain one of these formats.

It is expected that use of other extended types will most likely occur where the Server and Client
were written by the same vendor and the server intends to pass some non-portable vendor specific
data back to the client. Intheinterests of interoperability, such transactions should be minimized.

21

OPC Data Access Custom | nterface Specification 2.03

4.3 Data Acquisition and Active State Behavior

The following tables summarize the expected behavior of OPC servers and OPC clients with respect to
the Group and Item Active flags, Reads and Subscriptions, and CACHE and DEVICE data.

Thefirst column (Function) is the short hand notation for the external functions that an OPC client
application calls and the OPC server implements. The Source Column isthe source from which the
client wants the data to be obtained (either device or cache). The Enable Column indicates the callback
enable state as set by AsynclO2::SetEnable. The Group Column isthe active state of the group.. The
Item Column isthe active state of the Item. The Behavior Column isthe behavior for this configuration

state.

Certain Quality values areidentified in the table and reflect required behavior with respect to the active
state of groupsand items. In all other cases, the server may return quality values as appropriate to
communicate the current state of the datato the client.

Theinformation in thistableis also applicable to the automation interface.

Additional Notes:

Refresh isaspecial case of subscription, where refresh forces an OnDataChange call for all active

items.

It is expected that most clients will use either Reads or Subscriptions for a particular group but not
both. If both are used then there is some interaction between Reads and Subscriptionsin that anything
sent to the client asaresult of a‘read’ isalso considered to be the ‘last value sent’.

A transition from Inactive to Active will result in achange in quality, and will cause a subscription
callback for the item or items affected. A change (in the group or item) from Activeto Inactive will
cause achangein quality but will not cause a callback since by definition callbacks do not occur for
inactiveitems. That is, if you later do an explicit read (sync or async) of an inactive group or item you
will get aquality indicating that the item isinactive.

4.3.1 10PCSynclO

Interface ::Method Source Enable Group Item Server Behavior
Callbacks Active Active
State State

IOPCSynclO::Read Cache NA Active Active The Vaues and Quality for the requested items are
returned to the client as return values from the method.
The Value and Quality are the values that the server has
in cache.

IOPCSynclO::Read Cache NA Active InActive | A Quality of OPC_QUALITY_OUT_OF_SERVICE for
the requested items is returned to the client as return
values from the method.

IOPCSynclO::Read Cache NA InActive NA A Quality of OPC_QUALITY_OUT_OF_SERVICE for
the requested items is returned to the client as return
values from the method.

IOPCSynclO::Read Device NA NA NA The Values and Quality for the requested items are

returned to the client as return values from the method.
The Value and Quality are the values that the server
obtains from the device when this method is called. The
cache of the server should be updated with the acquired
value and quality.

OPC Data Access Custom | nterface Specification 2.03

4.3.2 10PCASynclO2

Interface ::Method

Source

Enable
Callbacks

Group
Active
State

Item
Active
State

Server Behavior

IOPCAsyncl O2::Read

NA

NA

NA

NA

T he Vauesand Quality for the requested items are sent to
the client through the
|OPCDataCallback::OnReadComplete method. The
Value and Quality are the values that the server obtains
from the DEVICE when this method is called. The
CACHE of the server shoud be updated with the acquired
value and quality.

Interface ::Method

Source

Enable
Callbacks

Group
Active
State

Item
Active
State

Server Behavior

IOPCAsyncl O2::Refresh

Cache

NA

Active

Active

The Values and Quality for all the Activeitemsinthe
group are sent to the client through the

| AdviseSink::OnDataChange method. The Vaue and
Quality are the values that the server hasin cache.

IOPCAsyncl O2::Refresh

Cache

NA

Active

InActive

The Values and Quality for all the InActiveitemsinthe
group are not provided to the client. If there are no
Active Itemsin the group then the server returns E_FAIL
as the return value from the call.

IOPCAsynclO2::Refresh

Cache

NA

InActive

NA

The server returns E_FAIL as the return value from the
call.

IOPCAsynclO2::Refresh

Device

NA

Active

Active

The Vaues and Quality for al itemsin the group are sent
to the client through the
|OPCDataCallback::OnDataChange method. The Value
and Quality are the values that the server obtains from the
device when this method is called. The cache of the
server should be updated with the acquired values and
qualities.

IOPCAsyncl O2::Refresh

Device

NA

Active

InActive

The Values and Quality for all the InActiveitemsin the
group are not provided to the client. |If there are no
Active Itemsin the group then the server returns E_FAIL
as the return value from the call.

IOPCAsyncl O2::Refresh

Device

NA

InActive

NA

The server returns E_FAIL asthe return value from the
call.

23

OPC Data Access Custom | nterface Specification 2.03

4.3.3 SUBSCRIPTION via IOPCDataCallback

OnDataChange
Interface ::Method Source Enable Group Item Server Behavior
Callbacks Active Active
State State

Subscription via NA TRUE Active Active The Value and Quality are the values that the server

|OPCDataCallback:: obtains from the device at a periodic rate sufficient to

OnDataChange accommodate the specified UpdateRate. If the Quality has
changed from the Quality last sent to the client, then the
new value and new quality will be sent to the client
through the |OPCDataCallback::OnDataChange method,
and the cache of the server should be updated with the
acquired value and quality. If the Quality has NOT
changed from the Quality last sent to the client, the
server should compare the acquired value for a change
that exceeds the Deadband criteria. If the change in value
exceeds the deadband criteria, , then the new value and
new quality will be sent to the client through the
|OPCDataCallback::OnDataChange method, and the
cache of the server should be updated with the acquired
value and quality.

Subscription via TRUE Active InActive | Server only acquires values from physical data sourcesfor

|0OPCDataCallback:: active items.

OnDataChange

Subscription via TRUE InActive NA Server only acquires values from physical data sources for

|OPCDataCallback:: active items that are contained in active groups.

OnDataChange

Subscription via NA FALSE Active Active The Value and Quality are the values that the server

|OPCDataCallback:: obtains from the device at a periodic rate sufficient to

OnDataChange accommodate the specified UpdateRate. If the Quality has
changed from the Quality in the cache, then the cache of
the server should be updated with the acquired value and
quality. If the Quality has changed from the Quality in
the cache, the server should compare the acquired value
for achange that exceeds the Deadband criteria. If the
change in value exceeds the deadband criteria, , then the
cache of the server should be updated with the acquired
value and quality.

Subscription via NA FALSE Active InActive | Server only acquires values from physica data sources for

|0OPCDataCallback:: active items.

OnDataChange

Subscription via NA FALSE InActive NA Server only acquires values from physical data sources for

|0OPCDataCallback::

OnDataChange

active items that are contained in active groups.

24

OPC Data Access Custom | nterface Specification 2.03

4.3.4 I10PCASynclO (old)

Interface ::Method

Source

Enable
Callbacks

Group
Active
State

Item
Active
State

Server Behavior

I0PCAsynclO::Read

Cache

NA

Active

Active

The Vaues and Quality for the requested items are sent to
the client through the | AdviseSink::OnDataChange
method. The Value and Quality are the values that the
server has in cache.

IOPCAsyncl O::Read

Cache

NA

Active

InActive

A Quality of OPC_QUALITY_OUT_OF SERVICE for
the requested items is sent to the client through the
| AdviseSink::OnDataChange method.

IOPCAsyncl O::Read

Cache

NA

InActive

NA

A Quality of OPC_QUALITY_OUT_OF_SERVICE for
the requested items is sent to the client through the
| AdviseSink::OnDataChange method.

I0OPCAsyncl O::Read

Device

NA

NA

NA

The Values and Quality for the requested items are sent to
the client through the | AdviseSink::OnDataChange
method. The Value and Quality are the values that the
server obtains from the device when this method is called.
The cache of the server should be updated with the
acquired value and quality.

Interface ::Method

Source

Enable
Callbacks

Group
Active
State

Iltem
Active
State

Server Behavior

IOPCAsyncl O::Refresh

Cache

NA

Active

Active

The Values and Quality for all the Active itemsin the
group are sent to the client through the

| AdviseSink::OnDataChange method. The Value and
Quality are the values that the server has in cache.

IOPCAsyncl O::Refresh

Cache

NA

Active

InActive

The Values and Quality for all the InActiveitemsin the
group are not provided to the client. If there are no
Active Itemsin the group then the server returns E_FAIL
as the return value from the call.

IOPCAsyncl O::Refresh

Cache

NA

InActive

NA

The server returns E_FAIL asthe return value from the
call.

IOPCAsyncl O::Refresh

Device

NA

Active

Active

The Vaues and Quality for al itemsin the group are sent
to the client through the | AdviseSink::OnDataChange
method. The Value and Quality are the values that the
server obtains from the device when this method is called.
The cache of the server should be updated with the
acquired values and qualities..

IOPCAsyncl O::Refresh

Device

NA

Active

InActive

The Values and Quality for all the InActiveitemsin the
group are not provided to the client. If there are no
Active Itemsin the group then the server returns E_FAIL
as the return value from the call.

IOPCAsynclO::Refresh

Device

NA

InActive

NA

The server returns E_FAIL asthe return value from the
call.

25

OPC Data Access Custom | nterface Specification 2.03

4.35 SUBSCRIPTION via IDataObject (old)

Interface ::Method Source Enable Group Item Server Behavior
Callbacks Active Active
State State

Subscription via NA NA Active Active The Value and Quality are the values that the server

(IDataObject::DAdvise) & obtains from the device at a periodic rate sufficient to

(IAdviseSink::OnDataCha accommodate the specified UpdateRate. If the Quality has

nge) changed from the Quality last sent to the client, then the
new value and new quality will be sent to the client
through the | AdviseSink::OnDataChange method, and the
cache of the server should be updated with the acquired
value and quality. If the Quality has NOT changed from
the Quality last sent to the client, the server should
compare the acquired value for achange that exceeds the
Deadband criteria. If the change in value exceeds the
deadband criteria, , then the new value and new quality
will be sent to the client through the
| AdviseSink::OnDataChange method, and the cache of
the server should be updated with the acquired value and
quality.

Subscription via NA NA Active InActive | Server only acquiresvalues from physical data sources for

(IDataObject::DAdvise) & active items.

(IAdviseSink::OnDataCha

nge)

Subscription via NA NA InActive NA Server only acquires values from physical data sources for

(IDataObject::DAdvise) &
(IAdviseSink::OnDataCha
nge)

active items that are contained in active groups.

26

OPC Data Access Custom | nterface Specification 2.03

4.4 OPCServer Object

441 Overview

The OPCServer object isthe primary object that an OPC server exposes. Theinterfaces that this object
providesinclude:

[Unknown
|OPCServer
| OPCServerPublicGroups (optional)
IOPCBrowseServerAddressSpace (optional)
| PersistFile (optional)
|OPCltemProperties
| ConnectionPointContainer
The functionality provided by each of the above interfacesis defined in this section.

NOTE: Version 1.0 of this specification listed IEnumUnkown as an interface on the OPC Server. This
was an error and has been removed. The semantics of Querylnterface do not allow such an
implementation. The proper way to obtain agroup enumerator is through
|OPCServer::CreateGroupEnumerator.

27

OPC Data Access Custom | nterface Specification 2.03

442 |Unknown

The server must provide a standard |Unknown Interface. Since thisis awell defined interfaceit is not
discussed in detail. See the OLE Programmer’ s reference for additional information. Thisinterface
must be provided, and all functionsimplemented as required by Microsoft..

443 |IOPCCommon

Other OPC Servers such as alarms and events share this interface design. It provides the ability to set
and query aLocalel D which would be in effect for the particular client/server session. That is, as with
a Group definition, the actions of one client do not affect any other clients.

A quick reference for thisinterfaceis provided below. A more detailed discussion can be found in the
OPC Overview Document.

HRESULT SetLocdelD (
[in] LCID dwLcid

)

HRESULT GetLocaelD (
[out] LCID *pdwLcid
);

HRESULT QueryAvailableLocalel Ds (
[out] DWORD * pdwCount,
[out, sizeis(, * pdwCount)] LCID **ppdwLcid
);

HRESULT GetErrorString(

[in] HRESULT dwEtrror,
[out, string] LPWSTR *ppString
);

HRESULT SetClientName (
[in, string] LPCWSTR szName
);

28

OPC Data Access Custom | nterface Specification 2.03

444 |0OPCServer

Thisisthe main interface to an OPC server. The OPC server isregistered with the operating system as
specified in the Installation and Registration Chapter of this specification.

Thisinterface must be provided, and all functionsimplemented as specified.

4441 IOPCServer::AddGroup

HRESULT AddGroup(
[in, string] LPCWSTR szName,
[in] BOOL bActive,
[in] DWORD dwRequestedUpdateRate,
[in] OPCHANDLE hClientGroup,
[unique, in] LONG *pTimeBias,
[in] FLOAT * pPercentDeadband,
[in] DWORD dwLCID,
[out] OPCHANDLE * phServerGroup,
[out] DWORD *pRevisedUpdateRate,

[in] REFIID riid,
[out, iid_is(riid)] LPUNKNOWN * ppUnk
);
Description
Add aGroup to aServer.
Parameters Description
szName Name of the group. The name must be unique among the

other groups created by this client. If no nameis provided
(szNameis pointer to aNUL string) the server will generate
aunique name. The server generated name will also be
unique relative to any existing public groups.

bActive FALSE if the Group isto be created asinactive.

TRUE if the Group isto be created as active.
dwRequestedUpdateRate | Client Specifiesthe fastest rate at which data changes may
be sent to OnDataChange for itemsin this group. Thisalso
indicates the desired accuracy of Cached Data. Thisis
intended only to control the behavior of the interface. How
the server deals with the update rate and how often it
actually pollsthe hardware internally is an implementation
detail. Passing 0 indicates the server should use the fastest
practical rate. Therateis specified in milliseconds.
hClientGroup Client provided handle for this group. [refer to description of
datatypes, parameters, and structures for more information
about this parameter]

pTimeBias Pointer to Long containing theinitial TimeBias (in minutes)
for the Group. PassaNULL Pointer if you wish the group to
use the default system TimeBias. This bias behaveslike the

29

OPC Data Access Custom | nterface Specification 2.03

Biasfieldin the Win32 TIME_ZONE_INFORMATION
structure.

pPercentDeadband

The percent changein an item value that will cause a
subscription callback for that valueto aclient. This
parameter only appliesto itemsin the group that have
dwEUType of Analog. [See discussion of Percent Deadband
in Section 0]. A NULL pointer is equivalent to 0.0.

awLCID

The language to be used by the server when returning values
(including EU enumeration’ s) as text for operations on this
group. This could also include such things as alarm or status
conditions or digital contact states.

phServerGroup

Place to store the unique server generated handle to the
newly created group. The client will use the server provided
handle for many of the subsequent functionsthat the client
requests the server to perform on the group.

pRevisedUpdateRate

The server returnsthe value it will actually use for the
UpdateRate which may differ from the

RequestedU pdateRate.

Note that this may also be slower than the rate at which the
server isinternally obtaining the data and updating the cache.
In general the server should ‘round up’ the requested rate to
the next available supported rate. Therateis specifiedin
milliseconds. Server returns HRESULT of

OPC_S UNSUPPORTEDRATE whenit returnsavaluein
revisedUpdateRate that is different than
RequestedUpdateRate.

riid

Thetype of interface desired (e.g. 11D_1OPCltemMgt)

ppuUnk

Where to store the returned interface pointer. NULL is
returned for any FAILED HRESULT.

Return Codes

Return Code

Description

S OK

The operation succeeded.

E_FAIL

The operation failed.

E OUTOFMEMORY

Not enough memory

E_INVALIDARG

An argument to the function was
invalid.

OPC_E_DUPLICATENAME

Duplicate name not allowed.

OPC_S UNSUPPORTEDRATE Server does not support specified rate,

server returnstheratethat it can
support in the revised update rate.

E_NOINTERFACE

The interface(riid) asked for is not
supported by the server.

Behavior

A Groupisalogical container for aclient to organize and manipulate dataitems.

OPC Data Access Custom | nterface Specification 2.03

The server will create agroup object, and return a pointer to the interface requested by the client. If
the client requests an optional interface that the server does not support, the server is expected to
return an error indicating the interface is not supported.

The requested update rate / revised update rate behavior should be deterministic between client / server
sessions. The client expects that for the same server configuration or workspace; adding a group with
arequested update rate will always result in the same RevisedRate independent of the number of

clients or items that have been added.

Comments

The expected object lifetime behavior is asfollows. Even if all the interfaces are rel eased, the group
will not be deleted until RemoveGroup is called. One way for the server to implement thisisto assign
the group an initial reference count of 2; one for the ‘Add’ and one for the Interface that was created.
However, clients should not make assumptions about the Group’ s reference count.

The client should not call RemoveGroup without releasing all interfaces for the group. The client
should also not release the server without removing all private groups.

Sincethe server isthe ‘container’ for the groupsit is permissible for the server to forcibly remove any
remaining groups at thetime all of the server interfaces are released. (This should not be necessary for
awell behaved client).

See al so the CreateGroupEnumerator function.

Theleve of localization supported (dwL CID) isentirely server specific. Serverswhich do not support
dynamic localization can ignore this parameter.

See the MoveToPublic function for additional requirements related to public groups.
The default TimeBias for the group will be that of the system in which the group is created.

31

OPC Data Access Custom | nterface Specification 2.03

4442 IOPCServer::GetErrorString

HRESULT GetErrorString(

[in] HRESULT dweError,

[in] LCID dwLocsale,
[out, string] LPWSTR *ppString
);

Description

Returns the error string for a server specific error code.

Parameters Description

dwError A server specific error code that the client application had
returned from an interface function from the server, and for
which the client application is requesting the server’ s textual
representation.

dwLocale Thelocale for the returned string .

ppString Pointer to pointer where server supplied result will be saved
Return Codes

Return Code Description

E FAIL The operation failed.

E_OUTOFMEMORY Not enough memory

E INVALIDARG An argument to the function wasinvalid. (For

example, the error code specified isnot valid.)

S OK The operation succeeded.

Comments

Thisis essentially the same function asisfound in the newer |IOPCCommon.

Notethat if thismethod is called on aremote server, an RPC error may result. For thisreasonit is
probably good practice for the client to attempt to call alocal Win32 function if this function fails.

The expected behavior is that thiswill include handling of Win32 errors aswell (such as RPC errors).
The Client must free the returned string.

It is recommended that the server put any OPC specific stringsinto an external resource to simplify
translation.

To get the default value for the system, the dwL ocale should be LOCALE_SYSTEM_DEFAULT.

32

OPC Data Access Custom | nterface Specification 2.03

4443 IOPCServer::GetGroupByName

HRESULT GetGroupByName(

[in, string] LPCWSTR szName,

[in] REFIID riid,
[out, iid_is(riid)] LPUNKNOWN * ppUnk
)

Description

Given the name of aprivate group (created earlier by the same client), return an additional interface
pointer. Use GetPublicGroupByName to attach to public groups.

Parameters Description
szName The name of the group. That is the group must have been
created by the caller.
riid Thetype of interface desired for the group (e.g.
|OPCltemMgt)
ppuUnk Pointer to where the group interface pointer should be
returned. NULL isreturned for any HRESULT other than
S OK.
Return Codes
Return Code Description
E FAIL The operation failed.
E OUTOFMEMORY Not enough memory
E INVALIDARG An argument to the function wasinvalid.
S OK The operation succeeded.
E_NOINTERFACE The interface(riid) asked for is not
supported by the server.
Comments

This function can be used to reconnect to a private group for which all interface pointers have been
released.

The client must rel ease the returned interface when it is done withiit.
If needed, the client can obtain the hServerGroup Handle via |OPCGroupStateM gt:: GetState.

OPC Data Access Custom | nterface Specification 2.03

4444 IOPCServer::GetStatus
HRESULT GetStatus(
[out] OPCSERVERSTATUS ** ppServerStatus
)

Description

Returns current status information for the server.

Parameters Description
ppServerStatus Pointer to where the OPCSERVERSTATUS structure pointer
should be returned. The structureisallocated by the server.

Return Codes

Return Code Description

E FAIL The operation failed.

E_OUTOFMEMORY Not enough memory

E_INVALIDARG An argument to the function wasinvalid.

S OK The operation succeeded.
Comments

The OPCSERVERSTATUS is described later in this specification.
Client must free the structure as well as the VendorInfo stringwithin the structure.

Periodic callsto GetStatus would be a good way for the client to determine that the server is still
connected and available.

OPC Data Access Custom | nterface Specification 2.03

4445 IOPCServer::RemoveGroup

HRESULT RemoveGroup(

[in] OPCHANDLE hServerGroup,

[in] BOOL bForce
);

Description
Deletes the Group
Parameters Description
hServerGroup Handle for the group to be removed
bForce Forces deletion of the group even if references are
outstanding
Return Codes
Return Code Description
E FAIL The operation failed.

E_OUTOFMEMORY

Not enough memory

E_INVALIDARG An argument to the function wasinvalid.

S OK The operation succeeded.

OPC_S INUSE Was not be removed because references exist.
Group will be marked as deleted, and will be
removed automatically by the server when all
referencesto this object are released.

Comments

A group is not deleted when al the client interfaces are released, since the server itself maintainsa
reference to the group. The client may still call GetGroupByName after all the interfaces have been
released. RemoveGroup() causes the server to releaseit's “last' reference to the group, which resultsin
the group being truly deleted.

In general, awell behaved client will call thisfunction only after releasing all interfaces.

If interfaces still exist, Remove group will mark the group as‘deleted’. Any further calls to this group
viathese interfaces will return E_FAIL. When al the interfaces are released, the group will actually be
deleted. If bForceis TRUE then the group is deleted unconditionally even if references (interfaces)

still exist. Subsequent use of such interfaces will result in an access violation.

Thisfunction should not be called for Public Groups.

OPC Data Access Custom | nterface Specification 2.03

4.4.4.6 IOPCServer::CreateGroupEnumerator

HRESULT CresteGroupEnumerator(

[in] OPCENUM SCOPE dwScope,

[in] REFIID riid,
[out, iid_is(riid)] LPUNKNOWN* ppUnk
)

Description

Create various enumerators for the groups provided by the Server.

Parameters Description

dwScope Indicates the class of groupsto be enumerated
OPC_ENUM_PRIVATE_CONNECTIONS or

OPC_ENUM_PRIVATE enumerates al of the private
groups created by the client

OPC_ENUM_PUBLIC_CONNECTIONS or

OPC_ENUM_PUBLIC enumerates al of the public
groups availablein the server

OPC_ENUM_ALL_CONNECTIONS or

OPC_ENUM_ALL enumerates all private groups and
all public groups

riid The interface requested. This must be
I1D_IEnumUnknown or 11D_IEnumString.
ppuUnk Whereto return the interface. NULL isreturned for

any HRESULT other than S OK or S_FALSE.

NOTE: Version 1.0 of this specification described slightly different behavior for enumerating connected vs
non-connected groups. However this behavior has been found to be difficult or impossible to implement in
practice. The description here represents asimplification of this behavior. It isrecommended that use of
OPC_ENUM_PRIVATE_CONNECTIONS, OPC_ENUM_PUBLIC_CONNECTIONS,
OPC_ENUM_ALL_CONNECTIONS be avoided by clients.

OPC Data Access Custom | nterface Specification 2.03

HRESULT Return Codes
Return Code Description
E FAIL The operation failed.
E OUTOFMEMORY Not enough memory
E INVALIDARG An argument to the function wasinvalid.
S OK The operation succeeded.
S FALSE Thereis nothing to enumerate (there are no groups
which satisfy the request). However an empty
Enumerator is till returned and must be released. Note:
In previous versions of the spec there has been some
ambiguity about the behavior in the case of S FALSE.
For thisreason, it is recommended that when
S FALSE isreturned by the server, clientstest the
returned interface pointer for NULL prior to calling
Release on it.
E_NOINTERFACE Theinterface(riid) asked for is not supported by the
server.
Comments

Connected means an interface pointer exists.

Servers which do not support public groups will simply behave asif they had no public groups. That is
they will NOT return E_INVALIDARG if the scope includes public groups.

IEnumUnknown creates an additional interface pointer to each group in the enumeration (even if the
client already has a connection to the group). If the server has alarge number of public groups
available then this may involve considerable overhead as well as requiring additional cleanup by the
client. Ingeneral, enumerating groups by name will be much faster.

In the case of IEnumUnknown (per the COM specification) the client must also release all of the
returned IUnknown pointers when he is done with them.

37

OPC Data Access Custom | nterface Specification 2.03

4.45 I1ConnectionPointContainer (on OPCServer)
Thisinterface provides access to the connection point for |OPCShutdown.

The general principles of ConnectionPoints are not discussed here as they are covered very clearly in
the Microsoft Documentation. The reader is assumed to be familiar with this technology. OPC 2.0
Compliant Servers are REQUIRED to support thisinterface.

Likewise the details of the | EnumConnectionPoints, | ConnectionPoint and | EnumConnections
interfaces are well defined by Microsoft and are not discussed here.

Note: OPC Compliant servers are not required to support more than one connection between each
Server and the Client. Given that servers are client specific entitiesit is expected that asingle
connection will be sufficient for virtually all applications. For this reason (as per the COM
Specification) the EnumConnections method for |ConnectionPoint interface for the IOPCShutdown is
allowed to return E_NOTIMPL.

OPC Data Access Custom | nterface Specification 2.03

445.1 IConnectionPointContainer::EnumConnectionPoints

HRESULT EnumConnecti onPoi nts(
| EnumConnectionPoints ** ppEnum

)

Description
Create an enumerator for the Connection Points supported between the OPC Group and the Client.

Parameters Description

ppEnum Where to save the pointer to the connection point
enumerator. See the Microsoft documentation for a
discussion of |EnumConnectionPoints.

HRESULT Return Codes

Return Code Description

S OK The function was successful.
For other codes see the
OLE programmers
reference

Comments

OPCServers must return an enumerator that includes | OPCShutdown. Additional vendor specific
callbacks are also allowed.

OPC Data Access Custom | nterface Specification 2.03

4452 IConnectionPointContainer:: FindConnectionPoint
HRESULT FindConnectionPoint(
REFIID riid,

I ConnectionPoint ** ppCP
);

Description

Find a particular connection point between the OPC Server and the Client.

Parameters Description
ppCP Where to store the Connection Point. See the Microsoft
documentation for adiscussion of |ConnectionPoint.
riid The 1D of the Connection Point. (e.g.
I1D_IOPCShutdown)
HRESULT Return Codes
Return Code Description
S OK The function was successful.
For other codes see the
OLE programmers
reference
Comments

OPCServers must support 11D_OPCShutdown. Additional vendor specific callbacks are also allowed.

OPC Data Access Custom | nterface Specification 2.03

4.4.6 10PCltemProperties

Overview

Thisinterface can be used by clients to browse the available properties (al so refered to as attributes or
parameters) associated with an ITEMID and to read the current values of these properties. In some
respects the functionality is similar to that provided by BrowseServerAddressSpace, by
EnumltemAttributes and by the SynclO Read function. It differs from these interfacesin two important
respects; (a) it isintended be much easier to use and (b) it is not optimized for efficient accessto large
amounts of data. Rather it isintended to allow an application to easily browse and read small amounts
of additional information specific to aparticular ITEMID.

The design of thisinterfaceis based upon the assumption isthat many ITEMIDs are associated with
other ITEMIDs which represent related val ues such as Engineering Units range or Description or
perhaps Alarm Status. For example the system might be built internally of ‘'records' which represent
complex objects (like PID Controllers, Timers, Counters, Analog I nputs, etc). These record items
would have properties (like current value, setpoint, hi alarm limit, low alarm limit, description, etc).

Asaresult, thisinterface allows aflexible and convenient way to browse, locate and read this related
information without imposing any particular design structure on the underlying system.

It also allows such information to be read without the need to create and manage OPCGroups.

In most cases, a system like the one above (i.e. one composed internally of 'records’) would also
expose a hierarchical address spaceto OPC in the form of A100 asa'branch’ and A100.CV, A100.SP,
A100.0UT, A100.DESC as'leafs. In other words, the properties of an item which happensto be a
record will generally map into lower level ITEMIDS. Another way to look at thisis that things that
have properties like A100 are going to be things that show up as 'Branch' Nodes in the OPC Browser
and things that are properties are going to show up as 'L eaf' nodesin the OPC Browser.

Note that the A100 item could in fact be embedded in a higher level "Plant.Building.Line" hierarchy
however for the moment we will ignore thisasit is not relevant to this discussion.

So, the general intent of thisinterfaceisto provide away, given an ITEMID of any one of a number of
related its properties (like A100.CV or A100.DESC or even A100), to identify the other related
properties.

Before we begin however it should be noted that the first 6 properties (the OPC Specific Property Set
1) are'special cases' in that they represent data that would exist within the OPC Server if thisitem were
added to an OPC Group and do not represent properties of the 'real’ tag record in the underlying
system. As aresult, these particular property IDswill generally behave differently in the methods on
thisinterface as described below.

An overview of the QueryAvailableProperties function:

The expected use of thisisthat you would passit an ITEMID such as A100 which represents a 'record
object although you can also passit afully qualified ITEMID such as A100.CV or A100.SP. In any
case you will get back alist of all of the other properties related to thisitem; typically, these are the
other properties of the record object. Except for properties 1-6 it is not relevant whether the starting
ITEMID reflects the record object or one of its property objects. Either way you will get back the same
result - i.e. thelist of propertiesin the containing ‘record' object.

As noted above properties 1-6 have special behavior. They will refer to the OPC Item Data within the
server for this particular item. If the passed ITEMID would not have made sense when passed to
Addltem then the special 1-6 propertieswill not be available. For exampleif adding A100 (rather than
A100.CV) would produce an error from Additem then properties 1-6 are not available for A100.

a4

OPC Data Access Custom | nterface Specification 2.03

Note that a server could chose to assign a 'default’ value to an unqualified tag such that for example
A100 becomes equivalent to A100.CV. Such a server might chose to return properties 1-6 when passed
an unqualified ITEMID such as A100..

An overview of the GetltemProperties function:

The expected useisthat you would pass the same ITEMID to thisfunction as you passed to
QueryAvailableProperties since, logically, the Property ID list returned by QueryAvailablePropertiesis
valid only for exactly that ITEMID. Again note that except for properties 1-6 it does not matter

whether the ITEMID is A100, A100.CV or A100.DESC, the properties will still return the appropriate
properties of the container record.

Properties 1-6 have special behavior in that their behavior does vary based on the ITEMID. For
example, property 2 (Current Value) would return the value of A100.CV if that were the passed
ITEMID or the value or A100.SP if that were the passed ITEMID or might beinvalid if the passed
ITEMID were smply A100.

An overview of the LookupltemlDs function:

The expected useis that you would pass the same ITEMID to this function as you passed to
QueryAvailableProperties since, logically, the Property ID list returned by QueryAvailablePropertiesis
valid only for exactly that ITEMID. Again note that except in the case of properties 1-6 it does not
meatter whether the ITEMID is A100, A100.CV or A100.DESC, the returned ITEMIDs will still reflect

the ITEMIDs of the appropriate properties of the container record.

Because properties 1-6 reflect data stored within the server and are not really related to properties of
the item, there will never be any ITEMIDs returned for these properties and they should never be
passed to this function. Doing so will generate an OPC_E_INVALID_PID error for the passed

property.

Typical Use

Typical Client use of thisinterface would beto obtain an ITEMID either by obtaining a'LEAF via
BrowseServerAddress or viadirect input to an edit box by the user. That ITEMID would be passed to
QueryAvailableProperties(). The resulting list would be presented to the user. He would select the
properties he wanted to see from thelist. The client would pass this set to GetltemProperties () to get a
'snapshot’ of the data. Optionally the client could pass the set to L ookupltem| Ds and use the resulting
set of ITEM IDsto create an OPCGroup to be used to repeatedly obtain the data.

Examples

Thisisjust an example. It is not intended to impose any particular structure on any server
implementation.

A typical OPC ITEMID might be FIC101.CV. This could represent the current value of atag or

function block called FIC101. This function block commonly has other properties associated with it
such as Engineering Units, aloop description, etc. This function block could also have alarm limits and
status, a setpoint, tuning parameters as well as documentation cross references, maintenance
information, help screens, default operator displays and alimitless set of other properties. All of these
properties are associated with each other by virtue of their common association with FIC101. This
interface provides a convenient shortcut to accessing those related properties.

An MMI package for example might use thisinterface to allow the user to indicate that the Hi and Lo
Engineering Units values should be used to scale a bargraph representation of the value.

&

OPC Data Access Custom | nterface Specification 2.03

Note that because these associations can be 'many to many' and can also be circular, aclient
application would not want to automatically investigate them all.

ItisNOT intended that property browsing be hierarchical.

Another similar example could be afunction block such asaTIMER or COUNTER in ahighend PLC
where various Properties are associated with each object.

How ‘Properties relatetoltemlIDs.

In most casesit is expected (but not required) that such properties can also be accessed via ltemIDs
such as FIC101.HI_EU, FIC101.DESC, FIC101.ALMSTAT, etc. Theserelated ITEMIDs could be

used in an OPCGroup. Thisinterface provides away to easily determineif such an alternate method of
access can be used for the propertiesif large amounts of information need to be obtained more
efficiently.

Property I1Ds

The server will need to assign DWORD ID codesto the properties. This allows the client to more

easily manage the list of propertiesit wantsto access. These properties are divided (somewhat
arbitrarily) into 3 ‘sets’. The OPC ‘Fixed’ set contains properties that are identical to some of those
returned by OPCITEMATTRIBUTES, the ‘recommended’ set is expected to be common to many
servers, the ‘vendor specific’ set contains additional properties as appropriate. The assigned IDsfor the
first two sets are fixed. The vendor specific properties should use ID codes above 5000.

The OPC Property Sets

Thisisaset of property IDs that are common to many servers. Servers which provide the coresponding
properties must do so using the ID codes from thislist. Symbolic equates for these properties are
provided in the OPCProps.H file. (See Appendix to this document).

ID Set 1 - OPC Specific Properties- Thisincludesinformation directly related to the OPC Server for
the system.

OPC Data Access Custom | nterface Specification 2.03

ID DATATYPE of STANDARD DESCIPTION
returned
VARIANT

1 VT 12 "Item Canonical DataType"
(VARTYPE stored inan 12)

2 <varies> "Item Value"
(VARIANT)
Note the type of value returned is as indicated by the "Item Canonical
DataType" above and depends on theitem. Thiswill behavelike a
reed from DEVICE.

3 VT 12 "ltem Quality"
(OPCQUALITY storedinan 12). Thiswill behave like aread from
DEVICE

4 VT_DATE "Item Timestamp"
(will be converted from FILETIME). Thiswill behave likearead from
DEVICE

5 VT 14 "ltem Access Rights'
(OPCACCESSRIGHTS stored in an 14)

6 VT_R4 "Server Scan Rate"
In Milliseconds. This represents the fastest rate at which the server
could obtain data from the underlying data source. The nature of this
sourceisnot defined but istypically aDCS system, a SCADA system,
aPLCviaaCOMM port or network, a Device Network, etc. This
value generally representsthe ‘ best case’ fastest RequestedUpdateRate
which could be used if thisitem were added to an OPCGroup.
The accuracy of thisvalue (the ability of the server to attain ‘best case’
performance) can be greatly affected by system load and other factors.

7-9 Reserved for future OPC use

ID Set 2 - Recommended Properties- Thisis additional information which is commonly associated
with ITEMs. Thisincludes additional ranges of values that are reserved for use by other future OPC
specifications. For information about the newest field ID assignments, consult the other OPC
Foundation specifications.

The position of the OPC Foundation isthat if you have properties associated with an item which seem
to fit the descriptions below then it is recommended that you use these specific descriptions and ID
codes to expose those properties viathis interface.

A server can provide any subset of these values (or none of them).

ID DATATYPE of STANDARD DESCIPTION
returned
VARIANT
Propertiesrelated to the ltem Value.
100 VT_BSTR "EU Units"

OPC Data Access Custom | nterface Specification 2.03

eg. “DEGC" or “GALLONS’

101 VT _BSTR "Item Description”
e.g. “Evaporator 6 Coolant Temp”

102 VT_R8 "High EU"
Present only for ‘analog’ data. This represents the highest value likely
to be obtained in normal operation and is intended for such use as
automatically scaling a bargraph display.
eg. 1400.0

103 VT_R8 "Low EU"
Present only for ‘analog’ data. This represents the lowest value likely
to be obtained in normal operation and is intended for such use as
automatically scaling a bargraph display.
e.g.-200.0

104 VT_R8 "High Instrument Range"
Present only for ‘analog’ data. This represents the highest value that
can bereturned by the instrument.
e.g. 9999.9

105 VT_R8 "Low Instrument Range"
Present only for ‘analog’ data. This represents the lowest value that
can be returned by the instrument.
e.g.-9999.9

106 VT _BSTR "Contact Close Label"
Present only for ‘discrete' data. Thisrepresentsastring to be
associated with this contact when it isin the closed (non-zero) state
e.g."RUN","CLOSE", "ENABLE", "SAFE" ,etc.

107 VT_BSTR "Contact Open Label"
Present only for ‘discrete’ data. Thisrepresentsastring to be
associated with this contact when it isin the open (zero) state
e.g."STOP", "OPEN", "DISABLE", "UNSAFE" ,etc.

108 VT_l4 "Item Timezone" The difference in minutes between theitems UTC
Timestamp and the local time in which the item val ue was obtained.
See the OPCGroup TimeBias property. Also see the WIN32
TIME_ZONE_INFORMATION structure.

109-199 Reserved for future OPC use. Additional IDs may be added without
revising the interface ID.
Propertiesrelated operator displays

200 VT_BSTR "Default Display"
The name of an operator display associated with this ItemID

201 VT_l4 "Current Foreground Color"

OPC Data Access Custom | nterface Specification 2.03

The COLORREF in which the item should be displayed

202 VT 14 "Current Background Color"
The COLORREF in which the item should be displayed
203 VT_BOOL "Current Blink"

Should adisplay of thisitem blink?

204 VT_BSTR "BMPFile"
eg. C\MEDIA\FIC101.BMP
205 VT_BSTR "Sound File"
eg. C\MEDIA\FIC101.WAYV, or .MID
206 VT_BSTR "HTML File"
e.g. http:\\mypage.com/ FIC101.HML
207 VT_BSTR "AVI File"
eg. C\AMEDIA\FIC101.AVI
207-299 Reserved for future OPC use. Additional |Ds may be added without

revising theinterface ID.

Properties Related to Alarm and Condition Values
(preliminary)...

IDs 300 to 399 arereserved for useby OPC Alarmsand Events.

Seethe OPC Alarm and Events specification for additional
information.

300 VT _BSTR "Condition Status"
The current alarm or condition status associated with the [tem
e.g."NORMAL","ACTIVE", "HI ALARM", etc

301 VT_BSTR "Alarm Quick Help"

A short text string providing abrief set of instructions for the operator
to follow when this alarm occurs.

302 VT_BSTR "Alarm AreaList"
[VT_ARRAY An array of stingsindicating the plant or alarm areas which include
this ItemID.
303 VT _BSTR "Primary Alarm Ared"
A string indicating the primary plant or alarm areaincluding this
ItemID
304 VT _BSTR "Condition Logic"

An arbitrary string describing the test being performed.
e.g. "High Limit Exceeded" or "TAG.PV >= TAG.HILIM"

305 VT_BSTR "Limit Exceeded"

For multistate alarms, the condition exceeded

OPC Data Access Custom | nterface Specification 2.03

eg. HIHI, HI,LO, LOLO

306 VT_R8 "Deadband"

307 VT_R8 "HiHi Limit"

308 VT_R8 "Hi Limit"

309 VT_R8 "Lo Limit"

310 VT_R8 "LoLo Limit"

311 VT _R8 "Rate of Change Limit"

312 VT_R8 "Deviation Limit"

313-399 Reserved for future OPC Alarms and Events use. Additional IDs may
be added without revising the interface ID.

400- Reserved for future OPC use. Additional IDs may be added without

4999 revising the interface ID.

NOTE the OPC Foundation reservestheright to expand thislist from timeto time. Clients
should be prepared to deal with this.

ID Set 3 - Vendor specific Properties

VT Xxx

Vendor Specific Properties. ID codes for these properties must have
values of 5000 or greater. They do not need to be sequential. The
datatypes must be compatable with the VARIANT.

The client should take care dealing with these vendor specific IDs- i.e. not make assumptions about
them. Different vendors may not provide the same information for I1Ds of 5000 and above.

Note again that thisinterface is NOT intended to allow efficient access to large amounts of data.

The Localel D of the server (as set by IOPCCommon::Setl ocalel D) will be used by the server to
localize any dataitemsreturned as strings. The item descriptions are not localized.

47

OPC Data Access Custom | nterface Specification 2.03

4.4.6.1 IOPCltemProperties::QueryAvailableProperties

HRESULT QueryAvailableProperties(

[in] LPWSTR szltemID,

[out] DWORD * pdwCount,

[out, size is(,* pdwCount)] DWORD ** ppPropertylDs,
[out, size_is(,* pdwCount)] LPWSTR * ppDescriptions,
[out, size is(,* pdwCount)] VARTY PE **ppvtDataTypes
);

Description

Return alist of ID codes and descriptions for the available properties for thisITEMID. Thislist may
differ for different ItemlIDs. Thislist is expected to berelatively stable for a particular ItemID. That is,
it could be affected from time to time by changes to the underlying system’s configuration.

Parameters Description

szltemID The ItemI D for which the caller wantsto know the
available properties

pdwCount The number of properties returned

ppPropertylDs

DWORD IDsfor the returned properties. These IDs
can be passed to GetltemProperties or LookupltemIDs

ppDescriptions

A brief vendor supplied text description of each
property. NOTE LocalID does not apply to
Descriptions. They are from the tables above.

ppvtDataTypes The datatype which will be returned for this property
by GetltemProperties.
HRESULT Return Codes
Return Code Description
S OK The function was successful.
OPC_E_UNKNOWNI The ItemID isnot in the server address space
TEMID

OPC_E_INVALIDITE
MID

The ItemID is not syntactically valid

E_OUTOFMEMORY

Not enough Memory.

E INVALIDARG Aninvalid argument was passed
E FAIL Thefunction failed.
Comments

The ItemID is passed to this function because servers are allowed to return different sets of properties
for different ItemlDs.

4.4.6.2

HRESULT
[in] LPWSTR szltemID,

[in] DWORD dwCount,

OPC Data Access Custom | nterface Specification 2.03

IOPCltemProperties::GetltemProperties
GetltemProperties(

[in, size_is(dwCount)] DWORD * pdwPropertyIDs,
[out, size is(,dwCount)] VARIANT ** ppvData,

);

Description

[out, size is(,dwCount)] HRESULT **ppErrors

Return alist of the current data values for the passed ID codes.

Parameters Description

szltemlD The Iteml D for which the caller wants to read the list
of properties.

dwCount The number of properties passed

ppPropertylDs

DWORD IDsfor the requested properties. These IDs
were returned by QueryAvailableProperties or obtained
from the fixed list described earlier.

ppvData An array of count VARIANTS returned by the server
which contain the current values of the requested
properties.

ppErrors Error array indicating wether each property was
returned.

HRESULT Return Codes
Return Code Description
S OK The function was successful.

OPC_E_UNKNOWNI
TEMID

The ItemID isnot in the server address space

OPC_E _INVALIDITE
MID

The ItemID isnot syntactically valid

E_OUTOFMEMORY

Not enough Memory.

E_INVALIDARG

Aninvalid argument was passed

E FAIL

The function failed.

49

OPC Data Access Custom | nterface Specification 2.03

‘Errors Return Codes

Return Code Description

S OK The corresponding Propertyl D was read.

OPC _E INVALID_PI The passed Property 1D isnot defined for thisitem.

D

E xxx The passed Property |D could not beread. The server

can return a server specific error code to provide a
detailed explanation as to why this property could not
beread. Thiserror code can be passed to
GetErrorMessage. In general thiswill be the same set
of errorsasis returned by the OPC Read function.

Comments

The caller must Free the returned Variants and Errors array. The client must first do a VariantClear()
on each of the returned Variants.

Clients should not use this interface to obtain large amounts of data. Clearly each server vendor will
provide the best performace possible however as a practical matter it is expected that the design of this
interface will make it difficult for the server to optimize performace. See L ookupltemiDs.

OPC Data Access Custom | nterface Specification 2.03

4.4.6.3 IOPCltemProperties::LookupltemIDs
HRESULT L ookuplteml Ds(

[in] LPWSTR szltemID,
[in] DWORD dwCount,

[in, size_is(dwCount)] DWORD * pdwPropertylDs,
[out, string, size_is(,dwCount)] LPWSTR ** ppszNewltemIDs,

);

Description

Return alist of ITEMIDs (if available) for each of the passed ID codes. Theseindicatethe I TEMID
which could be added to an OPCGroup and used for more efficient access to the data corresponding to

the Item Properties.

[out, size is(,dwCount)] HRESULT **ppErrors

Parameters Description

szitemlD The Iteml D for which the caller wantsto lookup the
list of properties

dwCount The number of properties passed

pdwPropertyl Ds

DWORDIDs for the requested properties. These IDs
were returned by QueryAvailableProperties

ppszNewltemIDs

Thereturned list of ItemlIDs.

ppErrors

Error array indicating wether each New ItemID was
returned.

HRESULT Return Codes

Return Code Description

S OK The function was successful.
OPC_E_UNKNOWNI The ItemID isnot in the server address space
TEMID

OPC_E INVALIDITE The ItemID isnot syntactically valid

MID

E OUTOFMEMORY Not enough Memory.

E INVALIDARG Aninvalid argument was passed

E FAIL The function was not successful

51

OPC Data Access Custom | nterface Specification 2.03

‘Errors Return Codes

Return Code Description

S OK The corresponding Property 1D was translated into an
ItemID.

OPC _E INVALID_PI The passed Property 1D is not defined for thisitem.

D

E FAIL The passed Property 1D could not be translated into an
ItemID.

Comments

It is expected and recommended that serverswill allow most or all item properties to be translated into
specific ItemlIDs.

The caller must Free the returned NewltemlDs and Errors array.

52

OPC Data Access Custom | nterface Specification 2.03

4.4.7 10PCServerPublicGroups (optional)
This optional interface allows management of public groups.

Public Groups

An application may be designed so that the same groups of dataitems are used by many clients. In
those cases the optional Public Group capability of the server provides a convenient mechanism for
both clients and serversto share these groups.

Public groups may be created by the server or they may be created by aclient. When created by the
client, they arefirst created as private groups and then converted to public groups by MoveToPublic.

A client can enumerate the available public groups by name using
|OPCServer::CreateGroupEnumerator. He can ‘ connect’ to a public group by calling
GetPublicGroupByName. He can examine the contents of the group vial EnumOPCItemAttributes. He
can assign client handles and datatypes that are meaningful for the particular client using various
IOPCltemMgt functions.

Once aclient connectsto a Public group, it behaves very much like a private group. He can activate

and deactivate the group or itemsin the group. He can set client handles for the group and items within
the group. He can set requested data type for the itemsin the group. All of these operations affect only
that particular client. They do not affect the behavior of other clients connected to that group. The
exception to this behavior isthat he cannot add or remove items.

OPC Data Access Custom | nterface Specification 2.03

44.7.1 IOPCServerPublicGroups:: GetPublicGroupByName

HRESULT GetPublicGroupByName(
[in, string] LPCWSTR szName,

[in] REHIID riid,
[out, iid_is(riid)] LPUNKNOWN * ppUnk

);

Description

‘Connects’ the client to a public group. Thisreturns an interface pointer to the group.

Parameters Description

szName Name of group to be connected

riid requested interface

ppuUnk pointer to place to store interface. NULL isreturned for
any HRESULT other than S_OK

Return Codes

Return Code Description

E FAIL The operation failed.

E OUTOFMEMORY Not enough memory

E_INVALIDARG An argument to the function was invalid.

S OK The operation succeeded.

E_NOINTERFACE Theinterface(riid) asked for is not supported by the
server.

OPC_E NOTFOUND Requested Public Group was not found.

Comments

If needed, the client can obtain the hServerGroup Handle via | OPCGroupStateM gt:: GetState.

Note that when the client’ s last interface for the public group is released, the client is effectively
disconnected from the group. At this point the server should release any resources or instance data
associated with this particular client’s connection to the public group. It is not necessary for the client
to call RemoveGroup or RemovePublicGroup to free these client specific resources.

OPC Data Access Custom | nterface Specification 2.03

4.4.7.2 IOPCServerPublicGroups:: RemovePublicGroup

HRESULT RemovePublicGroup(
[in] OPCHANDLE hServerGroup ,
[in] BOOL bForce

)

Description

Delete apublic group.

Parameters Description

hServerGroup Handle of group to be removed.

bForce Forces deletion of the group even if references are

outstanding
Return Codes

Return Code Description

E FAIL The operation failed.

E_ OUTOFMEMORY Not enough memory

E_INVALIDARG An argument to the function wasinvalid.

S OK The operation succeeded.

OPC_S INUSE Was not be removed because references exist. Group
will be marked as deleted, and will be removed by the
server when all references to this object are released.

Comments

A public group is not deleted when all the client interfaces are released, since the server itself
maintains areference to the group. The client may still call GetPublicGroupByName &fter all the
interfaces have been released. RemovePublicGroup() causes the server to releaseit's "last' reference to
the group, which resultsin the group being truly deleted.

It ispermissible for aserver to publish *hard coded’ groups which cannot be deleted. The server should
return E_FAIL in this case.

In general, awell behaved client will call thisfunction only after releasing all interfaces.

If interfaces still exist, RemovePublicGroup will mark the group as‘deleted’. Any further callsto this
group viathese interfaces will return E_FAIL. When all the interfaces are released, the group will
actually be deleted. If bForceis TRUE then the group is deleted unconditionally even if references
(interfaces) still exist. Subsequent use of such interfaceswill result in an access violation.

Note that any client can delete a public group. Y ou can get the server handle of the group by calling
|OPCGroupStateMgt::GetState.

OPC Data Access Custom | nterface Specification 2.03

4.4.8 10PCBrowseServerAddressSpace (optional)

Thisinterface provides away for clients to browse the available dataitemsin the server, giving the
user alist of thevalid definitionsfor an ITEM ID. It allowsfor either flat or hierarchical address
spaces and is designed to work well over anetwork. It also insulates the client from the syntax of a
server vendor specific ITEM ID.

NOTE: Version 1.0A of the specification stated that each instance of thisinterface was a separate
object (like an enumerator), which would have allowed multiple independent browse sessionshy the
same client on the server address space. Thisturns out to be in violation of the rules of COM and asa
result it does not work in combination with DCOM. In practice, thisinterface MUST be implemented
(like any other interface) as a separate interface on the single underlying Data Access Object. The text
of this section has been modified to reflect this. Note that the 'footprint' of the interface is unchanged
for 2.0.

Note that the Data Access Server object maintains state information related to browsing (i.e. the
current position in the address hierarchy) on behalf of the client using thisinterface. Since thereisjust
one underlying Server object, thereisjust asingle copy of this state information. Therefore the client
CANNOT create a separate and independent browser object by doing a second Querylnterface for
|OPCBrowseServerAddressSpace. (Doing thiswould simply give him a second copy of the original
interface). If asecond, independent browser object isrequired by aclient, the client would need to
create a second OPC Data A ccess Object and perform a Querylnterface for

| OPCBrowseServerAddressSpace on that object.

It is assumed that the underlying server address space is either flat or hierarchical. A flat space will
always be presented to the client as Flat. A hierarchical space can be presented to the client as either
flat or hierarchical.

A hierarchical presentation of the server address space would behave much like afile system, where
the directories are the branches or paths, and the files represent the leaves or items. For example, a
server could present a control system by showing all the control networks, then all of the deviceson a
selected network, and then all of the classes of datawithin a device, then all of the dataitems of that
class. A further breakdown into vendor specific ‘Units and ‘Lines’ might be appropriate for a
BATCH system.

The browse position isinitially set to the ‘root’ of the address space. The client can optionally choose a
starting point within a hierarchical space by calling ChangeBrowsePosition using

OPC_BROWSE TO. For aFLAT spacethisisignored. For aHIERARCHICAL space you may pass
any partial path (or apointer to aNUL string to indicatethe root). Thissetsan initial position from
which you can browse up or down.

The Client can browse the items below (contained in) the current position via BrowseOPCltemIDs. For
ahierarchical space you can specify BRANCH (which returns things on that level with children) or
LEAF (things on that level without children)- or FLAT (everything including children of children).
Thisgivesyou back a String enumerator.

This browse can also be filtered by avendor specific filter string, by datatype, or by Access Rights.

In ahierarchy, the enumerator will return ‘short’ strings; the name of the ‘child’. These short strings
will generally not be sufficient for Additem. The client should always convert this short string to a
"fully qualified’ string via GetltemID. For example the short string might be TIC101; the fully
qualified string might be AREA1.REACTORS.TIC101. Note that the Server fillsin any needed
delimiters.

This ItemID can optionally be passed to BrowseAccessPathsto get alist of valid access pathsto this
item. (this returns another string enumerator).

If the client browsed for BRANCHs (things with children) then he can pass the result (short string) to
ChangeBrowsePosition to move ‘down’. This method can also move ‘up’ in which case the short
string is not used.

OPC Data Access Custom | nterface Specification 2.03

Examplesof a Hierarchical Space:
Exanple 1
<ROOT>
AREA1 (branch)
REACTOR10 (branch)
TIC1001 (branch)
CURRENT _VALUE (lesf)
SETPOINT
ALARM_STATUS
LOOP_DESCIPTION
TIC1002
CURRENT_VALUE
etc...
REACTOR11
etc...
AREA2
etc...

Example 2

<ROOT>

PLC_STATION_1 (branch)
ANALOG_VALUES (branch)
40001 (ledf)
40002

etc...

57

OPC Data Access Custom | nterface Specification 2.03

4481 IOPCBrowseServerAddressSpace:: QueryOrganization
HRESULT QueryOrganization(

[out] OPCNAMESPACETY PE * pNameSpaceType
)i

Description

Provides away to determineif the underlying system isinherently flat or hierarchical and how the
server may represent the information of the address space to the client.

Parameters Description
pNameSpaceType Place to put OPCNAMESPACE result which will be
OPC_NS HIERARCHIAL or OPC_NS FLAT

Return Codes

Return Code Description

E FAIL The operation failed.

E OUTOFMEMORY Not enough memory

E INVALIDARG An argument to the function was invalid.

S OK The operation succeeded.
Comments

FLAT and HIERARCHICAL spaces behave somewhat different. If theresultis‘FLAT’ then the
client knows that there is no need to pass the BRANCH or LEAF flags to BrowseOPCltemIDs or to
call ChangeBrowsePosition

OPC Data Access Custom | nterface Specification 2.03

4.4.8.2 IOPCBrowseServerAddressSpace:: ChangeBrowsePosition

HRESULT ChangeBrowsePosition(

[in] OPCBROWSEDIRECTION dwBrowseDirection,
[in, string] LPCWSTR szString
);

Description

Providesaway to move ‘up’ or ‘down’ or 'to' in ahierarchical space.

Parameters Description

dwBrowseDirection OPC_BROWSE_UP or OPC_BROWSE _DOWN or
OPC_BROWSE _TO.

szString For DOWN, the name of the branch to moveinto. This

would be one of the strings returned from
BrowseOPCltemIDs.

E.g. REACTORI0

For UP this parameter isignored and should point to a
NUL string.

For TO afully qualified name (e.g. asreturned from
GetltemI D) or apointer to aNUL string to go to the
‘root'.

E.g. AREA1.REACTOR10.TIC1001

Return Codes
Return Code Description
E_FAIL The operation failed.
E_ OUTOFMEMORY Not enough memory
E_INVALIDARG An argument to the function was invalid.
S OK The operation succeeded.
Comments

Thefunction will return E_FAIL if called for aFLAT space.
An error isreturned if the passed string does not represent a‘ branch’.
Moving UP from the ‘root’ will return E_FAIL.

Note OPC_BROWSE_TO isnew for version 2.0. Clients should be prepared to handle
E_INVALIDARG if they passthisto a1.0 server.

OPC Data Access Custom | nterface Specification 2.03

4.4.8.3 IOPCBrowseServerAddressSpace:: BrowseOPCltemIDs

HRESULT BrowseOPClteml D(
[in] OPCBROWSETYPE dwBrowseFilterType,
[in, string] LPCWSTR szFilterCriteria,
[in] VARTYPE vtDataTypeFilter,
[in] DWORD dwAccessRightsFilter,
[out] LPENUMSTRING * pplEnumsString

);
Description

Returns an IENUM String for alist of Iteml Ds as determined by the passed parameters. The position
from the which the browse is done can be set via ChangeBrowsePosition.

Parameters Description

dwBrowseFilterType OPC_BRANCH - returns only items that have children
OPC_LEAF - returns only items that don’t have children
OPC_FLAT - returns everything at and below thislevel
including al children of children- basically ‘pretends’ that
the address spacein actually FLAT

This parameter isignored for FLAT address space.

szFilterCriteria A server specificfilter string. Thisisentirely free format
and may be entered by the user viaan EDIT field.

Although the valid criteriaare vendor specific, source code
for arecommended filter functionisincluded in an
Apppendix at the end of this document. This particular filter
function is commonly used by OPC interfaces and is very
similar in functionality to the LIKE function in visual basic.
A pointer to aNUL string indicates no filtering.

vtDataTypeFilter Filter the returned list based in the avail abl e datatypes
(those that would succeed if passed to Addltem).
VT_EMPTY indicates no filtering.

dwA ccessRightsFilter Filter based on the AccessRights bit mask
(OPC_READABLE or OPC_WRITEABLE). Thehits
passed in the bitmask are 'ANDed' with the bits that would
be returned for this Item by Addltem, Validateltem or
EnumOPCltemAttributes. If the result is hon-zero then the
item isreturned. A 0 value in the bitmask indicates that the
AccessRights bits should be ignored during the filtering
process..

ppl EnumString Where to save the returned interface pointer. NULL if the
HRESULT isotherthan S OK or S FALSE

OPC Data Access Custom | nterface Specification 2.03

Return Codes
Return Code Description
S OK The operation succeeded.
S FALSE There is nothing to enumerate. However an empty
Enumerator is still returned and must be released.
Note: In previous versions of the spec there has
been some ambiguity about the behavior in the
case of S FALSE. For thisreason, itis
recommended that when S_FALSE isreturned by
the server, clients test the returned interface
pointer for NULL prior to calling Release oniit.
E FAIL The operation failed.
E OUTOFMEMORY Not enough memory
E_INVALIDARG An argument to the function wasinvalid.
OPC_E_INVALIDHLTER Thefilter string was not valid
Comments

The returned enumerator may have nothing to enumerate if no Iteml Ds satisfied the filter constraints.
The strings returned by the enumerator represent the BRANCHSs and LEAFS contained in the current
level. They do NOT include any delimiters or ‘ parent’ names. (See GetltemiD).

Whenever possible the server should return strings which can be passed directly to Additems.
However, it isallowed for the Server to return a“hint’ string rather than an actual legal Item ID. For
example a PL C with 32000 registers could return asingle string of “0to 31999” rather than return
32,000 individual strings from the enumerator. For thisreason (aswell asthe fact that browser support
is optional) clients should always be prepared to allow manual entry of ITEM ID strings. In the case of
‘hint’ strings, there is no indication given as to whether the returned string will be acceptable by
Addltem or Validateltem

Clients are allowed to get and hold Enumerators for more than one ‘ browse position’ at atime.
Changing the browse position will not affect any String Enumerator the client already has.

The client must Release each Enumerator when he is donewithiit.

61

OPC Data Access Custom | nterface Specification 2.03

4484 IOPCBrowseServerAddressSpace:: GetltemID

HRESULT Getlteml D(
[in] LPCWSTR szltemDatal D,
[out, string] LPWSTR * szltemID
);

Description

Provides away to assemble a‘fully qualified’ ITEM ID in ahierarchical space. Thisisrequired since
the browsing functions return only the components or tokens which make up an ITEMID and do NOT
return the delimiters used to separate those tokens. Also, at each point one isbrowsing just the names
‘below’ the current node (e.g. the ‘units’ ina‘cell’).

Parameters Description

szItemDatal D The name of aBRANCH or LEAF at the current level.
or apointer toaNUL string. Passing inaNUL string
resultsin areturn string which represents the current
positionin the hierarchy.

szltemID Where to return the resulting ItemID.
Return Codes

Return Code Description

E FAIL The function failed

E_INVALIDARG An argument to the function wasinvalid.

E OUTOFMEMORY Not enough memory

S OK The function was successful
Comments

A client would browse down from AREA1 to REACTOR10 to TIC1001 to CURRENT_VALUE. As
noted earlier the client sees only the components, not the delimiters which are likely to be very server
specific. The function rebuilds the fully qualified name including the vendor specific delimitersfor use
by ADDITEMSs. An extreme example might be a server that returns:
\\AREA1:REACTORI10.TIC1001{CURRENT_VALUE]

It isalso possible that a server could support hierarchical browsing of an address space that contains
globally uniquetags. For examplein the case above, thetag TIC1001.CURRENT_VALUE might still
be globally unique and might therefore be acceptable to Additem. However the expected behavior is
that (a) GetltemID will always return the fully qualified name
(AREA1L.REACTOR10.TIC1001.CURRENT_VALUE) and that (b) that the server will always accept
the fully qualified namein Additems (even if it does not requireit).

Thisfunction does not need to be called for aFLAT space. If itiscalled, thenit will smply return the
same string that was passed in.

Itisvaid toform an ItemlD that representsa BRANCH (e.g. AREA1.REACTOR10). Thiscould
happen if you passaBRANCH (AREAL1) rather than aLEAF (CURRENT_VALUE). Theresulting
string might fail if passed to AddItem but could be passed to ChangeBrowsePosition using
OPC_BROWSE_TO.

The client must free the returned string.

ItemID isthe unique ‘key’ to the data, it is considered the ‘what’ or ‘where’ that allows the server to
connect to the data source.

62

OPC Data Access Custom | nterface Specification 2.03

4485 IOPCBrowseServerAddressSpace:: BrowseAccessPaths

HRESULT BrowseA ccessPaths(
[in, string] LPCWSTR szltemID,
[out] LPENUMSTRING * pplEnumString

)

Description

Provides away to browse the available AccessPathsfor an ITEM ID.

Parameters Description
«zItem|D Fully Qualified ItemID
ppl EnumsString Where to save the returned string enumerator. NULL if
the HRESULT isotherthan S OK or S FALSE.
Return Codes
Return Code Description
E FAIL The function failed
E INVALIDARG An argument to the function wasinvalid.
S FALSE There is nothing to enumerate. However an empty
Enumerator is still returned and must be released. Note:
In previous versions of the spec there has been some
ambiguity about the behavior inthe caseof S_FALSE.
For thisreason, it isrecommended that when S_FAL SE
isreturned by the server, clients test the returned
interface pointer for NULL prior to calling Release oniit.
E OUTOFMEMORY Not enough memory
E NOTIMPL The server does not require or support access paths.
S OK The function was successful
Comments

Clients are allowed to get Access Path Enumerators for more than oneitem at atime.
Changing the browse position will not affect any enumerator the client already has.
The client must Rel ease each Enumerator when heis done with it.

AccessPath isthe “how” for the server to get the data specified by theitemID (the what). Theclient
uses this function to identify the possible access paths for the specified itemID.

OPC Data Access Custom | nterface Specification 2.03

4.4.9 IPersistFile (optional)

Thisis astandard implementation of the | PersistFile Interface. The descriptions below are brief and
describe behavior specific to OPC. Refer to the OLE programmers reference for additional
information.

This optional interface allows Clients to load or save aserver ‘ configuration’. The reason for
providing thisinterfaceisto allow aclient application to have accessto any ‘hooks' it might need to
get the system started or to change the system configuration without requiring the user to start a
separate program.

The filename discussed below tellsthe server whereit’s configuration information is located. Filename
syntax and semanticsis server specific, and may include the fully qualified path and file name, or may
refer to a proprietary database where the server’s configuration is stored. The format and content of the
file or database is server specific.

Notethat thisinterfacedoesNOT saveany client specificinformation such asgroup and
item definitions. Rather, itisa‘hook’ intended toload or savetheserver configuration
such asa SCADA or DCSdatabase, communicationsbaud rates, PL C station addr esses,
etc.

449.1 IPersistFile::IsDirty
HRESULT IsDirty(
void
);
Description

Returns whether or not there have been any configuration changes (by any client) since the last save

operation.
Parameters
Return Codes
Return Code Description
S OK The server has configuration information that has been modified since
the last save operation.
S FALSE The server does not have configuration information that has been
modified since the last save operation.
Comments

The client cannot change any of the configuration of the server address space through a standard OPC
interface. The client usesthisfunction to determineif the configuration has been modified by a server
specific configuration tool or by aclient using a server specific configuration interface. Thisfunction
could be used by the client before shutting the server down to determineif the server’s configuration
needs to be saved.

OPC Data Access Custom | nterface Specification 2.03

4492 IPersistFile::Load

HRESULT Load(
[in] LPCOLESTR pszFileName,
[in] DWORD dwMode

);

Description

Instructs the server to load the server’s configuration data from the file (pszFileName). The previous
configuration (if any) is replaced by the new configuration. OPC servers are assumed to support a
single (global) active configuration. That is, aload will affect al other OPC clients which are
accessing this server.

The exact effect of doing aload while groups and subscriptions are active is server specific. In
general, it isassumed that thiswill cause some or al of the itemsin the active groups to disappear
from the server address space. Such items would subsequently return aBAD Quality.

Parameters Description
pszFileName The filename from which the server configuration information isto be
loaded.
dwMode Access mode to be used on thefile. See * Storage Access M ode Flags’
in the OLE programmer’ sreference for more information.
Return Codes
Return Code Description
S OK The server successfully loaded configuration information
from thefile specified.
E FAIL The server was unsuccessful in loading the configuration
information from the file specified.
E OUTOFMEMORY Not enough memory to load configuration.
OPC_E INVALIDCONFIGFILE The server's configuration fileisan invalid format.
Comments

In most cases, an error during load will leave the server without avalid configuration.

A load will cause other clients connected to this server to be effectively disconnected, or the results of
the other clients subsequent interactions with the server to be unknown.

449.3 IPersistFile::Save

HRESULT Save(
[in, unique] LPCOLESTR pszFileName,
[in] BOOL fRemember
);

OPC Data Access Custom | nterface Specification 2.03

Description

Save current configuration.

Parameters
Parameters Description
pszFileName The filename to which the server configuration information isto be
saved.
fRemember Determines of the logically associated filename for this configuration
should be changed (if TRUE) or not (if FALSE).
Return Codes
Return Code Description
S OK The server successfully saved configuration information
E FAIL The server was unsuccessful in saving the configuration
OPC_E_INVALIDCONFGFILE The server's configuration fileisan invalid format.

Comments

Save should clear the server’s configuration dirty flag (as returned from IsDirty interface).

4494 IPersistFile::SaveCompleted
HRESULT SaveCompleted(
[in, unique] LPCOLESTR pszFileName
);
Description

Thisfunction may be implemented asa‘stub’.

Parameters Description
pszFileName The filename to which the configuration was previously saved using
IPersistFile;:Save
Return Codes
Return Code Description
S OK S OK isawaysreturned
OPC_E INVALIDCONFIGFILE The server's configuration fileisan invalid format.

Comments

OPC Data Access Custom | nterface Specification 2.03

4495 IPersistFile::GetCurFile

HRESULT GetCurFile(
[out] LPOLESTR *ppszFileName

)

Description

Instructs the server to return the name associated with the currently loaded configuration.

Parameters Description
ppszFileName Thefull filename (if any).
Return Codes
Return Code Description
S OK The operation succeeded
S FALSE Thereis not filename currently associated with the configuration
E OUTOFMEMORY Not enough memory
E FAIL operation failed
Comments

This may or may not match the last name passed to Load or Save since there can be other vendor
specific tasks that control the server configuration.

The client must free the returned string.

67

OPC Data Access Custom | nterface Specification 2.03

45 OPCGroup Object

The OPCGroup object isthe object that an OPC server deliversto manage a collection of items. The
interfaces that this object providesinclude:

IUnknown

|OPCGroupStateM gt

| OPCPublicGroupStateM gt
|OPCltemMgt

IOPCSynclO

|OPCAsyncl O2 (new)

| ConnectionPointContainer (new)
|OPCAsynclO (old)

| DataObject (old)

The functionality provided by each of these interfacesis defined in this section.

This section a so identifies the interfaces required to be implemented to support the OL E mechanism
for delivering aCOM interface.

OPC Data Access Custom | nterface Specification 2.03

4.5.1 General Properties

The OPCGroup has certain general properties and behaviors which affect the operation of the
Interfaces and Methods. These are discussed herein order to minimize duplication.

4511 Name

Each group has aname. For private groups the name must be unique among the other private groups
that belong to that client. For public groups the name must be unique among all of the public groups.
While aclient can change the name of a private group, the name of a public group cannot be changed.

A private Group and a public group may have the same name as long as the client is not connected to
the public group with the same name.

Group names are Case Sensitive. Groupl would be different from groupl.

451.2 Cached data

The methods below allow the client to specify that some operations can be performed on * CACHE’ or
‘DEVICE'. It is expected that most servers will implement some sort of CACHE. Asdiscussed earlier
these terms are simply part of theinterface definition. The way the functions described below behave
differs slightly based on which sourceis specified. The actual details of the implementation of this
functionality is up to the server vendor. In most cases, accessto CACHE datais expected to be ‘fast’
while accessto the ‘DEVICE is expected to be ‘ slow’ but more accurate. CACHE datais affected by
the Active state of the group and the itemsin the group while DEVICE datais not. Note again that
although we sometimes make suggestions, this specification does not dictate any particular
implementation or performance.

451.3 Active

Groups and Items within Groups have an Active Flag. The active state of the group is maintained
separately from the active state of the items. Changing the state of the group does not change the state
of theitems.

For the most part the Active flag istreated as *abstract’ within this specification. The state of these
flags affects the described behavior of variousinterfacesin awell defined way. The implementation
details of these capabilitiesis not dictated by this specification.

In practiceit is expected that most servers will make use of thisflag to optimize their use of
communications and CPU resources. Items and Groups which are not active do not need to be
maintained in the CACHE.

It isalso expected that clients will simply set and clear active flags of groups and items as amore
efficient alternative to adding and removing entire groups and items. For exampleif an operator
display isminimized, itsitems might be set to inactive.

Refer to the Data Acquisition and Active State Behavior summary earlier in thisdocument for a
quick overview of the behavior of a client and server with respect to the active state of agroup
and items.

OnDataChange within the client's address space can be called whenever any activeitem datain a
active group changes, where “change” is defined as a change in value (from the last value sent to this
client), or achangein the Quality of the value. The server can return values and quality flags for those
items within the group that changed.(this will be discussed more in later sections)

69

OPC Data Access Custom | nterface Specification 2.03

4514 Update Rate

The client can specify an ‘ update rate’ for each group. This determines the time between when the
exception limit is checked. If the exception limit is exceeded, the CACHE isupdated. The server
should make a‘best effort’ to keep the data fresh. This also affects the maximum rate at which
notifications will be sent to the IAdvise sink. The server should never send datato aclient at arate
faster than the client requests.

IMPORTANT:

Note that thisis NOT necessarily related to the server's underlying processing rate. For exampleif a
deviceisperforming PID control at 0.05 second rate the an MM I requests updates at a5 second rate
via OPC, the device would of course continue to control at a0.05 second rate.

In addition, the server implementation would also be allowed to update the cached data available to
sync or async read at a higher rate than 5 secondsif it wished to do so. All the update rate indicatesis
that (@) callbacks should happen no faster than this and (b) the cache should be updated at at |least this
rate.

Theupdaterateisa‘request’ fromthe client. The server should respond with an update ratethat is as
close as possible to that requested.

45.15 Time Zone (Time Bias)

In some cases the data may have been collected by a device operating in atime zone other than that of
theclient. Then it will be useful to know what the time of the device was at the time the data was
collected (e.g. to determine what ‘ shift’ was on duty at the time). The Time zone Bias provides the
information needed to convert the time stamp on the data back to the local time of the device.

Thistime zoneinformation may rarely be used and the device providing the datamay not know its
local time zone, therefore it was not prudent to add this overhead to all datatransactions. Instead, the
OPCGroup provides a place to store atime zone which can be set and read by the client. The default
valuefor thisisthe time zone of the host computer. The OPCServer will not make use of thisvalue. It
isthere only for the convenience of the client.

45.1.6 Percent Deadband

Therange of the Deadband isfrom 0.0 to 100.0 Percent. Deadband will only apply to itemsin the
group that have adwEUType of Analog available. If the dwEUTypeis Analog, then the EU Low and
EU High values for the item can be used to calculate the range for the item. Thisrange will be
multiplied with the Deadband to generate an exception limit. An exception is determined as follows:

Exception if (absolute value of (last cached value - current value) > (pPercentDeadband/100/0) * (EU
High- EU Low))

If the exception limit is exceeded, then the last cached value is updated with the new value and a
notification will be sent to the lAdviseSink (if any). The pPercentDeadband is an optional behavior for
the server. If the client does not specify this value on a server that does support the behavior, the
default value of O (zero) will be assumed, and all value changes will update the CACHE. Note that the
timestamp will be updated regardless of wether the cached valueis updated.

The UpdateRate for a group determines time between when avalueis checkedto see if the exception
limit has been exceeded. The PercentDeadband is used to keep noisy signals from updating the client
unnecessarily.

70

OPC Data Access Custom | nterface Specification 2.03

451.7 ClientHandle

Thishandlewill be returned in the data stream to IAdviseSink. This allows the client to identify the
group to which the data packet belongs.

Itisexpected that a client will assign unique value to the client handleif it intends to use any of the
asynchronous functions of the OPC interfaces, including IOPCAsyncl O, IOPCAsyncl Os, and
IDataObject/IAdviseSink or | ConnectionPoint/lOPCDataCallback interfaces.

45.1.8 Reading and Writing Data
There are basically three waysto get datainto a client (ignoring the 'old' IDataObject/I AdviseSink).
|OPCSyncl O::Read (from cache or device)
|OPCAsyncl O2::Read (from device)

| OPCCallback::OnDataChange() (exception based) which can also be triggered by
|OPCAsyncl O2::Refresh.

In general the three methods operate independently without ‘ side effects’ on each other.
There are two ways to write data out:

|OPCSyncl O::Write

IOPCAsynclO2::AsyncWrite

45.1.9 Public Groups

It isrequired that the server track each client's group properties (update rate, deadband, active status,
timezone, Icid) for a public group. For example, if two clients with different L CIDs want data from a

public group, they can change the state of the group to reflect their LCID and the server must keep
track of both.

71

OPC Data Access Custom | nterface Specification 2.03

45.2 I0OPCIltemMgt
IOPCItemMgt alows aclient to add, remove and control the behavior of itemsis a group.

4521 IOPCltemMgt::Addltems
HRESULT Additems(
[in] DWORD dwCount,
[in, size is(dwCount)] OPCITEMDEF * pltemArray,
[out, size_is(,dwCount)] OPCITEMRESULT ** ppAddResults,
[out, size is(,dwCount)] HRESULT ** ppErrors

)i

Description

Add one or moreitemsto a group.

Parameters Description
dwCount The number if items to be added
pltemArray Array of OPCITEMDEFs. These tell the server

everything it needs to know about the item including
the access path, definition and requested datatype

ppAddResults Array of OPCITEMRESUL Ts. Thistellsthe client
additional information about the item including the
server assigned item handle and the canonical datatype.

ppErrors Array of HRESUL Ts. Thistells the client which of the
items was successfully added. For any item which
failed it provides areason.

72

OPC Data Access Custom | nterface Specification 2.03

HRESULT Return Codes
Return Code Description
E FAIL The operation failed.
E OUTOFMEMORY Not enough memory
E INVALIDARG An argument to the function wasinvalid.
S OK The operation succeeded.
S FALSE The operation completed with partial success. Refer to
individual error returnsfor failure analysis.
OPC E PUBLIC Cannot add itemsto a public group
ppErrorsReturn Codes
Return Code Description
S OK The function was successful for thisitem.
OPC_E _INVALIDITEMID TheltemID is not syntactically valid
OPC_E UNKNOWNITEMID The ItemID is not in the server address
space
OPC_E_BADTYPE The requested data type cannot be returned
for thisitem (See comment)
E FAIL The function was unsuccessful.
OPC_E UNKNOWNPATH The item's access path is not known to the
Server.
Comments

It is acceptable to add the same item to the group more than once. Thiswill generate a 2" item with a
unique ServerHandle.

Any FAILED code in ppErrorsindicatesthat the corresponding item was NOT added to the group and
that the corresponding OPCITEMRESULT will not contain useful information.

Asan aternativeto OPC_E_BADTPYE it isacceptable for the server to return any FAILED error
returned by VariantChangeType or VariantChangeTypeEX.

The server provided item handle will be unique within the group, but may not be unique across groups.
The server isallowed to ‘reuse’ the handles of deleted items.

Items cannot be added to public groups.

The client needsto free all of the memory associated with the OPCITEMRESUL Tsincluding the
BLOB.

If the server supportsthe BLOB it will return an updated BLOB inthe OPCITEMRESULTs. This
BLOB may differ in both content and size from the one passed by the client in OPCITEMDEF.

Notethat if an Adviseis active, the client will begin receiving callbacks for active items. This can
occur very quickly, perhaps even before the client has time to process the returned results. The client
must be designed to deal with this. One simple solution isfor the client to clear the Active state of the
group while doing Additems and to restore it after the AddItemsis completed and the results are
processed.

73

OPC Data Access Custom | nterface Specification 2.03

45.2.2 IOPCltemMgt::Validateltems

HRESULT Validateltems(
[in] DWORD dwCount,
[in, size_is(dwCount)] OPCITEMDEF * pltemArray,
[in] BOOL bBlobUpdate,
[out, size is(,dwCount)] OPCITEMRESULT ** ppValidationResults,
[out, size is(,dwCount)] HRESULT ** ppErrors

)

Description

Determinesif anitemisvalid (could it be added without error). Also returns information about the
item such as canonical datatype. Does not affect the group in any way.

Parameters Description
dwCount The number if itemsto be validated
pltemArray Array of OPCITEMDEFs. Thesetell the server

everything it needs to know about the item including
the access path, definition and requested datatype

bBlobUpdate If non-zero (and the server supports Blobs) the server
should return updated Blobsin OPCITEMRESULTSs. If
zero (False) the server will not return Blobsin
OPCITEMRESULTS.

ppValidationResults Array of OPCITEMRESULTs. Thistells the client
additional information about the item including the
canonical datatype.

ppErrors Array of HRESUL Ts. Thistellsthe client which of the
items was successfully validated. For any item which
failed it provides areason.

HRESULT Return Codes
Return Code Description
E FAIL The operation failed.
E OUTOFMEMORY Not enough memory
E INVALIDARG An argument to the function wasinvalid.
S OK The operation succeeded.
S FALSE The operation completed with partial success. Refer to

individual error returnsfor failure analysis.

74

OPC Data Access Custom | nterface Specification 2.03

ppErrorsCodes
Return Code Description
S OK The function was successful for thisitem.
OPC _E INVALIDITEMID The ItemlD is not syntactically valid
OPC_E_UNKNOWNITEMID The ItemID is not in the server address
space
OPC_E BADTYPE The requested data type cannot be returned
for thisitem (See comment)
E FAIL The function was unsuccessful for this
item.
OPC_E_UNKNOWNPATH Theitem's access path is not known to the
server.
Comments

The client needsto free all of the memory associated with the OPCITEMRESUL Tsincluding the
BLOB.

Asan dternativeto OPC_E_BADTPYE it is acceptable for the server to return any FAILED error
returned by VariantChangeType or V ariantChangeTypeEX.

75

OPC Data Access Custom | nterface Specification 2.03

45.2.3 IOPCltemMgt::Removeltems

HRESULT Removeltemg(

[in] DWORD dwCount,

[in, size_is(dwCount)] OPCHANDLE * phServer,
[out, size is(,dwCount)] HRESULT ** ppErrors
);

Description

Removes (del etes) items from agroup. Basically thisisthe reverse of Additems.

Parameters Description

dwCount Number of itemsto be removed

phServer Array of server items handles. These were returned
from Additem.

ppErrors Array of HRESULTs. Indicates which items were

successfully removed.

HRESULT Return Codes

Return Code Description

S OK The function was successful.

S FALSE The function was partially successful. See the ppErrors

to determine what happened

E FAIL The function was unsuccessful.

OPC_E PUBLIC Cannot remove items from a public group
ppError Codes

Return Code Description

S OK The corresponding item was removed.

OPC_E INVALIDHANDLE The corresponding Item handle was invalid.
Comments

Adding and removing items from a group does not affect the address space of the server or physical
device. It simply indicates whether or not the client isinterested in those particular items.

Items are not really objectsin the custom interface (do not have interfaces), and there is no concept of
areference count for items. The client shouldinsure that no further references are made to deleted
items.

Items cannot be removed from a public group.

76

OPC Data Access Custom | nterface Specification 2.03

4524 IOPCltemMgt::SetActiveState

HRESULT SetActiveState(
[in] DWORD dwCount,
[in, size_is(dwCount)] OPCHANDLE * phServer,
[in] BOOL bActive,
[out, size is(,dwCount)] HRESULT ** ppErrors
);

Description

Sets one or more itemsin agroup to active or inactive. This controls whether or not valid data can be
obtained from Read CACHE for those items and whether or not they are included in the |Advise
subscription to the group.

Parameters Description
dwCount The number of itemsto be affected
phServer Array of Server items handles.
bActive TRUE if items are to be activated. FALSE if items are
to be deactivated.
ppErrors Array of HRESULTs. Indicates which items were
successfully affected.
HRESULT Return Codes
Return Code Description
S OK The function was successful.
S FALSE The function was partially successful. See the ppErrors
to determine what happened
E FAIL The function was unsuccessful.
ppError Codes
Return Code Description
S OK The function was successful.
OPC_E INVALIDHANDLE The corresponding Item handle was invalid.
Comments

Deactivating itemswill not result in a callback (since by definition callbacks do not occur for inactive
items). Activating itemswill generally result in an | Advise callback at the next UpdateRate period.

OPC Data Access Custom | nterface Specification 2.03

4525 IOPCltemMgt::SetClientHandles

HRESULT SetClientHandles(

[in] DWORD dwCount,

[in, size_is(dwCount)] OPCHANDLE * phServer,

[in, size_is(dwCount)] OPCHANDLE * phClient,
[out, size is(,dwCount)] HRESULT ** ppErrors
);

Description

Changes the client handle for one or moreitemsin agroup.

Parameters Description
dwCount The number of itemsto be affected
phServer Array of Server items handles.
phClient Array of new Client item handlesto be stored. The
Client handles do not need to be unique.
ppErrors Array of HRESULTs. Indicates which items were
successfully affected.
HRESULT Return Codes
Return Code Description
S OK The function was successful.
S FALSE The function was partially successful. See the
itemResults to determine what happened
E FAIL The function was unsuccessful.
itemResults Codes
Return Code Description
S OK The function was successful.
OPC_E_INVALIDHANDLE The corresponding Item handle wasinvalid.

Comments

In general, it is expected that clientswill set the client handle when the item is added and not change it
later. Thisfunction is most useful for setting the client handles for itemsin a public group to which the
client has connected.

78

OPC Data Access Custom | nterface Specification 2.03

45.2.6 IOPCltemMgt::SetDatatypes

HRESULT SetDatatypes(

[in] DWORD dwCount,

[in, size_is(dwCount)] OPCHANDLE * phServer,

[in, size_is(dwCount)] VARTY PE * pRequestedDatatypes,
[out, size is(,dwCount)] HRESULT ** ppErrors
);

Description

Changes the requested data type for one or more itemsin a group.

Parameters Description
dwCount The number of itemsto be affected
phServer Array of Server items handles.
pRequestedDatatypes Array of new Requested Datatypes to be stored.
ppErrors Array of HRESULT’s. Indicates which items were
successfully affected.
HRESULT Return Codes
Return Code Description
S OK The function was successful.
S FALSE The function was partially successful. See the
itemResults to determine what happened
E FAIL The function was unsuccessful.
itemResults Codes
Return Code Description
S OK The function was successful.
OPC_E INVALIDHANDLE The corresponding Item handle wasinvalid.
OPC_E BADTYPE The requested datatype cannot be supported
for thisitem. (See comment). The previous
requested typeis|eft unchanged.

Comments

In general, it is expected that clients will set the requested datatype when the item is added and not
changeit later. Thisfunction is most useful for setting the datatype for itemsin a public group to which
the client has connected.

Asan aternativeto OPC_E BADTPYE it isacceptable for the server to return any FAILED error
returned by VariantChangeType or VariantChangeTypeEx.

7

OPC Data Access Custom | nterface Specification 2.03

45.2.7 IOPCltemMgt::CreateEnumerator

HRESULT CreateEnumerator(
[in] REFIID riid,
[out, iid_is(riid)] LPUNKNOWN?* ppUnk
);

Description

Create an enumerator for the itemsin the group.

Parameters Description
riid The interface requested. Normally thisis
I1D_IEnumOPCItemAttributes.
ppuUnk Whereto return the interface. NULL isreturned for
any HRESULT other than S_OK
HRESULT Return Codes
Return Code Description
S OK The function was successful.
S FALSE There is nothing to enumerate (There are no itemsin
the group).
E OUTOFMEMORY Not enough memory
E_INVALIDARG An argument to the function wasinvalid (e.g. abad riid
parameter was passed.)
E FAIL The function was unsuccessful.
Comments

The client must release the returned interface pointer when it is done with it.

OPC Data Access Custom | nterface Specification 2.03

45.3 |0PCGroupStateMgt

|OPCGroupStateM gt allows the client to manage the overall state of the group. Primarily this allows
changesto the update rate and active state of the group.

453.1 IOPCGroupStateMgt::GetState

HRESULT GetState(
[out] DWORD * pUpdateRate,
[out] BOOL * pActive,
[out, string] LPWSTR * ppName,
[out] LONG * pTimeBias,
[out] FLOAT * pPercentDeadband,
[out] DWORD * pLCID,
[out] OPCHANDLE * phClientGroup,
[out] OPCHANDLE * phServerGroup

)

Description

Get the current state of the group.

Parameters Description

pUpdateRate The current update rate. The Update Rateisin
milliseconds

pActive The current active state of the group.

ppName The current name of the group

pTimeBias The TimeZone Bias of the group (in minutes)

pPercentDeadband The percent change in an item value that will cause an

exception report of that valueto aclient. This
parameter only appliesto itemsin the group that have
dwEUTYype of Analog. [See discussion of Percent
Deadband in Section Q]

pLCID The current LCID for the group.
phClientGroup The client supplied group handle
phServerGroup The server generated group handle

81

OPC Data Access Custom | nterface Specification 2.03

HRESULT Return Codes
Return Code Description
E FAIL The operation failed.
E OUTOFMEMORY Not enough memory
E_INVALIDARG An argument to the function wasinvalid.
S OK The operation succeeded.
Comments

Thisfunction istypically called to obtain the current values of thisinformation prior to calling
SetState. Thisinformation wasall supplied by or returned to the client when the group was created.
Thisfunction is also useful for debugging.

All out arguments must be valid pointers. The marshaling mechanism requires valid pointersfor
proper behavior. NULL pointerswill throw an RPC exception.

The client must free the returned ppName string.

82

OPC Data Access Custom | nterface Specification 2.03

45.3.2 IOPCGroupStateMgt::SetState

HRESULT SetState(
[unique, in] DWORD * pRequestedUpdateRate,
[out] DWORD * pRevisedUpdateRate,
[unique, in] BOOL *pActive,
[unique, in] LONG * pTimeBias,
[unique, in] FLOAT * pPercentDeadband
[unique, in] DWORD * pLCID,

[unique, in] OPCHANDLE * phClientGroup

);

Description

Client can set various properties of the group. Pointersto ‘in’ items are used so that the client can omit
properties he does not want to change by passing aNULL pointer.

The pRevisedUpdateRate argument must contain avalid pointer.

Parameters Description

pRequestedU pdateRate New update rate requested for the group by the client
(milliseconds)

pRevisedUpdateRate Closest update rate the server is able to provide for
this group.

pActive TRUE (non-zero) to active the group. FALSE (0) to
deactivate the group.

pTimeBias TimeZone Biasif Group (in minutes)

pPercentDeadband The percent changein an item value that will cause

an exception report of that valueto aclient. This
parameter only appliesto itemsin the group that
have dwEUType of Analog. [See discussion of
Percent Deadband in Section Q]

pLCID The Localization ID to be used by the group.

phClientGroup New client supplied handle for the group. This
handleisreturned in the data stream provided to the
client’s1Advise by the Groups I DataObject.

OPC Data Access Custom | nterface Specification 2.03

HRESULT Return Codes

Return Code Description

E FAIL The operation failed.

E OUTOFMEMORY Not enough memory

E INVALIDARG An argument to the function wasinvalid.

S OK The operation succeeded.

OPC_S UNSUPPORTEDRATE The server does not support the requested
data rate but will use the closest available
rate.

Comments

For public groups, the server maintains unique state information for each client for Active,
pUpdateRate, TimeZone. That is, the public groups behave asif each client had it’s own private copy.

Refer to Data Acquistion Section for details on the behavior of an OPC server with respect to the
Synchronous and Asynchronous interfaces and Active state of groups.

OPC Data Access Custom | nterface Specification 2.03

45.3.3 IOPCGroupStateMgt::SetName

HRESULT SetName(
[in, string] LPCWSTR szName,
);

Description

Change the name of a private group. The name must be unique. The name cannot be changed for
public groups.

Parameters Description

«Name New name for group.

HRESULT Return Codes

Return Code Description

E FAIL The operation failed.

E OUTOFMEMORY Not enough memory

E INVALIDARG An argument to the function wasinvalid.
S OK The operation succeeded.

OPC_E DUPLICATENAME Duplicate name not allowed.

Comments
Group names are required to be unique with respect to an individual client to server connection.

OPC Data Access Custom | nterface Specification 2.03

4534 IOPCGroupStateMgt::CloneGroup

HRESULT CloneGroup(

[in, string] LPCWSTR szName,

[in] REFIID riid,
[out, iid_is(riid)] LPUNKNOWN * ppUnk
);

Description
Creates a second copy of agroup with aunique name. Thisworks for both public and private groups.
However, the new group is aways a private group. All of the group and item properties are duplicated
(asif the same set of AddItems calls had been made for the new group). That is, the new group
contains the same update rate, items, group and item clienthandles, requested data types, etc asthe

original group. Once the new group is created it is entirely independent of the old group. Y ou can add
and deleteitems from it without affecting the old group.

Properties NOT copied to the new group are
Active Status of the new group isinitially set to FALSE
A new ServerHandle for the group is produced.

New Item SeverHandles may also be assigned by the server. The client should query for theseif it
needs them.

The new group will NOT be connected to any Advise or Connection point sinks. The client would
need to establish new connections for the new group.

Parameters Description

szName Name of the group. The name must be unique among the
other groups created by this client. If no nameis provided
(szNameisapointer to aNUL string) the server will
generate aunique name. The server generated name will
also be unique relative to any existing public groups.

riid requested interface type

ppUnk place to return interface pointer. NULL is returned for
any HRESULT other than S_OK

OPC Data Access Custom | nterface Specification 2.03

HRESULT Return Codes
Return Code Description
S OK The operation succeeded.
E FAIL The operation failed.
E OUTOFMEMORY Not enough memory
E INVALIDARG An argument to the function wasinvalid.
OPC _E DUPLICATENAME Duplicate name not allowed.
E NOINTERFACE Theinterface(riid) asked for is not supported by
the server.
Comments

This represents a new group which isindependent of the original group. See AddGroup for a
discussion of Group object lifetime issues. Aswith AddGroup the group must be deleted with
RemoveGroup when the client is done with it.

The client must also release the returned interface when it is no longer needed.

The primary use or intent of this function isto create a private duplicate of a public group which can
then be modified by the client.

87

OPC Data Access Custom | nterface Specification 2.03

4.5.4 10PCPublicGroupStateMgt

This optional interfaceis used to convert a private group to a public group. Servers optionally provide
thisinterface on group objects. A group created by a client is always created initially as a private
group. Thisinterface can be obtained fromthat private group in order to convert the group to a public

group.

4541 IOPCPublicGroupStateMgt::GetState

HRESULT GetState(
[out] BOOL * pPublic

)

Description

Used to determine if aparticular group is public or not. If the interface is missing then all groupsin the
server are private.

Parameters Description

pPublic TRUE if thegroup is public, FALSE if it is private
HRESULT Return Codes

Return Code Description

E_FAIL The operation failed.

E_INVALIDARG An argument to the function wasinvalid.

S OK The operation succeeded.
Comments

A server which supports public groups can provide this interface for any group (private or public). In
practice aclient will generally know for each group whether it is private or public. However, this
method is useful for debugging.

OPC Data Access Custom | nterface Specification 2.03

45.4.2 IOPCPublicGroupStateMgt::MoveToPublic
HRESULT MoveToPublic(
void
);
Description

Converts a private group to a public group. The group must have a name which must be unique among
al existing public groups. The state of the group (active, UpdateRate, | Advise connections, etc.) for
the calling client is not affected.

Parameters Description
void
HRESULT Return Codes
Return Code Description
S OK The function was successful.
E OUTOFMEMORY Not enough memory
E FAIL The function was unsuccessful.
OPC_E DUPLICATENAME Duplicate Name not allowed

Comments
A public group cannot be converted back to a private group. However it can be ‘ cloned’ into a new
private group.
For public groups, the update rate, client group handle and active status are maintained as ‘ instance’
datafor each client.

Theclient isrequired to set the client groupHandl e before any asynchronous functions are performed
ona public group. After the group is made public other clients can connect to the group. Generally,
they must set their client instance information (e.g. group and item handles) prior to using the other
standard group interfaces associated with a group.

Once agroup is made public, items cannot be added or del eted.

For theitemsin the group, the client handle, active status and requested data type are maintained as
‘instance’ datafor each client.

OPC Data Access Custom | nterface Specification 2.03

45,5 10PCSynclO

IOPCSyncl O alows aclient to perform synchronous read and write operations to a server. The
operations will run to completion.

Refer to the Data Acquisition and Active State Behavior table for an overview of the server data
acquisition behavior and it’ s affect on functionality within thisinterface.

Also refer to the Serialization and Syncronization issues section earlier in this document.

4551 IOPCSynclO::Read

HRESULT Read(
[in] OPCDATASOURCE dwSource,
[in] DWORD dwCount,
[in, size_is(dwCount)] OPCHANDLE * phServer,
[out, size_is(,dwCount)] OPCITEMSTATE ** ppltemValues,
[out, size is(,dwCount)] HRESULT ** ppErrors
);

Description

Thisfunction reads the value, quality and timestamp information for one or more itemsin agroup.
The function runsto completion before returning. The data can be read from CA CHE in which caseit
should be accurate to within the ‘ UpdateRate’ and percent deadband of the group. The data can be read
from the DEVICE in which case an actual read of the physical deviceisto be performed. The exact
implementation of CACHE and DEVICE reads is not defined by this specification.

When reading from CACHE, the datais only valid if both the group and the item are active. If either
the group or the item isinactive, then the Quality will indicate out of service
(OPC_QUALITY_OUT_OF SERVICE). Refer to the discussion of the quality bitslater in this
document for further information.

DEVICE reads are not affected by the ACTIVE state of the group or item.

Refer to the Data Acquisition and Active State Behavior table earlier in this document for an overview
of the server data acquisition behavior and it’s affect on functionality within thisinterface.

Parameters Description

dwSource The ‘data source’; OPC_DS CACHE or
OPC DS DEVICE

dwCount The number of itemsto be read.

phServer Thelist of server item handles for theitemsto be read

ppltemValues Array of structuresin which theitem values are
returned.

ppErrors Array of HRESUL Tsindicating the success of the

individual item reads. The errors correspond to the
handles passed in phServer. Thisindicates whether the
read succeeded in obtaining a defined value, quality
and timestamp. NOTE any FAILED error code
indicates that the corresponding Value, Quality and
Time stamp are UNDEFINED.

OPC Data Access Custom | nterface Specification 2.03

HRESULT Return Codes

Return Code Description

S OK The operation succeeded.

S FALSE The operation succeeded but there are one or more
errorsin ppErrors. Refer to individual error returnsfor
more infomation.

E FAIL The operation failed.

E OUTOFMEMORY Not enough memory

E_INVALIDARG An argument to the function wasinvalid.

ppError Codes

Return Code Description

S OK Successful Read.

E FAIL The Read failed for thisitem

OPC_E BADRIGHTS Theitem is not readable

OPC_E INVALIDHANDLE The passed item handle wasinvalid.

OPC_E UNKNOWNITEMID Theitemis no longer availablein the server

address space.

S Xxx S xxx - Vendor specific information can be

E xxx provided if thisitem quality is other than

GOOD.

E xxx - Vendor specific error if thisitem
cannot be accessed.

These vendor specific codes can be passed to
GetErrorString().

Comments
If the HRESULT isS_OK, then ppError can beignored (all resultsin it are guaranteed to be S_OK).

If theHRESULT isS_FAL SE, then ppError will indicate which the status of each individual Item
Read.

If the HRESULT is any FAILED code then (as noted earlier) the server should return NULL pointers
for all OUT parametersincluding ppErrors.

For any S_xxx ppError code the client should assume the curresponding ITEMSTATE iswell defined
although the Quality may be UNCERTAIN or BAD. It isrecommended (but not required) that server
vendors provide additional information here regarding UNCERTAIN or BAD items.

For any FAILED ppError code the client should assume the curresponding ITEMSTATE is undefined.
In fact the Server must set the corresponding ITEMSTATE VARIANT toVT_EMPTY so that it can
be marshalled properly and so that the client can execute VariantClear on it.

Note that here (asin the OPCltemMgt methods) OPC_E_INVALIDHANDLE on one item will not
affect the processing of other items and will causethemain HRESULT toreturnasS FALSE

Expected behavior isthat a CACHE read should be completed very quickly (within milliseconds). A
DEVICE read may take avery long time (many seconds or more). Depending on the details of the
implementation (e.g. which threading model is used) the DEVICE read may also prevent any other
operations from being performed on the server by any other clients.

91

OPC Data Access Custom | nterface Specification 2.03

For this reason Clients are expected to use CACHE readsin most cases. DEVICE reads are intended
for ‘special’ circumstances such as diagnostics.

The ppltemVaues and ppErrors arrays are allocated by the server and must be freed by the client. Be
sureto call VariantClear() on the variant in the ITEMRESULT.

92

OPC Data Access Custom | nterface Specification 2.03

455.2 IOPCSynclO::Write

HRESULT Write(
[in] DWORD dwCount,
[in, size_is(dwCount)] OPCHANDLE * phServer,
[in, size_is(dwCount)] VARIANT * pltemV alues,
[out, size is(,dwCount)] HRESULT ** ppErrors

);
Description

Writes values to one or moreitemsin agroup. The function runs to completion. The values are written
tothe DEVICE. That is, the function should not return until it verifies that the device has actually
accepted (or rejected) the data.

Writes are not affected by the ACTIVE state of the group or item.

Parameters Description

dwCount Number of itemsto be written

phServer Thelist of server item handlesfor the items to be read
pltemValues List of valuesto be written to the items. The datatypes

of the values do not need to match the datatypes of the
target items. However an error will bereturned if a
conversion cannot be done.

ppErrors Array of HRESUL Tsindicating the success of the
individual item Writes. The errors correspond to the
handles passed in phServer. Thisindicates whether the
target device or system accepted the value. NOTE any
FAILED error code indicates that the value was
rejected by the device.

93

OPC Data Access Custom | nterface Specification 2.03

HRESULT Return Codes
Return Code Description
S OK The operation succeeded.
S FALSE The operation succeeded but there are one or more

errorsin ppErrors. Refer to individual error returns for
more infomation.

E FAIL The operation failed.

E_ OUTOFMEMORY Not enough memory

E INVALIDARG An argument to the function wasinvalid.
ppError Codes
Return Code Description
S OK The function was successful.
E FAIL The function was unsuccessful.
OPC S CLAMP The value was accepted but was clamped.
OPC_E RANGE The value was out of range.
OPC_E BADTYPE The passed data type cannot be accepted for this
item (See comment)
OPC E BADRIGHTS Theitemisnot writeable

OPC_E INVALIDHANDLE The passed item handle was invalid.

OPC_E_UNKNOWNITEMID Theitemisno longer availablein the server

address space
E »xxx Vendor specific errors may also be returned.
S xXxx Descriptive information for such errors can be

obtained from GetErrorString.

OPC Data Access Custom | nterface Specification 2.03

Comments
If theHRESULT isS_OK, then ppError can beignored (all resultsin it are guaranteed to be S_OK).

If the HRESULT isany FAILED code then (as noted earlier) the server should return NULL pointers
for al OUT parameters.

Note that here (asin the OPCltemMgt methods) OPC_E_INVALIDHANDLE on one item will not
affect the processing of other items and will cause the main HRESULT toreturnasS FALSE

Asan adternativeto OPC_E BADTPYE it isacceptable for the server to return any FAILED error
returned by VariantChangeType or VariantChangeTypeEx.

A DEVICE write may take avery long time (many seconds or more). Depending on the details of the
implementation (e.g. which threading model is used) the DEVICE write may also prevent any other
operations from being performed on the server by any other clients.

For this reason Clients are expected to use ASY NC write rather than SYNC writein most cases.

The ppErrors array is allocated by the server and must be freed by the client.

OPC Data Access Custom | nterface Specification 2.03

45.6 IOPCAsynclO2
Thisinterface issimilar to |IOPCAsync. Thisinterface isintended to replace IOPCAsynclO.

It differsfrom AsynclO asfollows;

Itis used to control aconnection established with |ConnectionPoint rather than | DataObject.
ConnectionPoints have been found to be amuch cleaner way to return data than |DataObject.

Some of the error handling logic is enhanced. Read and Write are allowed to return additional
errors (other than Bad Handle).

Thetransaction ID logic has been changed. The previous (IOPCAsync) implementation did not
work well in combination with COM marshalling.

The async read from cache capability isremoved. In practice this was just a slower and more
complex form of async read from cache. Server design is simplified by removing this.

IOPCAsynclO2 alowsaclient to perform asynchronous read and write operationsto aserver. The
operations will be ‘queued’ and the function will return immediately so that the client can continue to
run. Each operationistreated asa‘transaction’ and is associated with atransaction ID. Asthe
operations are completed, a callback will be made to the IOPCDataCallback in the client. The
information in the callback will indicate the transaction 1D and the results of the operation.

Also the expected behavior isthat for any one transaction to Async Read, Write and Refresh, ALL of
the results of that transaction will be returned in asingle call to appropriate function in
|OPCDataCalIback.

A server must be ableto ‘queue’ at least one transaction of each type (read, write, refresh) for each
group. It is acceptable for a server to return an error (CONNECT_E_ADVISELIMIT) if more than one
transaction of the same type is performed on the same group by the same client. Server vendors may of
course support queueing of additional transactionsif they wish.

All operations that are successfully started are expected to complete even if they complete with an
error. The concept of ‘time-out’ isnot explicitly addressed in this specification however it is expected
that where appropriate the server will internally implement any needed time-out logic and return a
server specific error to the caller if thisoccurs.

Client Implementation Note:

The Unique Transaction ID passed to Read, Write and Refresh is generated by the Client and is
returned to the client in the callback. This ID must be non-zero and unique to this particular
client/server conversation. It does not need to be unique relative to other conversations by this or other
clients. Note that the Group's Clienthandle is also returned in the callback and is generally sufficient to
identify the returned data.

IMPORTANT NOTE: depending on the mix of client and server threading models used, it has been
found in practice that the |lOPCDataCallback can occur within the same thread as the Refresh, Read or
Write and in fact can occur before the Read, Write or Refresh method returnsto the caller.

Thus, if the client wants to save arecord of the transaction in some list of ‘ outstanding transactions' in
order to verify completion of atransaction it will need to generate the Transaction ID and save it
BEFORE making the method call.

In practice most clientswill probably not need to maintain such alist and so do not actually need to
record the transaction ID.

OPC Data Access Custom | nterface Specification 2.03

45.6.1

HRESULT Read(

[in] DWORD dwCount,

IOPCAsynclO2::Read

[in, size_is(dwCount)] OPCHANDLE * phServer,
[in] DWORD dwTransactioniID,
[out] DWORD * pdwCancel D,

[out, size is(,dwCount)] HRESULT ** ppErrors

)

Description

Read one or moreitems in agroup. Theresults are returned viathe client’s |IOPCDataCallback

connection established through the server’ s | ConnectionPointContainer.
Reads are from ‘DEVICE’ and are not affected by the ACTIVE state of the group or item.

Parameters Description
dwCount Number of itemsto be read.
phServer Array of server item handles of the itemsto be read

dwTransactionlD

The Client generated transaction ID. Thisisincluded in
the ‘completion’ information provided to the
OnReadCompl ete.

pdwCancelID Place to return a Server generated ID to be used in case
the operation needs to be canceled.

ppErrors Array of errorsfor eachitem - returned by the server.
See below.

HRESULT Return Codes
Return Code Description
S OK The operation succeeded. The read was
successfully initiated
E FAIL The operation failed.

E_ OUTOFMEMORY

Not enough memory

E_INVALIDARG

An argument to the function wasinvalid.

S FALSE

One or more of the passed items could not
beread The ppError array indicates which
itemsin phServer could not beread. Any
items which do not return errors (E) here
will be read and resultswill be returned to
OnReadComplete. Items which do return
errors here will not be returned in the
callback.

CONNECT_E_NOCONNECTION

The client has not registered a callback
through IConnectionPoint::Advise.

97

OPC Data Access Custom | nterface Specification 2.03

ppError Codes
Return Code Description
S OK The corresponding Item handle was valid
and the item information will be returned
on OnReadComplete.
E FAIL The Read failed for thisitem
OPC E BADRIGHTS Theitemis not readable
OPC_E INVALIDHANDLE The passed item handle was invalid.
OPC_E_UNKNOWNITEMID Theitemisno longer availablein the
server address space.
E xxx Vendor specific errors may also be
S Xxx returned. Descriptive information for such
errors can be obtained from
GetErrorString.
Comments

Some serverswill be ‘smarter’ at read time and return ‘early’ errors, others may simply queue the
reguest with minimal checking and return ‘late’ errorsin the callback. The client should be prepared to
deal with this.

If the HRESULT isS_OK, then ppError can beignored (all resultsin it are guaranteed to be S_OK).

If the HRESULT isany FAILED code then (as noted earlier) the server should return NULL pointers
for all OUT parameters. Note that in this case no Callback will occur.

If ALL errorsin ppError are Failure codes then No callback will take place.

Items for which ppError returns any success code (including S _xxx) will be returned in the
OnReadComplete callback. Note that the error result for an item returned in the callback may differ
from that returned from Read.

NOTE: the server must return all of the resultsin asingle callback. Thus, if the itemsin the group
require multiple physical transactions to one or more physical devices then the server must wait until
all of them are complete before invoking OnReadCompl ete.

The Client must free the returned ppError array.

OPC Data Access Custom | nterface Specification 2.03

4.5.6.2

HRESULT Write(
[in] DWORD dwCount,
[in, size_is(dwCount)] OPCHANDLE * phServer,
[in, size_is(dwCount)] VARIANT * pltemVa ues,
[in] DWORD dwTransactioniID,
[out] DWORD *pdwCancel D,
[out, size_is(,dwCount)] HRESULT ** ppErrors

)

IOPCAsynclO2::Write

Description

Write one or moreitemsin agroup. The results are returned viathe client’s IOPCDataCall back
connection established through the server’ s |ConnectionPointContainer.

Parameters Description

dwCount Number of itemsto be written

phServer List of server items handles for theitemsto be written
pltemValues List of values to be written. The value data types do not

match the requested or canonical item datatype but
must be ‘ convertible’ to the canonical type.

dwTransactionlD The Client generated transaction ID. Thisisincluded in
the ‘completion’ information provided to the

OnWriteComplete.

pdwCancelID Place to return a Server generated 1D to be used in case
the operation needs to be canceled.

ppErrors Array of errorsfor each item - returned by the server.
See below.

HRESULT Return Codes

Return Code Description

S OK The operation succeeded.

E FAIL The operation failed.

E OUTOFMEMORY Not enough memory

E INVALIDARG An argument to the function wasinvalid.

S FALSE One or more of the passed items could not

be written The ppError array indicates
which itemsin phServer could not be
write. Any itemswhich do not return
errors (E) here will be written and results
will be returned to OnWriteComplete.
Items which do return errors here will not
be returned in the callback.

CONNECT_E_NOCONNECTION

The client has not registered a callback
through I ConnectionPoint::Advise.

OPC Data Access Custom | nterface Specification 2.03

ppError Codes
Return Code Description
S OK The corresponding Item handle was valid.
The writewill be attempted and the results
will be returned on OnWriteCompl ete
E FAIL The function was unsuccessful.
OPC E BADRIGHTS Theitem is not writeable
OPC_E INVALIDHANDLE The passed item handle was invalid.
OPC_E_UNKNOWNITEMID Theitemisno longer availablein the
server address space
E xxx Vendor specific errors may also be
S Xxx returned. Descriptive information for such
errors can be obtained from
GetErrorString.
Comments

Some serverswill be ‘smarter’ at writetime and return ‘early’ errors, others may simply queue the
reguest with minimal checking and return ‘late’ errorsin the callback. The client should be prepared to
deal with this.

If theHRESULT isS_OK, then ppError can beignored (all resultsin it are guaranteed to be S_OK).

If the HRESULT isany FAILED code then (as noted earlier) the server should return NULL pointers
for all OUT parameters. Note that in this case no Callback will occur.

If ALL errorsin ppError are Failure codes then No callback will take place.

Items for which ppError returns any success code (including S_xxx) will also have aresult returned in
the OnWriteCompl ete callback. Note that the error result for an item returned in the callback may
differ from that returned from Write.

NOTE: all of the results must be returned by the server in asingle callback. Thusif theitemsin the
group require multiple physical transactions to one or more physical devices then the server must wait
until all of them are complete before invoking the callback.

Client must free the returned ppError array.

100

OPC Data Access Custom | nterface Specification 2.03

4.5.6.3 IOPCAsynclO2::Refresh2

HRESULT Refresh2(
[in] OPCDATASOURCE dwSource,
[in] DWORD dwTransactionl D,
[out] DWORD * pdwCancelID

);

Description

Force acallback to |IOPCDataCallback::OnDataChange for al active itemsin the group (whether they
have changed or not). Inactive items are not included in the callback.

Parameters Description

dwSource Data source CACHE or DEVICE. If the DEVICE, then
al activeitemsin the CACHE are refreshed from the
device BEFORE the callback.

dwTransactionlD The Client generated transaction ID. Thisisincluded in
the ‘completion’ information provided to the
OnDataChange.

pdwCancelID Place to return a Server generated 1D to be used in case

the operation needs to be canceled.

HRESULT Return Codes
Return Code Description
S OK The operation succeeded.
E FAIL The operation failed. (See notes below)
E OUTOFMEMORY Not enough memory
E INVALIDARG An argument to the function wasinvalid.
CONNECT_E NOCONNECTION The client has not registered a callback
through IConnectionPoint:: Advise.

Comments
If the HRESULT isany FAILED code then no Callback will occur.

Calling Refresh for an InActive Group will return E_FAIL. Calling refresh for an Active Group,
where al theitemsin the group are InActive also returns E_FAIL.

The behavior of thisfunction isidentical to what happens when Adviseis called initially except that
the Callback will include anon-zero transaction ID.

Functionally it is also similar to what could be achieved by doing a READ of all of the activeitemsin
agroup.

101

OPC Data Access Custom | nterface Specification 2.03

NOTE: all of the results must be returned in asingle callback. Thusif theitemsin the group require
multiple physical transactionsto one or more physical devices then the server must wait until al of
them are compl ete before invoking OnDataChange.

The expected behavior is that this Refresh will not affect the timing of normal OnDataChange
callbacks which are based on the UpdateRate. For example, if the update rateis 1 hour and this
method is called after 45 minutes then the server should still do itsinternal ‘checking’ at the end of the
hour (15 minutes after the Refresh call). Calling this method may affect the contents of that next
callback (15 minutes later) since only items where the value or status changed during that 15 minutes
would beincluded. Itemswhich had changed during the 45 minutes preceding the Refresh will be sent
(adlong with al other values) as part of the Refresh Transaction. They would not be sent a second time
at the end of the hour. The value sent in response to the Refresh becomes the ‘ last value sent’ to the
client when performing the normal subscription logic.

102

OPC Data Access Custom | nterface Specification 2.03

45.6.4 IOPCAsynclO2::Cancel2

HRESULT Cancel2(
[in] DWORD dwCancel|D

)

Description

Request that the server cancel an outstanding transaction.

Parameters Description

dwCancellID The Server generated Cancel ID which was associated
with the operation when it was initiated.

HRESULT Return Codes

Return Code Description

S OK The operation succeeded.

E FAIL The operation failed. Either the Cancel ID wasinvalid
or it was ‘too late’ to cancel the transaction.

Comments

The exact behavior (for example whether an operation that has actually started will be aborted) will be
server specific and will also depend on the timing of the cancel request. Also, depending on the
timing, a Callback for the transaction may or may not occur. This method isintended for use during

shutdown of atask.

In general, if this operation succeeds then a OnCancel Complete callback will occur. If this operation
failsthen aread, write or datachange callback may occur (or may aready have occurred).

103

OPC Data Access Custom | nterface Specification 2.03

45.6.5 IOPCAsynclO2::SetEnable

HRESULT SetEnable(
[in] BOOL bEnable
);

Description

Controls the operation of OnDataChange. Basically setting Enable to FALSE will disable any
OnDataChange callbacks with atransaction ID of 0 (those which are not the result of a Refresh).

Parameters Description

bEnable TRUE enables OnDataChange callbacks, FALSE
disables OnDataChange callbacks.

HRESULT Return Codes
Return Code Description
S OK The operation succeeded.
CONNECT_E NOCO The client has not registered a callback through
NNECTION | ConnectionPoint::Advise.
E FAIL The operation failed.
Comments

Theinitial value of thisvariable when the group is created is TRUE and thus OnDataChange callbacks
are enabled by default.

The purpose of thisfunction isto allow a Connection to be established to an active group without
necessarily enabling the OnDataChange notifications. An example might be a client doing an
occasional Refresh from cache.

Even if aclient does not intend to use the OnDataChange, it should still be prepared to deal with one or
more OnDataChange callbacks which might occur before the client has time to disable them (i.e. at
least free the memory associated with the 'out’ parameters).

If the client really needs to prevent these initial unwanted callbacks then the following procedure can
be used. Client creates and populates the group. Client setsthe group Active state to FALSE. Client
creates connection to group. Client uses this function to disable OnDataChange. sets the group Active
state back to TRUE.

Thisdoes NOT affect operation of Refresh2(). I.e. calling Refresh2 will till resultin an
OnDataChange callback (with anon-zero transaction ID). Note that this allows Refresh to be used as
essentially an Async read from Cache.

104

OPC Data Access Custom | nterface Specification 2.03

4.5.6.6 IOPCAsynclO2::GetEnable

HRESULT GetEnable(
[out] BOOL *pbEnable

)

Description
Retrievesthe last Callback Enable value set with SetEnable.

Parameters Description
pbEnable Where to save the returned result.
HRESULT Return Codes
Return Code Description
S OK The operation succeeded.
CONNECT_E_NOCO The client has not registered a callback through
NNECTION | ConnectionPoint::Advise.
E FAIL The operation failed.
Comments

See |OPCAsyncl O2::SetEnable() for additional information.

105

OPC Data Access Custom | nterface Specification 2.03

4.5.7 IConnectionPointContainer (on OPCGroup)

Thisinterface provides functionality similar to the |DataObject but is easier to implement and to
understand and al so provides some functionality which was missing from the | DataObject Interface.
The client must use the new |OPCAsyncl O2 interface to communicate via connections established
with thisinterface. IOPCAsynclO2 is described elsewhere. The ‘old’ IOPCAsnyc will continue to
communicate via | DataObject connections asin the past.

The general principles of ConnectionPoints are not discussed here as they are covered very clearly in
the Microsoft Documentation. The reader is assumed to be familiar with thistechnology. OPC 2.0
Compliant Servers are REQUIRED to support thisinterface.

Likewise the details of the |EnumConnectionPoints, | ConnectionPoint and | EnumConnections
interfaces are well defined by Microsoft and are not discussed here.

Note that | ConnectionPointContainer isimplemented on the OPCGROUP rather than on the individual
items. Thisisto allow the creation of a Callback connection between the client and the group using the
|OPCDataCallback Interface for the most efficient possible transfer of data (many items per

tranaction).

One callback object implemented by the client application can be used to service multiple groups.
Therefore, information about the group and the particular transaction must be provided to the client
application for it to be able to successfully interpret the items that are contained in the callback. Each
callback will contain only items defined within the specified group.

Note: OPC Compliant servers are not required to support more than one connection between each
Group and the Client. Given that groups are client specific entitiesit is expected that asingle
connection (to each group) will be sufficient for virtually all applications. For this reason (as per the
COM Specification) the EnumConnections method for | ConnectionPoint interface for the
|OPCDataCallback is allowed to return E_ NOTIMPL.

106

OPC Data Access Custom | nterface Specification 2.03

457.1 IConnectionPointContainer::EnumConnectionPoints

HRESULT EnumConnecti onPoi nts(
| EnumConnectionPoints ** ppEnum

)

Description
Create an enumerator for the Connection Points supported between the OPC Group and the Client.

Parameters Description

ppEnum Where to save the pointer to the connection point
enumerator. See the Microsoft documentation for a
discussion of |EnumConnectionPoints.

HRESULT Return Codes

Return Code Description

S OK The function was successful.
For other codes see the
OLE programmers
reference

Comments

OPCServers must return an enumerator that includes |OPCDataCallback. Additional vendor specific
callbacks are also allowed.

107

OPC Data Access Custom | nterface Specification 2.03

457.2 IConnectionPointContainer:: FindConnectionPoint
HRESULT FindConnectionPoint(
REFIID riid,

I ConnectionPoint ** ppCP
);

Description

Find a particular connection point between the OPC Group and the Client.

Parameters Description
ppCP Where to store the Connection Point. See the Microsoft
documentation for a discussion of | ConnectionPoint.
riid TheIID of the Connection Point. (e.g.
I1D_IOPCDataCallBack)
HRESULT Return Codes
Return Code Description
S OK The function was successful.
For other codes see the
OLE programmers
reference
Comments

OPCServers must support 11D_|OPCDataCallback. Additional vendor specific callbacks are also
alowed.

108

OPC Data Access Custom | nterface Specification 2.03

45.8 IEnumOPCIltemAttributes

|EnumOPCltemAdttributes allows a client to find out the contents (items) of a group and the attributes
of those items.

NOTE: most of the returned information was either supplied by or returned to the client at the time it

called Additem.

The optional EU information (see the OPCITEMATTRIBUTES discussion) may be very useful to
someclients. Thisinterfaceisalso useful for debugging or for enumerating the contents of apublic

group.

Thisinterfaceis returned only by IOPCltemMgt::CreateEnumerator. It is not available through query
interface.

Since enumeration is astandard interface thisis described only briefly.

See the OLE Programmer’ s reference for Enumerators for alist and discussion of error codes.

458.1 IEnumOPCltemAttributes::Next

HRESULT Next(
[in] ULONG cHlt,
[out, size is(,* pceltFetched)] OPCITEMATTRIBUTES ** ppltemArray,
[out] ULONG * pceltFetched

)

Description

Fetch the next ‘celt’ items from the group.

Parameters Description
celt number of itemsto be fetched.
ppltemArray Array of OPCITEMATTRIBUTES. Returned by the
server.
pceltFetched Number of items actually returned.
Comments

The client must free the returned OPCITEMATTRIBUTES structure including the contained items;
szlteml D, szAccessPath, pBlob, vEUInfo.

109

OPC Data Access Custom | nterface Specification 2.03

45.8.2 IEnumOPCIltemAttributes::Skip

HRESULT Skip(
[in] ULONG cdlt
)

Description

Skip over the next ‘celt’ attributes.

Parameters Description
celt Number of itemsto skip
Comments

Skip is probably not useful in the context of OPC.

110

OPC Data Access Custom | nterface Specification 2.03

45.8.3 IEnumOPCIltemAttributes::Reset

HRESULT Reset(
void

)

Description

Reset the enumerator back to the first item.

Parameters Description

void

Comments

111

OPC Data Access Custom | nterface Specification 2.03

4584 IEnumOPCltemAttributes::Clone
HRESULT Clong(
[out] IEnumOPCltemAttributes** ppEnumltemAttributes
);
Description
Create a2™ copy of the enumerator. The new enumerator will initially bein the same ‘state’ asthe
current enumerator.
Parameters Description

ppEnumitemAttributes | Placeto return the new interface

Comments

The client must rel ease the returned interface pointer when it is done with it.

112

OPC Data Access Custom | nterface Specification 2.03

4.5.9 I0PCAsynclO (old)

IOPCAsynclO allowsaclient to perform asynchronous read and write operations to a server. The
operations will be ‘queued’ and the function will return immediately so that the client can continue to
run. Each operation istreated asa ‘transaction’ and is associated with atransaction ID. Asthe
operations are completed, a callback will be made to the |Advise Sink in the client (if one has been
established). The information in the callback will indicate the transaction ID and the error results. By
convention, Oisaninvalid transaction id.

Also the expected behavior isthat for any one transaction to Async Read, Write and Refresh, ALL of
the results of that transaction will be returned in asingle call to OnDataChange.

A server must be ableto ‘queue’ at least one transaction of each type (read, write, refresh) for each
group. It isacceptable for aserver to return an error (CONNECT_E_ADVISELIMIT) if morethan one
transaction of the same typeis performed on the same group by the same client. Server vendors may of
course support queueing of additional transactionsif they wish.

All operations are expected to complete even if they complete with an error. The concept of ‘time-out’
isnot explicitly addressed in this specification however it is expected that where appropriate the server
will internally implement any needed time-out logic.

Client Implementation Note:

The Transaction ID is generated by the Server and returned to the client in the callback. Some clients
may want to save the ID returned by the server in some list of ‘ outstanding transactions' in order to
verify completion of atransaction. This could be complicated if the OnDataChange callback occurs
before the client has saved the returned ID.

Note: Version 1.0 of this specification suggested an approach involving critical sections. However,
depending on the mix of client and server threading models used, it has been found in practice that the
OnDataChange callback can occur within the same thread as the Read or Write and in fact can occur
before the Read or Writereturnsto the caller. Clearly, critical sections cannot resolve this case.

Although it has also been found in practice that many clients do not actually need to record the
transaction ID (the Group’ s ClientHandle is generally sufficient to identify the returned data), the
following possible approach is suggested for those cases where thisis needed.

113

OPC Data Access Custom | nterface Specification 2.03

Mainline Code

START CRITICAL SECTION

RECORD ALL NEEDED INFO ABOUT TRANSACTION EXCEPT TID.
CLEAR‘TID COMPLETED’

SET A SPECIAL FLAG: ‘TID PENDING’

IOPCAsynclO::Read or Write or Refresh

CHECK ‘TID COMPLETED’

IF SET AND EQUAL TO RETURNED TID THEN TRANSACTION ISCOMPLETE
ELSE SAVE TRANSACTION ID IN LIST OF PENDING TRANSACTIONS
CLEARTID PENDING

END CRITICAL SECTION

OnDataChange Code

START CRITICAL SECTION

READ DATA STREAM AND LOCATE TRANSACTION ID

LOCATE TRANSACTION ID IN LIST OF PENDING TRANSACTIONS
IFNOT FOUND, CHECK ‘TID PENDING'

IF‘TID PENDING' SET THEN RECORD THISTID IN ‘TID COMPLETED’
END CRITICAL SECTION

114

OPC Data Access Custom | nterface Specification 2.03

4591 IOPCAsynclO::Read

HRESULT Read(
[in] DWORD dwConnection,
[in] OPCDATASOURCE dwSource,
[in] DWORD dwCount,
[in, size_is(dwCount)] OPCHANDLE * phServer,
[out] DWORD *pTransactionID,
[out, size is(,dwCount)] HRESULT ** ppErrors

)

Description

Read one or moreitemsin agroup. The results are returned viathe | Advise Sink connection
established through the I DataObject.

For CACHE readsthe dataisonly valid if both the group and the item are active.
DEVICE reads are not affected by the ACTIVE state of the group or item.

Parameters Description

dwConnection The OLE Connection nurrber returned from
IDataObject::DAdvise. Thisis passed to help the server
determine which advise sink to call when the request

completes.
dwSource The data source; OPC_DS CACHE or
OPC DS DEVICE
dwCount Number of itemsto be read.
phServer Array of server item handles of theitemsto be read
pTransactionlD Placeto return a Server generated transaction ID. This
isincluded in the ‘completion’ information provided to
the lAdvise.
ppErrors Array of errorsfor each item - returned by the server.

Indicates only if the corresponding server handle was
valid. Any other errors (communications time-out,
accessrights, etc.) will be returned in the callback.
Note that at thistime the only item level status
information availablein the callback isthe QUALITY
field.

115

OPC Data Access Custom | nterface Specification 2.03

HRESULT Return Codes
Return Code Description
S OK The operation succeeded. The read was
successfully initiated
E FAIL The operation failed.
E OUTOFMEMORY Not enough memory
E INVALIDARG An argument to the function wasinvalid.
S FALSE One or more of the passed handles was
invalid. The ppError array indicates which
handlesin phServer wereinvalid. NOTE
if any handleisinvalid thiserror is
returned and the entire ASYNC Read
operation isrejected. No callback will
occur.
CONNECT_E_NOCONNECTION The client has not registered a callback of
type OPCSTMFORMATDATA or
OPCSTMFORMATDATATIME through
IDataObject:DAdvise.
ppError Codes
Return Code Description
S OK The corresponding Item handle was valid.
OPC_E INVALIDHANDLE The corresponding Item handlewasinvalid
Comments

If the HRESULT isS_OK, then ppError can beignored (all resultsin it are guaranteed to be S_OK).

If the HRESULT isany FAILED code then (as noted earlier) the server should return NULL pointers
for al OUT parameters. Note that in this case no Callback will occur.

Notethat thereis adifferencein the handling of OPE_E _INVALIDHANDLE between SYNC read and
ASYNC read. In this case (ASYNC read) an INVALIDHANDLE on oneitem will causethe entire
request to be rejected and will causethe main HRESULT toreturnasS _FALSE. In this casethe
ppErrors will contain one or more OPC_E_INVALIDHANDLE errors and no callback will occur.

The only item specific error checking done by this call isto validate the passed handles. Thus ppErrors
always contains values of either S OK or OPC_E INVALIDHANDLE. If all of the passed handles are
valid and the operation is performed then all item level error returnswill be via OnDataChange. Note
that at thistime the only item level status information available in the Callback isthe QUALITY field.

NOTE: all of the results must be returned by the server in a single callback.

If the itemsin the group require multiple physical transactions to one or more physical devicesthen the
server must wait until all of them are complete before invoking OnDataChange.

The Client must free the returned ppError array.
Thetransaction ID generated by the server should be globally unique and non-zero.

Thetransaction ID isused to identify the resultsthat are returned in the OnDataChange. The client
may also use the transactionl D when attempting to cancel an in progress asynchronous function

116

OPC Data Access Custom | nterface Specification 2.03

45.9.2 IOPCAsynclO::Write

HRESULT Write(
[in] DWORD dwConnection,
[in] DWORD dwCount,
[in, size_is(dwCount)] OPCHANDLE * phServer,
[in, size_is(dwCount)] VARIANT * pltemV alues,
[out] DWORD *pTransactionID,
[out, size_is(,dwCount)] HRESULT ** ppErrors

)

Description

Write one or moreitemsin agroup. Theresults are returned via the | AdviseSink connection
established through the IDataObject.

Parameters Description

dwConnection The OLE Connection number returned from
IDataObject::DAdvise. Thisis passed to help the server
determine which advise sink to call when the request

compl etes.
dwCount Number of items to be written
phServer List of server items handles for the itemsto be written
pltemValues List of valuesto be written. The value data types do not

match the requested or canonical item datatype but
must be ‘ convertible’ to the canonical type.

pTransactionlD Placeto return a Server generated transaction ID. This
isincluded in the ‘completion’ information provided to
the lAdvise.

ppErrors Array of errorsfor each item - returned by the server.

Indicates only if the corresponding server handle was
valid. Any other errors (communications time-out,
access rights, etc.) will be returned in the callback.

117

OPC Data Access Custom | nterface Specification 2.03

HRESULT Return Codes
Return Code Description
S OK The operation succeeded.
E FAIL The operation failed.
E OUTOFMEMORY Not enough memory
E INVALIDARG An argument to the function wasinvalid.
S FALSE One or more of the passed handles was

invalid. The ppError array indicates which
handlesin phServer wereinvalid. NOTE
that if any handleisinvalid thiserror is
returned and the entire operation is
rejected. No callback will occur.
CONNECT_E _NOCONNECTION The client has not registered a callback of
type
OPCSTMFORMATWRITECOMPLETE
through IDataObject:DAdvise.

ppError Codes
Return Code Description
S OK The corresponding Item handle was valid.
OPC_E INVALIDHANDLE The corresponding Item handle wasinvalid
Comments

If theHRESULT isS_OK, then ppError can beignored (all resultsin it are guaranteed to be S_OK).

If the HRESULT isany FAILED code then (as noted earlier) the server should return NULL pointers
for all OUT parameters. Note that in this case no Callback will occur.

Note that thereis adifferencein the handling of OPE_E_INVALIDHANDLE between SYNC write

and ASYNC write. In this case (ASYNC write) an INVALIDHANDLE on oneitem will cause the

entire request to be rejected and will cause the main HRESULT toreturnasS_FALSE. In this case the
ppErrors will contain one or more OPC_E_INVALIDHANDLE errors and no callback will occur.

The only item specific error checking done by this call is to validate the passed handles. . Thus
ppErrors aways contains values of either S OK or OPC_E INVALIDHANDLE. If al of the passed
handles are valid and the operation is performed then all item level error returnswill bevia
OnDataChange. These error codes have the same values as those returned by IOPCSyncl O::Write.

NOTE: all of the results must be returned by the server in a single callback.

If theitemsin the group require multiple physical transactions to one or more physical devicesthen the
server must wait until al of them are complete before invoking OnDataChange.

Client must free the returned ppError array.
See the notes under ‘Read’ regarding the transaction ID.

118

OPC Data Access Custom | nterface Specification 2.03

45.9.3 IOPCAsynclO::Refresh

HRESULT Refresh(

[in] DWORD dwConnection,

[in] OPCDATASOURCE dwSource,
[out] DWORD *pTransactionlD

);

Description

Force a callback for all active itemsin the group (whether they have changed or not). Inactive items
are not included in the callback.

Parameters Description
dwConnection The OLE Connection number returned from
IDataObject::DAdvise. Thisis passed to help the server
determine which advise sync to call when the request
compl etes.
dwSource Data source CACHE or DEVICE
pTransactionlD Placeto return a Server generated transaction ID. This
isincluded in the ‘completion’ information provided to
the lAdvise.
HRESULT Return Codes
Return Code Description
S OK The operation succeeded.
E FAIL The operation failed. (See notes below)
E OUTOFMEMORY Not enough memory
E INVALIDARG An argument to the function wasinvalid.
CONNECT_E_NOCONNECTION The client has not registered a callback of
type OPCSTMFORMATDATA or
OPCSTMFORMATDATATIME through
IDataObject:DAdvise.

Comments
If the HRESULT isany FAILED code then no Callback will occur.

Calling refreshfor an InActive Group will return E_FAIL. Caling refresh for an Active Group, where
al theitemsin the group are InActive also returns E_FAIL.

The behavior of thisfunction isidentical to what happens when DAdviseiscalled using
ADVF_PRIMEFIRST except that the Callback will include a non-zero transaction ID.

Functionally it isalso similar to what could be achieved by doing a READ from CACHE of al of the
activeitemsin agroup.

NOTE: all of theresults must be returned in a single callback.

If theitems in the group require multiple physical transactions to one or more physical devicesthen the
server must wait until al of them are compl ete before invoking OnDataChange.

119

OPC Data Access Custom | nterface Specification 2.03

The expected behavior isthat this Refresh will not affect the timing of normal OnDataChange
callbacks which are based on the UpdateRate. For example, if the update rateis 1 hour and this
method is called after 45 minutes then the server should still do itsinternal ‘checking’ at the end of the
hour (15 minutes after the Refresh call). Calling this method may affect the contents of that next
callback (15 minutes later) since only items where the value or status changed during that 15 minutes
would beincluded. 1temswhich had changed during the 45 minutes preceding the Refresh will be sent
(along with all other values) as part of the Refresh Transaction. They would not be sent a second time
at the end of the hour. The value sent in response to the Refresh becomes the ‘last value sent’ to the
client when performing the normal subscription logic.

See the notes under ‘Read’ regarding the transaction ID.

OPC Data Access Custom | nterface Specification 2.03

4594 IOPCAsynclO::Cancel

HRESULT Cancel(
[in] DWORD dwTransactionl D
);

Description

Request that the server cancel an outstanding transaction.

Parameters Description

dwTransactionl D The transaction ID which was associated with the
operation to be canceled.

HRESULT Return Codes
Return Code Description
S OK The operation succeeded.
E FAIL The operation failed. Either the transaction ID was
invalid or it was ‘too late’ to cancel the transaction.
Comments

The exact behavior (for example whether an operation that has actually started will be aborted) will be
server specific and will also depend on the timing of the cancel request. Also, depending on the
timing, a Callback for the transaction may or may not occur. This method isintended to be used
during shutdown of atask.

In general, if this operation succeeds then no callback will occur. If this operation fails then a callback
may occur (or may already have occured).

121

OPC Data Access Custom | nterface Specification 2.03

4.5.10 IDataObject (old)
The OPC Specification requires the | DataObject to be implemented for the OPC servers.

| DataObject isimplemented on the OPCGroup rather than on theindividual items. Thisallowsthe
creation of an Advise connection between the client and the group using the OPC Data Stream Formats
for the efficient data transfer.

Itisrequired that the following methods be supported.
DAdvise
DUnadvise

Because the IDataObject deals with a STREAM rather than individual items, the following methods do
not need to be supported (they can be implemented as stubs which return E_NOTIMPL.

GetData
GetDataHere
GetCanonica FormatEtc

The server vendor may chose to implement additional methods on the IDataObject. It istheintent of
this design that data items be transferred to applications primarily viathe Advise connection or viathe
Synchronous or Asynchronous Read methods.

The datareturned to the Advise connection is returned viaalAdviseSink which receivesdatain a
Global Memory Section also referred to here asthe ‘ stream’. These streams can be in several formats.
They are used to provide exception data as well as completion information for Async Reads and
Writes. The stream formats are

“OPCSTMFORMATDATA”
“OPCSTMFORMATDATATIME’
“OPCSTMFORMATWRITECOMPLETE”
Use the function

Regi sterClipboardFormat()

to obtain the format value (cfFormat) to be used for data transfers between OPC client applications and
OPC server applications.

The registered callback function (OnDataChange in the client’ s |AdviseSink) may be specified by the
client application so that it spans multiple groups. Information about the group (the Group’s
ClientHandle) must be provided to the client application as part of the stream so that the client can
successfully interpret the itemsthat are contained in the data stream. Each data stream will only
contain the items defined within the specified group.

Because of the nature of the asynchronous calls, OLE requires that no synchronous calls are made
from a method that has been called asynchronously (as all of the IAdviseSink methods are) which
would cause the asynchronous function to be blocked. It isvery important that the methods that are
called asynchronously (the IAdviseSink methods) have limited processing, and return quickly.
Lengthy processing should be done outside of the context of the asynchronous method that has been
invoked.

It isthe client application’ s responsibility to keep up with the data changes that the server (configured
by the client app) sends. The client should assume that the server may send data at the update rate
specified in the group, and that for each group that identical throughput may occur. Various Windows
and OLE related internal errors can result if the server sends data faster than the client can receiveit.

OPC Data Access Custom | nterface Specification 2.03

The performance of the OPC servers and OPC clientsis highly tied to the developers implementation
of these critical interfaces.

The server should be implemented to optimize the acquisition of the dataitems for multiple clients
wherever possible. Thismeansthat it isbest for the server to read data from devices at the fastest rate
possible: (a) to support the needs of multiple clients configured for the sameitem or (b), if asingle
client has configured the same item in different groups at different update rates.

Refer to the OLE programming manual for atutorial and guide to implementing
therequired functionality.

OPC Data Access Custom | nterface Specification 2.03

45.10.1 IDataObject::DAdvise
HRESUL T DAdvise(
FORMATETC *pFmt,
DWORD adv,

LPADVISESINK pSnk,
DWORD * pConnection
);

Description

Create aconnection for aparticular ‘ stream’ format between the OPC Group and the Client.

Parameters Description
pFmt Theformat in which the client isinterested. Thiswill
always be one of the three supported OPC formats as
described below.
adv Data Advise Flags specifier. Not used by OPC.
pSnk Pointer to the Client’ s |AdviseSink
pConnection OLE Connection key for use with IOPCAsynclO and
UnAdvise
HRESULT Return Codes
Return Code Description
S OK The function was successful.
CONNECT_E ADVISEL The group cannot support additional connections of
IMIT thistype.
For other codes see the
OLE programmers
reference
Comments

Since groups are specific to aclient, it is sufficient for OPC Compliance that agroup support only a
single ‘ connection point’ for each stream format. A second attempt by the same client to subscribe to
the same stream format on the same group may return CONNECT_E_ADVISELIMIT.

The Advise Flags Parameter (adv) is not used by OPC. Servers should ignore this parameter and
should always send a copy of all dataitemswhen aconnection is made. Note that thisis equivalent to
the behavior associated with ADVF_PRIMEFIRST.

It is expected that aclient will assign unique values to the group and item client handles if they intend
to use any of the asynchronous functions of the OPC interfaces, including IOPCAsyncl O, and
IDataObject/I AdviseSink interfaces, since thisisthe only key to the information that the server
provides back to the client with the OnDataChange stream.

124

OPC Data Access Custom | nterface Specification 2.03

The‘formats' really represent different types of events rather than different formats for the same data.
The FORMATETC must befilled in asfollows;

fe.cfFormat = OPCSTMFORMATDATA or
OPCSTMFORMATDATATIME or
OPCSTMFORMATWRITECOMPLETE
(See RegisterClipboardFormat())

fe.dwAspect = DVASPECT_CONTENT;

feptd=NULL,;

fetymed =TYMED_HGLOBAL,;

felindex =-1,

The storage medium will alwaysbe TYMED_HGLOBAL (for computability with DCOM).

125

OPC Data Access Custom | nterface Specification 2.03

45.10.2 IDataObject::DUnadvise

HRESULT DUnadvise(
DWORD Connection

)

Description

Terminate a connection between the OPC Group and the Client.

Parameters

Description

Connection

The connection to be terminated

HRESULT Return Codes

Return Code

Description

S OK

The function was successful.

For other codes see the
OLE programmers
reference

Comments

126

OPC Data Access Custom | nterface Specification 2.03

4.6

4.6

Client Side Interfaces

.1 IOPCDataCallback

In order to use connection points, the client must create an object that supports both the |lUnknown and
IOPCDataCallback Interface. The client would pass a pointer to the lUnknown interface (NOT the

| OPCDataCallback) to the Advise method of the proper |ConnectionPoint in the server (as obtained
from I ConnectionPointContainer:: FindConnectionPoint or EnumConnectionPoints). The Server will

call Querylnterface on the client object to obtain the |lOPCDataCallback interface. Note that the
transaction must be performed in thisway in order for the interface marshalling to work properly for
Local or Remote servers.

All of the methods below must be implemented by the client.

ThisInterface will be called as aresult of changes in the data of the group (OnDataChange) and also as
aresult of callsto the IOPCAsyncl O2 interface.

Note: although it is not recommended, the client could change the active status of the group or items
while an Async call is outstanding. The server should be able to deal with thisin areasonable fashion
(i.e. not crash) although the exact behavior is undefined.

Note: memory management follows the standard COM rules. That is, the server allocates'in'
parameters and frees them after the client returns. The client only frees 'out' parameters. In the case of
these callbacks there are no 'out' parameters so all memory is owned by the server.

127

OPC Data Access Custom | nterface Specification 2.03

46.1.1 IOPCDataCallback::OnDataChange

HRESULT OnDataChange(
[in] DWORD dwTransid,
[in] OPCHANDLE hGroup,
[in] HRESULT hrMasterquality,
[in] HRESULT hrMastererror,
[in] DWORD dwCount,
[in, sizeis(dwCount)] OPCHANDLE * phClientltems,
[in, sizeis(dwCount)] VARIANT * pvValues,
[in, sizeis(dwCount)] WORD * pwQualities,
[in, sizeis(dwCount)] FILETIME * pftTimeStamps,
[in, sizeis(dwCount)] HRESULT *pErrors
);

Description

Thismethod is provided by the client to handle notifications from the OPC Group for exception based
data changes and Refreshes.

Parameters Description

dwTransid 0if the call isthe result of an ordinary subscription.
non-0 if the call isthe result of a Refresh.

hGroup The Client handle of the group

hrMasterquality S OK if OPC_QUALITY_MASK for dl ‘qualities
are OPC_QUALITY_GOOD, S FALSE otherwise.

hrMastererror S OK if dl ‘errorsare S OK, S FALSE otherwise.

dwCount The number of itemsin the client handle list

phClientltems Thelist of client handles for the items which have
changed.

pvValues A List of VARIANTS containing the values (in
RequestedDataType) for the items which have
changed.

pwQualities A List of Quality valuesfor theitems

pftTimeStamps A list of TimeStamps for the items

pErrors A list of HRESULTSfor theitems. If the quality of a
dataitem has changed to UNCERTAIN or BAD., this
field allows the server to return additional server
specific errors which provide more useful information
to the user. See below.

HRESULT Return Codes
Return Code Description
S OK Theclient must alwaysreturn S OK.

128

OPC Data Access Custom | nterface Specification 2.03

‘pErrors Return Codes

Return Code Description

S OK Thereturned datafor thisitem quality is GOOD.

E FAIL The Operation failed for thisitem.

OPC_E BADRIGHTS Theitemisor has become not readable.

OPC_E_UNKNOWNITEMID Theitemisno longer availablein the server
address space.

S xxx, E xxx S xxx - Vendor specific information can be
provided if thisitem quality is other than
GOOQOD.
E xxx - Vendor specific error if thisitem cannot
be accessed.
These vendor specific codes can be passed to
GetErrorString().

Comments

For any S xxx pErrors code the client should assume the curresponding Value, Quality and Timestamp
are well defined although the Quality may be UNCERTAIN or BAD. It isrecommended (but not
required) that server vendors provide additional information here regarding UNCERTAIN or BAD
items.

For any FAILED ppError code the client should assume the curresponding Value, Quality and
Timestamp are undefined. In fact the Server must set the corresponding Value VARIANT to
VT_EMPTY sothat it can be marshalled properly.

This section will discuss the reasons why the client may receive callbacks.
Callbacks can occur for the following reasons;

One or more ‘datachange’ events. These will happen for active items within an active group
where the value or quality of the item has changed. They will happen no faster than the
‘updaterate’ of the group. Deadband is used to determine what items have changed. The
TransactionlD will be 0 inthiscase. In general, additional updates are not sent unlessthereisa
changein value or quality.

Refresh Request made through the Asyncl O2 interface. These will happen for al activeitemsin

an active group. They will happen as soon as possible after the refresh request is made. The handle
list will contain the handlesfor all of the activeitemsin the group. Thetransaction ID will be
non-0in this case.

The'errors array can return additional information in the case where the server is having problems
obtaining datafor an Item. These vendor specific errors could contain helpful information about
communications errors or device status. E_FAIL, while allowed, is generally not avery helpful error to
return.

Note: although it is hot recommended, the client could change the active status of the group or items
whilean Async call is outstanding. The server should be able to deal with thisin areasonable fashion
(i.e. not crash) although the exact behavior is undefined.

During cleanup after the callback the Server must be sure todo a VariantClear() on each of the value
Variants.

OPC Data Access Custom | nterface Specification 2.03

46.1.2 IOPCDataCallback::OnReadComplete

HRESULT OnReadComplete(
[in] DWORD dwTransid,
[in] OPCHANDLE hGroup,
[in] HRESULT hrMasterquality,
[in] HRESULT hrMastererror,
[in] DWORD dwCount,
[in, sizeis(dwCount)] OPCHANDLE * phClientltems,
[in, sizeis(dwCount)] VARIANT * pvValues,
[in, sizeis(dwCount)] WORD * pwQualities,
[in, sizeis(dwCount)] FILETIME * pftTimeStamps,
[in, sizeis(dwCount)] HRESULT *pErrors
);

Description

This method is provided by the client to handle notifications from the OPC Group on completion of
Async Reads.

Parameters Description

dwTransid The Transactionl D returned to the client when the
Read wasinitiated.

hGroup The Client handle of the group

hrM asterquality

S OK if OPC_QUALITY_MASK for al *qudlities
are OPC_QUALITY_GOOD, S FALSE otherwise.

hrMastererror S OK if dl ‘errorsare S OK, S FALSE otherwise.

dwCount The number of itemsin the client handle, values,
qualities, times and errorslists. This may be less than
the number of items passed to Read. Itemsfor whic
errors were detected and returned from Read are not
included in the callback.

phClientltems Thelist of client handles for the items which were read.
Thisis NOT guarenteed to bein any particular order
although it will match the values, qualities, times and
errorsarray.

pvVaues A List of VARIANTS containing the values (in
RequestedDataType) for the items.

pwQualities A List of Quality valuesfor theitems

pftTimeStamps A list of TimeStampsfor the items

pErrors A list of HRESULTSfor theitems. If the systemiis

unableto return datafor an item, thisfield allows the
server to return additional server specific errors which
provide more useful information to the user.

130

OPC Data Access Custom | nterface Specification 2.03

HRESULT Return Codes
Return Code Description
S OK Theclient must alwaysreturn S OK

‘pErrors Return Codes

Return Code Description

S OK The returned datafor thisitem quality is GOOD.
E FAIL The Read failed for thisitem

OPC_E BADRIGHTS Theitem is not readable

OPC_E _INVALIDHANDLE The passed item handle was invalid. (Generally
this should already have been tested by

AsynclO2::Read).

OPC_E UNKNOWNITEMID Theitemisno longer availablein the server
address space.

S xxx, E xxx S xxx - Vendor specific information can be
provided if thisitem quality is other than
GOOD.
E xxx - Vendor specific error if thisitem cannot
be accessed.
These vendor specific codes can be passed to
GetErrorString().

Comments

For any S xxx pErrors code the client should assume the curresponding Value, Quality and Timestamp
arewell defined although the Quality may be UNCERTAIN or BAD. It is recommended (but not
reguired) that server vendors provide additional information here regarding UNCERTAIN or BAD
items.

For any FAILED ppError code the client should assume the curresponding Value, Quality and
Timestamp are undefined. In fact the Server must set the corresponding Vaue VARIANT to
VT_EMPTY so that it can be marshalled properly.

Items for which an error (E_xxx) was returned in the initial AsynclO2 Read request will NOT be
returned here. |.e. the returned list may be ‘ sparse’. Also the order of the returned list is not specified
(it may not match the order of the list passed to read).

This Callback occurs only after an Asyncl O2 Read.

The'pErrors array can return additional information in the case where the server is having problems
obtaining datafor an Item. These vendor specific errors could contain helpful information about
communications errors or device status. E_FAIL, while allowed, is generally not avery helpful error to
return.

131

OPC Data Access Custom | nterface Specification 2.03

46.1.3 IOPCDataCallback::OnWriteComplete

HRESULT OnWriteComplete(
[in] DWORD dwTransid,
[in] OPCHANDLE hGroup,
[in] HRESULT hrMasterError,
[in] DWORD dwCount,
[in, sizeis(dwCount)] OPCHANDLE * phClientltems,
[in, sizeis(dwCount)] HRESULT * pError

);

Description

This method is provided by the client to handle notifications from the OPC Group on compl etion of
AsynclO2 Writes.

Parameters Description

dwTransid The TransactionI D returned to the client when the
Write was initiated.

hGroup The Client handle of the group

hrMasterError S OKif al ‘errorsare S OK, S _FALSE otherwise.

dwCount The number of itemsin the client handle and errorslist.

This may be less than the number of items passed to
Write. . Items for which errors were detected and
returned from Write are not included in the callback.

phClientltems Thelist of client handles for the items which were
written. Thisis NOT guarenteed to bein any particular
order although it must match the ‘errors’ array.

pErrors A List of HRESUL Tsfor theitems. Note that Servers
are allowed to define vendor specific error codes here.
These codes can be passed to GetErrorString().

HRESULT Return Codes
Return Code Description
S OK The client must alwaysreturn S_ OK

‘pErrors Return Codes

Return Code Description
S OK The dataitem was written.
OPC E BADRIGHTS Theitemis not writable.

OPC_E INVALIDHANDLE The passed item handle was invalid. (Generally
this should already have been tested by
Asyncl O2::Write).
OPC_E_UNKNOWNITEMID Theitemisno longer availablein the server
address space.

S xxx, E xxx S xxx - the data item was written but thereisa
vendor specific warning (for example the value
was clamped).

132

OPC Data Access Custom | nterface Specification 2.03

E xxx - the dataitem was NOT written and
there is avendor specific error which provides
more information (for example the deviceis
offline). These codes can be passed to
GetErrorString().

Comments

Items for which an error (E_xxx) was returned in theinitial AsynclO2 Write request will NOT be
returned here. |.e. the returned list may be ‘sparse’. Also the order of the returned list is not specified
(it may not match the order of the list passed to write).

This Callback occurs only after an AsynclO2 Write.

The'errors' array can return additional information in the case where the server is having problems
accessing datafor an Item. These vendor specific errors could contain helpful information about
communications errors or device status. E_FAIL, while allowed, is generally not avery helpful error to
return.

133

OPC Data Access Custom | nterface Specification 2.03

46.14 IOPCDataCallback::OnCancelComplete

HRESULT OnCancel Complete(
[in] DWORD dwTransid,
[in] OPCHANDLE hGroup

);

Description

This method is provided by the client to handle notifications from the OPC Group on completion of
Async Cancel.

Parameters Description

dwTransid The Transactionl D provided by the client when the
Read, Write or Refresh was initiated.

hGroup The Client handle of the group

HRESULT Return Codes

Return Code Description
S OK The client must alwaysreturn S OK
Comments

This Callback occurs only after an AsynclO2 Cancel. Note that if the Cancel Request returned S_OK
then the client can expect to receive this callback. If the Cancel request Failed then the client should
NOT receive this callback

134

OPC Data Access Custom | nterface Specification 2.03

46.2 |OPCShutdown

In order to use this connection point, the client must create an object that supports both the [lUnknown
and |OPCShutdown Interface. The client would pass a pointer to the lUnknown interface (NOT the
|OPCShutdown) to the Advise method of the proper | ConnectionPoint in the server (as obtained from

I ConnectionPointContainer:: FindConnectionPoint or EnumConnectionPoints). The Server will call
Querylnterface on the client object to obtain the |OPCShutdowninterface. Note that the transaction
must be performed in thisway in order for the interface marshalling to work properly for Local or
Remote servers.

The ShutdownRequest method on this Interface will be called when the server needs to shutdown. The
client should release all connections and interfaces for this server.

A client which is connected to multiple OPCServers (for example Data access and/or other servers
such as Alarms and events servers from one or more vendors) should maintain separate shutdown
callbacks for each object since any server can shut down independently of the others.

46.2.1 IOPCShutdown::ShutdownRequest

HRESULT ShutdownRequest (
[in] LPWSTR szReason

)

Description

This method is provided by the client so that the server can request that the client disconnect from the
server. The client should UnAdvise all connections, Remove all groups and release all interfaces.

Parameters Description

szReason An optional text string provided by the server
indicating the reason for the shutdown. The server may
pass a pointer to aNUL string if no reason is provided.

HRESULT Return Codes

Return Code Description

S OK Theclient must alwaysreturn S OK.
Comments

The shutdown connection point ison a‘per COM object’ basis. That is, it relates to the object created by
CoCreate... If aclient connectsto multiple COM objects then it should monitor each one separately for
shutdown requests.

135

OPC Data Access Custom | nterface Specification 2.03

4.6.3 IAdviseSink (old)

The client need only provide afull implementation of OnDataChange. The other methods of

| AdviseSink can be implemented as stubs since they will never be called. Callbacks can occur for
several reasons; simple Subscription, Async Read, Async Write, Refresh. A client can be written such
that it performs several of these operationsin parallel. In this case the client can determine the ‘ cause’
of a particular callback by examining first the dataformat as provided in the FORMATETC and

second the Transaction | D as contained in the stream.

Because of the nature of the asynchronous calls, OLE requires that no synchronous calls are made
from amethod that has been called asynchronously (as all of the | AdviseSink methods are) which
would cause the asynchronous function to be blocked. It isvery important that the methods that are
called asynchronously (the IAdviseSink methods) have limited processing, and return quickly.

L engthy processing should be done outside of the context of the asynchronous method that has been
invoked.

Itisclient application responsibility to keep up with the data changes that the server has been
configured by the client application to send. The client should assume that the server may send data at
the update rate specified in the group, and that for each group that identical throughput may occur.
Various Windows and OLE related internal errors can result if the server sends data faster than the
client can receiveit. The performance of the OPC servers and OPC clientsis highly tied to the

devel opers implementation of these critical interfaces.

136

OPC Data Access Custom | nterface Specification 2.03

46.3.1 IAdviseSink::OnDataChange
void OnDataChange (
[in] FORMATETC * pFE,

[in] STGMEDIUM * pSTM

);

Description

This method is provided by the client to handle notifications from the OPC Group for exception based
data changes, Async reads and Refreshes and Async Write Complete.

Parameters Description

pFE the format of the data being receive by the sink

pSTM the storage medium containing the data.
Comments

This section will discuss the reasons why the client may receive callbacks, the contents of
FORMATETC and the contents of the STGMEDIUM.

Note that the caller (the server) owns and will free the storage since the parametersare all 'in's.

The client should NOT freethe STGMEDIUM. Also note that the storageisvalid only for the
duration of the OnDataChange call.

Callbacks can occur for several reasons;

One or more ‘data change’ events with timestamp (format will be
OPCSTMFORMATDATATIME and transaction ID will be 0). Thisformat isalso used in
response to a Refresh and ASY NC READ with anon-zero transaction ID.

One or more ‘data change’ events without timestamp (format will be OPCSTMFORMATDATA
and transaction ID will be 0). Thisformat isalso used in response to a Refresh and ASYNC
READ with anon-zero transaction ID.

Completion of an ASYNC WRITE. (format will be OPCSTMFORMATWRITECOMPLETE and
transaction |D will be non-0)

The FORMATETC will befilled in asfollows;

fe.cfFormat = OPCSTMFORMATDATA or
OPCSTMFORMATDATATIME or
OPCSTMFORMATWRITECOMPLETE.

feptd = NULL;

fe.dwAspect = DVASPECT_CONTENT;

felindex =-1;

fetymed=TYMED_HGLOBAL,;

137

OPC Data Access Custom | nterface Specification 2.03

The storage medium will alwaysbe TYMED_HGLOBAL (for computability with DCOM). The global
memory handle can be found in pSTM.hGlobal. GlobalL ock() can be used to convert thisto a pointer.

The data stored in the global memory by the server will have one of several structures depending on
the Format (which depends on the event that generated the data). Although the dataresidesin this
structurein global memory, werefer to it asa‘ data stream’.

These three formats are summarized below and are described in detail later in the document.

OPCSTMFORMATDATATIME Data with TimeStamp

The data consists of a group header followed by one or more item headers followed by the data.
OPCGROUPHEADER

OPCITEMHEADER1[hdr.dwltemCount]

VARIANTS hdr.dwltemCount]

OPCSTMFORMATDATA Data without TimeStamp

The data consists of agroup header followed by one or more item headers followed by the data.
OPCGROUPHEADER

OPCITEMHEADERZ[hdr.dwltemCount]

VARIANTS[hdr.dwltemCount]

OPCSTMFORMATWRITECOMPLETE Async Write Complete

The data consists of agroup header followed by one or more item headers followed by the data.
OPCGROUPHEADERWRITE

OPCITEMHEADERWRITE[hdr.dwltemCount]

4.6.4 I|AdviseSink - Data Stream Formats (old)

This section describes the data structures associated with the three stream formats used in the
IDataObject / | AdviseSink connection. It also discusses the critical issue of the Packing of these
streams and structures. These formats are also discussed in the Client Side Custom I nterface section.

The following table shows the clipboard format names.

“OPCSTMFORMATDATA” Used for On Data Change, Refresh and Async Read

“OPCSTMFORMATDATATIME" Used for On Data Change, Refresh and Async Read

“OPCSTMFORMATWRITECOMPLETE’ Used for Async Write

Clients and servers must ‘ Register’ these stream formats by calling the windows function
RegisterClipboardFormat();

138

OPC Data Access Custom | nterface Specification 2.03

46.4.1 OPCGROUPHEADER
typedef struct {
DWORD dwSize;
DWORD dwltemCount;
OPCHANDLE hClientGroup;
DWORD dwTransactionID;
HRESULT hrStatus;

} OPCGROUPHEADER,;

This structure can appear at the head of the OPCSTMFORMATDATA or OPCSTMFORMATDATATIME
data stream. It isfollowed by an array of OPCITEMHEADER1s or OPCITEMHEADER?Zs.

Member Description

dwSize The Total size of the data stream (the header, all item
headers and all data)

dwltemCount The number of Itemheaders which follow. Thiswill vary
depending on the number of values being reported.

hClientGroup The client provided handle for the group for which datais

being reported. This allows a single OnDataChange handler
to identify which of many possible groups are reporting
data.

dwTransactionlD For normal subscriptionsthisisO

For Async operations Refresh or Read this is the transaction
ID returned by the method.

hrStatus The status of the asynchronous request (including
OnDataChange). This enables error codes (e.g.
E_OUTOFMEMORY) to be returned in the case of an
asynchronous request failing in the server. A status of

S FALSE should be returned when the read operation was
successful, but one or more items has a quality status of
BAD or UNCERTAIN.

Comment
If the hrStatusis any FAILED code then the server must return dwltemCount as 0.

Thereareno ITEM level HRESULT error codes returned at thistime. The only item level status
information available to the callback function isthe Quality Field.

139

OPC Data Access Custom | nterface Specification 2.03

4.6.4.2 OPCITEMHEADERL1
typedef struct {
OPCHANDLE
DWORD dwValueOffset;
WORD
WORD
FILETIME ftTimeStampltem,

} OPCITEMHEADERY,

An array of these structures appears in the stream following the GROUPHEADER for
OPCSTMFORMATDATATIME. The serialized data (in the form of Variants) appears after this array.

Member Description

hClient Theclient provided handle associated with thisitem

dwValueOffset The offset in the data stream (the global memory section) of
the serialized variant which contains the data.

wQuality The Quality bitsfor the data.

ftTimeStampltem The TimeStamp for the data.

4.6.4.3 OPCITEMHEADER?Z2
typedef struct {
OPCHANDLE
DWORD dwVaueOffset;
WORD
WORD

} OPCITEMHEADER?2,

An array of these structures appears in the stream following the GROUPHEADER for
OPCSTMFORMATDATA. Theserialized data (inthe form of Variants) appears after this array.

Member Description

hClient The client provided handle associated with thisitem

dwValueOffset The offset in the data stream (the global memory section) of
the serialized variant which contains the data.

wQuality The Quality bitsfor the data.

140

OPC Data Access Custom | nterface Specification 2.03

4.6.4.4 OPCGROUPHEADERWRITE
typedef struct {

DWORD dwltemCount;

OPCHANDLE hClientGroup;

DWORD dwTransactionID;

HRESULT hrStatus;

} OPCGROUPHEADERWRITE;

This structure can appear at the head of the data stream. It isfollowed by an array of
OPCITEMHEADERWRITEs.

Member Description

dwltemCount The number of Itemheaders which follow. Thiswill vary
depending on the number of values being reported.

hClientGroup Theclient provided handle for the group for which datais

being reported. This allows a single OnDataChange handler
to identify which of many possible groups are reporting

data.
dwTransactionlD Thisisthetransaction ID returned by the
|OPCAsyncl O::Write method.
hrStatus The status of the asynchronous write request. This enables

error codes (e.g. E. OUTOFMEMORY) to bereturned in
the case of an asynchronous request failing in the server.

Comment
If the hrStatusis any FAILED code then the server must return dwltemCount as 0.

46.45 OPCITEMHEADERWRITE
typedef struct {

OPCHANDLE hClient;

HRESULT dwError;

} OPCITEMHEADERWRITE;

An array of these structures appearsin the stream following the GROUPHEADERWRITE.

Member Description

hClient Theclient provided handle associated with thisitem

dwError The HRESUL Tsfor each of theitems that was written.
Comment

Theitem level HRESUL Tsfor Write are the same as those returned for Sync Write.

141

OPC Data Access Custom | nterface Specification 2.03

4.6.4.6 Marshaling the Data (Variants) into the Stream

Itisimportant that all servers which use the | DataObject interface marshal the item datainto the
stream in exactly the same way since the stream itself is exposed to the client. Asmentioned above,
the various GROUPHEADERSs are written first without padding into the stream followed by as many
ITEMHEADERSs as needed. The TEMHEADERSs must be followed by the dataitself. Againthe data
must be written in exactly the same way without padding by all servers. Thisdataisawaysinthe
form of one of the VARIANT types listed earlier. For variant types contained within the variant union
itself these are written via:

memcpy(dest, source, sizeof (tagV ARIANT));

For aBSTR the union isfollowed without padding by an image of the BSTR. The BSTR image will
include the terminating NUL (WIDE char). Note that BSTRs contain WIDE chars which are 2 bytes
each. The BSTR starts with a DWORD byte count followed by 'count’ bytes of data followed by 2
bytes of 0. Thusthe total space required for the BSTR isthe number of bytes specified in count + 6 (4
for the DWORD count and 2 for the trailing NUL).

For VT_ARRAY thedataisthe VARIANT union followed by the SAFEARRAY structure (with one
SAFEARRAYBOUND, pvData= NULL) followed by the dataitems themselves (the contents of the
SAFEARRAY’sHGLOBAL). Wherethe SAFEARRAY contains strings (BSTRs) then the
SAFEARRAY structureisfollowed by the BSTRs packed as noted above. Again, everything including
the dataitemsis completely unpadded.

Currently OPC supports only aone dimensional SAFEARRAY .

Clearly any pointers in the SAFEARRAY and VARIANT unions need to be recreated by the receiver
when the datais unmarshalled and stored locally.

142

OPC Data Access Custom | nterface Specification 2.03

5 Installation Issues

It is assumed that the server vendor will provide a SETUP.EXE to install the needed components for
their server. Thiswill not be discussed further. Other than the actual components, the main issue
affecting OL E software is management of the Windows Registry and Component Catagories. The
issues here are (a) what entries need to be made and (b) how they can be made.

Again, certain common installation and registry topicsincluding self registration, automatic proxy/stub
registration and registry reference counting are discussed in the OPC Overview Document

5.1 Component Categories

The OPC Data Access I nterface defines the following Component Catagories. Listed below are the
CATIDs, Descriptors and Symbolic Equates to be used for Data Access.

"OPC Data Access Servers Version 1.0"
CATID_OPCDA Server10 = { 63D5F430-CFE4-11d1-B2C8-0060083BA 1FB}

"OPC Data Access Servers Version 2.0"
CATID_OPCDA Server20 = { 63D5F432-CFE4-11d1-B2C8-0060083BA 1FB}

It is expected that a server will first create any category it uses and then will register for that category.
Unregistering a server should causeit to be removed from that category. See the | CatRegister
documentation for additional information.

5.2 Registry Entries for Custom Interface

The following entries are the minimum required to support the Custom Interface for OPC Compliant
Servers.

Required by all:

1. HKEY_CLASSES_ROOT \Vendor.Drivername.Version = A Description of your server

2. HKEY_CLASSES ROOT \Vendor.Drivername.Version\CLSID = {Your Server’'s unique CLSID}

3. HKEY_CLASSES ROOT \Vendor.Drivername.Version\OPC

4. HKEY_CLASSES ROOT \Vendor.Drivername.VersionN\OPC\Vendor =Y our vendor hame

5. HKEY_CLASSES ROOT\CLSIDY{ Your Server’sunigue CLSID} = A Description of your server

6. HKEY_CLASSES ROOT\CLSID\{ Your Server's unique CLSID}\ProglD = Vendor.Drivername.Version

One or more of the following lines (inproc and/or local/remote and/or handler)

7. HKEY_CLASSES ROOT\CLSID\{ Your Server’s unique CLSID}\InprocServer32 = Full Path to DLL
8. HKEY_CLASSES ROOT\CLSIDY YourServer’s unigue CL SID}\L ocal Server32 =_Full Path to EXE
9. HKEY_CLASSES ROOT\CLSID\{ YourServer's unique CLSID}\InprocHandler32 =_Full Path to DLL

1. Thisentry simply establishesyour ProglD as asubkey of the ROOT under which other subkeys
can be entered. The description (the ‘value’ of thiskey) may be presented to the user as the name
of an available OPC server (See example below). It should match the descriptionin line 6.

2. TheCLSID line enablesthe CLSIDFromProgl D function to work. 1.e. allows the system to open
akey given the ProglD and obtain the CLSID asthe value of that key. See the example below.

143

OPC Data Access Custom | nterface Specification 2.03

3. TheOPClinecreatesa‘flag’ subkey that has no value. Thiswas used for Data Access 1.0 to allow
the client to browse for the available OPC servers. As of verson 2.0, the prefered approach isfor
clients and servers to use Component Catagories.

4. TheVendor lineisoptional. Itissimply ameans of identifying the vendor who supplied the
particular OPC server.

5. Thislinesimply establishesyour CLSID as a subkey off of ROOT\CL SID under which the other
subkeys can be entered. The description (the ‘value’' of this key) should be aUser Friendly
description of the server. It should match Item 1 above.

6. TheProglID line enablesthe Progl DFromCL SID function to work. 1.e. allows the system to open
akey given the CLSID and obtainthe ProglD asthe value of that key. (Thisfunction is not
commonly used).

7. ThelnprocServer32 line or Local Server32 line or InprocHandler32 line allows CoCreatel nstance
tolocatethe DLL or EXE given the CLSID. The vendor should define at least one of these.

In general, self registration as described in the Microsoft documentation is recommended for both DLL
and EXE serversto simplify installation.

5.3 Registry Entries for the Proxy/Stub DLL

The proxy/stub DLL is used for marshalling interfacesto LOCAL or REMOTE servers. It is generated
directly from the IDL code and should be the same for every OPC Server. In general the Proxy/Stub
will use sef registration. (Define REGISTER_PROXY _DLL during the build). Sincethisis
completely automatic and transparent it is not discussed further.

Also note that a prebuilt and tested proxy/stub DLL will be provided at the OPC Foundation Web site
making it unnecessary for vendorsto rebuild thisDLL.

Although vendors are allowed to add their own interfaces to OPC objects (as with any COM object)
they should NEV ER modify the standard OPC IDL files or Proxy/Stub DLLsto include such
interfaces. Such interfaces should ALWAY S be defined in a separate vendor specific IDL file and
should be marshalled by a separate vendor specific Proxy/Stub DLL.

144

OPC Data Access Custom | nterface Specification 2.03

6

6.1

Description of Data Types, Parameters and Structures

Some structures contain ‘reserved’ words. These are generally inserted to pad structures to be 32 bit
aligned.

Iltem Definition

The ItemI D isthe fully qualified definition of adataitem in the server, commonly referred to asthe
WHAT. No other information is required to identify the dataitem for the client to be able to read/write
values.

The Item definition (ItemlI D) used inthe OPCITEMDEF and el sewhere is a nul-terminated string that
uniguely identifies an OPC dataitem. The syntax of the identifier is server dependent (although it
should include only printable UNICODE characters) and it provides areference or ‘key’ to an ‘item’ in
the data source. The item is anything that can be represented by aVARIANT although itistypically a
single value such as an analog, digital or string value.

For example, an item such as FIC101 might represent an entire record such as a Fieldbus, Hart
Foundation or ProfiBus data structure. Such behavior is specifically allowed but not required by OPC -
the return of such structuresis considered to be vendor specific behavior. Alternately FIC101.PV
might represent one attribute of arecord such asthe processvalue. Thiswould probably take the form
of adoublewhich could be used by any client.

As an extreme example, since the syntax of theitem ID is server specific, additional information such
as Counts, Engineering Units Scaling and Signal conditioning information could be embedded in the
definition string (although thisis not recommended).

Examples:
A server which supports access to an existing DCS might support asimple syntax such as

“TIC10LPV”

A server that supportslow level accessto a PLC might support a syntax such as

“COM1.STATION:42.REG:40001;0,4095,-100.0,+1234.0”

145

OPC Data Access Custom | nterface Specification 2.03

6.2

AccessPath

The AccessPath isintended as away for the client to provide to the server a suggested data path (e.g. a
particular modem or network interface). It indicates HOW to get the data.

ThelTEM ID provides all of the information needed to locate and process a dataitem. The Access
Path is an optional piece of information that can be provided by the client. Itsuseishighly server
specific but it isintended to allow the client to provide a‘ recommendation’ to the server regarding

how to get to the data. Asan analogy, if the Iteml D represented a phone number, the access path might
represent areguest to route the call via satellite (or transatlantic cable or microwave link). The call

will go through regardless of whether you specify an access path and also whether or not the server is
able to use that suggested path.

For example, suppose you wanted to access avaluein an RTU and had a high speed modem on COM 1
and alow speed modem on COM2. Y ou might specify COM1 asthe preferred access path. Either one
will work, but you would prefer to use COM1 if it isavailable for better performance.

In any case, the use of access path by both the server and the client is optional. Servers need not
provide the function and clients need not use it evenif it is provided.

Servers which do not support access paths will completely ignore any passed access path (and will not

treat thisas an error by the client). Also, when queried, such servers will always return anull access
path for all items (i.e. aNUL string).

146

OPC Data Access Custom | nterface Specification 2.03

6.3

6.4

Blob
Wewill discuss why the Blob exists and how it behaves.

TheBlobisbasically ascratch areafor the server to associate with itemsin order to speed up access to
or processing of thoseitems. The exact way inwhich it isused is server specific.

Theideaisthat clientsrefer to itemsvia ASCII stringswhileinternally, to speed up access, the server
will probably need to resolve this string into some internal server specific address; a network address, a
pointer into atable, aset of indices or files or register numbers, etc. This address resolution could take
considerable time and the resulting internal address could take an arbitrary amount of space. This Blob
allowsthe server to return thisinternal address and allows the client to save it and to provide the Blob
back to the server for future references to thisitem. The server could usethe ‘Blob’ asa‘hint’ to help
find the item more quickly the next time; “The Blob saysthat last time | looked for thistag | found it
‘here’ - so letsseeif its till in that location”. However, in all cases, the ITEM ID istill the ‘key’ to

the data. Regardless of the contents of the Blob, the server needs to insurethat it isin fact referencing
theitem referred to by the ITEM ID.

The behavior of the Blob isasfollows.

Its use by both client and server is optional. Servers which can perform ‘ Additems’ quickly based just
on the item definition should generally not return aBlob. In cases where servers do return aBlob,
clients are free to ignore these Blobs (although this will probably affect the performance of that
server).

TheBlob is passed to AddItems and Validateltems and is al so returned by the server any time an
Additems or Validateltems or EnumltemAttributesis done. The returned Blob may differ in size and
content from the one passed.

Note that the server can update the Blob for an item at any time entirely at the server’s discretion
(including, for example, whenever the client changes an attribute of an Item).

Proper behavior of aclient that wishes to support the Blob isto Enumerate the item attributesto get a
fresh copy of the Blobsfor each item prior to deleting an item or group and to save that updated copy
along with the other application datarelated to the items.

Comment:

The difference between the server handle and the Blob is that the server handleisfixed in size
(DWORD), should not be stored between sessions by the client and that it'simplementation is required
sinceit isthe only way to identify items after they have been added. The Blob isvariableinlength, is
optional and may be stored by the client between sessions.

Time Stamps

Time stamps arein the form of aFILETIME asthisis more compact than other available standard time
structures. There are numerous WIN32 functions for converting between various time formats and time
zones. Time stamps are alwaysin UTC, thisform is beneficial because itisawaysincreasing andis
unambiguous. As discussed earlier in this document, time stamps should reflect the best estimate of the
most recent time at which the corresponding value was known to be accurate. If thisis not provided by
the deviceitself then it should be provided by the server.

147

OPC Data Access Custom | nterface Specification 2.03

6.5 Variant Data Types for OPC Data Items

Under NT 4.0 and Windows 95 with DCOM support, all VARIANT data types can be marshaled
through standard marshalling. Under A utomation, typeswill be coerced to known Automation data
types.

NOTE

Real valuesin thevariant (VT_R4, VT_R8) will contain |EEE floating point numbers. Note that the

| EEE standard allows certain non numeric values (called NANS) to be stored in this format. While use
of such valuesisrare, they are specifically alowed. If such avalueisreturned (inthe
OPCITEMSTATE or inthe DATA STREAM to the IAdviseSink) it is required that the QUALITY

flag be set to OPC_QUALITY_BAD.

148

OPC Data Access Custom | nterface Specification 2.03

6.6 Constants

6.6.1 OPCHANDLE

OPCHANDLEs are used in conjunction with both groups and items within groups. The purpose of
handlesin OPC isto allow faster access to various objects by both the client and the server.

The exact internal implementation of the server handlesis entirely vendor specific. The client should
never make any assumptions about the server handles and the server should never make any
assumptions about the client handles.

6.6.1.1 Group Handles

OPC groups have both a client and a server handle associated with them.

The server group handle is unique across the server and must be returned when the group is created.
The handleisthen passed by the client to various methods. The server group handle can be assumed to
remain valid until the client Removes the group and free’ s all of the interfaces.

It should not be persistently stored by the client asit may be different the next time the OPC group is
created.

The client group handle is provided by the client to the server. It canbe any value and does not need to
be unique. It isincluded in the data stream sent to IAdviseSink in order to help the client identify the
source of the data.

In practiceit is expected that aclient will assign aunique valuetoit’s handleif it intends to use any of
the asynchronous functions of the OPC interfaces(including IOPCAsynclO and

I DataObject/I AdviseSink interfaces), since thisisthe only key to the information that the server gives
back to the client viathe |AdviseSink interface.

6.6.1.2 ltem Handles
OPC items have both aclient and a server handle associated with them.

The server item handle is unique within the group and will be returned when theitem is created. It is
then passed by the client to various methods. The server item handle can be assumed to remain valid
until the client Removes the items or Removes the Group containing the items.

It should not be persistently stored by the client asit may be different the next time the OPC Itemis
created.

Theclient item handle is provided by the client to the server. It can be any value and does not need to
be unique. It isincluded in the data stream sent to IAdviseSink in order to help the client quickly
identify which object in the client application is affected by the changed data.

In practice however it is expected that a client will assign unique valuesit’s handlesif it intendsto use
any of the asynchronous functions of the OPC interfaces (including IOPCAsyncl O and

I DataObject/| AdviseSink interfaces), since thisisthe only key to the information that the server gives
back to the client viathe |AdviseSink interface.

149

OPC Data Access Custom | nterface Specification 2.03

6.7 Structures and Masks

6.7.1 OPCITEMSTATE
This structureis used by IOPCSyncl O::Read

typedef struct {
OPCHANDLE hClient;
FILETIME ftTimeStamp;
WORD wQuality;
WORD wReserved,
VARIANT vDataValue;

} OPCITEMSTATE;

Member Description
hClient the client provided handle for thisitem
ftTimeStamp UTC TimeStamp for thisitem's value. If the device cannot
provide atimestamp then the server should provide one.
wQuality The quality of thisitem.
vDataVaue Thevalueitself asavariant.
Comments

The Client should call VariantClear() to free any memory associated with the Variant.

Real valuesinthevariant (VT_R4, VT_R8) will contain |EEE floating point numbers. Note that the

| EEE standard allows certain non numeric values (called NANS) to be stored in this format. While use
of such valuesisrare, they are specifically allowed. If such avalueisreturneditisrequired that the
QUALITY flag be set to OPC_QUALITY_BAD.

150

OPC Data Access Custom | nterface Specification 2.03

6.7.2 OPCITEMDEF
typedef struct {

[string] LPWSTR szAccessPath;
[string] LPWSTR szltemiD;
BOOL bActive;
OPCHANDLE hClient;
DWORD dwBlobSize;
[size is(dwBlobSize)] BY TE * pBlob;
VARTYPE vtRequestedDataType;
WORD wReserved,;
} OPCITEMDEF;

Thisstructure is used by IOPCltemMgt::Additems and Validateltems. The ‘used by’ column below
indicates which of these two functions use each member.

Member

Used by

Description

szAccessPath

both

The access path the server should associate with
thisitem. By convention a pointer to aNUL string
specifies that the server should select the access
path. Support for accesspath is optional

NOTE: version 1 indicated that aNULL pointer
would allow the server to pick the path however
passing aNULL pointer will cause afault in the
proxy/stub code and thusis not allowed.

szltemID

both

A null-terminated string that uniquely identifies
the OPC dataitem. Seethe Item ID discussion and
the AddlItems function for specific information
about the contents of thisfield.

bActive

add

This Boolean value affects the behavior various
methods as described elsewhere in this
specification.

hClient

add

The handle the client wishes to associate with the
item. Seethe OPCHANDL E for more specific
information about the contents of thisfield.

dwBIlobSize

both

The size of the pBlob for thisitem.

pBlob

both

pBlob isapointer to the Blob.

vtRequestedDataType

both

The data type requested by the client. An error is
returned (See Additems or Validateltems) if the
server cannot provide the itemin this format.
Passing VT_EMPTY means the client will accept
the servers canonical datatype.

Comments

Regarding the datatype; often the same value can be returned in more than one format. For example, a
numeric value might be returned astext (VT_BSTR) or real (VT_R8). Such conversions are typically
handled in the server by VariantChangeType(). Similarly astatus (SCAN status, AUTO/MAN, Alarm,
etc.) might be returned as an integer (VT _I4) to be used in animation or color selection or asastring (
VT_BSTR) to be shown directly to the user. This second case is also known as an enumeration and

would be vendor specific. Client vendors should note that this specification does not specify what
enumeration’ s exist or how a server maps the values into strings. Server vendors are strongly
encouraged to follow a standard such as FIELDBUS in thisarea. See |EnumOPCItemAttributes for

more information on thistopic.

151

OPC Data Access Custom | nterface Specification 2.03

6.7.3 OPCITEMRESULT

typedef struct {
OPCHANDLE hServer;
VARTYPE vtCanonicalDataType;
WORD wReserved;
DWORD dwAccessRights;
DWORD dwBlobSize;

[size is(dwBlobSize)] BY TE * pBlob;
} OPCITEMRESULT;

Thisstructureisused by 10PCltemMgt::AddItems() and Validatel tems().

Member Usad by | Description

hServer add The server handle used to refer to thisitem.

vtCanonical DataType both The native datatype. The type of data maintained
within the server for thisitem.

dwA ccessRights both Indicatesif thisitemisread only, write only or

read/write. ThisisNOT related to security but rather
to the nature of the underlying hardware. See the
Access Rights section below.

dwBlobSize both The size of the Blob for thisitem. Note that this size
may be O for serversthat do not support or require
thisfeature.
pBlob both Pointer to the Blob.
Comments

For Additems pBlob will always be returned by servers which support this feature. For Validateltems
it will only be returned if the dwBlobUpdate parameter to Validateltemsis TRUE.

The client software must free the memory for the Blob before freeing the OPCITEMRESULT
structure.

152

OPC Data Access Custom | nterface Specification 2.03

6.7.4 OPCITEMATTRIBUTES
typedef struct {

[string] LPWSTR szAccessPath;
[string] LPWSTR «zltemiD;
BOOL bActive;
OPCHANDLE hClient;
OPCHANDLE hServer;
DWORD dwA ccessRights;
DWORD dwBlobSize;
[size_is(dwBlobSize)] BY TE * pBlob;
VARTYPE vtRequestedDataType;
VARTYPE vtCanonicalDataType;
OPCEUTYPE dwEUType;
VARIANT VvEUInfo;
} OPCITEMATTRIBUTES;
Member Description
szAccessPath The access path specified by the client. A pointer to aNUL
string isreturned if the server does not support access paths.
«zltemID Theunique identifier for thisitem.
bActive FALSE if theitemisnot currently active, TRUE if theitem
iscurrently active
hClient The handle the client has associated with thisitem.
hServer The handle the server uses to reference this item.

dwA ccessRights

Indicatesif thisitem isread only, write only or read/write.
ThisisNOT related to security but rather to the nature of
the underlying hardware. See the Access Rights section
below.

dwBIlobSize The size of the pBlob for thisitem. Note that this size may
be O for serversthat do not support or require this feature.

pBlob Pointer to the Blob.

vtRequestedDataType Thedatatypein which theitem'svalue will be returned.

Notethat if the requested data type was rejected then this
field will return the canonical datatype.

vtCanonical DataType

The datatypeinwhich theitem'svalue is maintained
within the server.

dwEUType

Indicate the type of Engineering Units (EU) information (if
any) contained in vEUInfo.

0- No EU information available (vVEUInfo will be
VT_EMPTY)

1- Analog - VEUInfowill contain a SAFEARRAY of
exactly two doubles (VT_ARRAY | VT_R8) corresponding
to the LOW and HI EU range.

2 - Enumerated - vEUInfo will contain a SAFEARRAY of
strings (VT_ARRAY | VT_BSTR) which contains alist of
strings (Example: “OPEN”, “CLOSE”, “IN TRANSIT”,
etc.) corresponding to sequential numeric values (0, 1, 2,
etc.)

vEUInfo

The VARIANT containing the EU information. See
Comments below.

153

OPC Data Access Custom | nterface Specification 2.03

Comment:

The EU support isoptional. Serverswhich do not support thiswill always return EUType as 0 and
EUInfoasVT_EMPTY. EU information (analog or enumerated) can be returned for any value where
the canonical typeisany of: VT_12, 14, R4, R8, BOOL, Ul1 athough in practice some combinations
are clearly more likely than others. Where the item contains an array of values (VT_ARRAY) the EU
information will apply to all itemsin the array (just as the Requested and Canonical Datatypes apply
toal itemsinthe array).

EU information is provided by the server to the client and is essentially Read Only. OPC Does not
provide the client with any control over the EU settings.

For analog EU the information returned represents the ‘usual’ range of theitem value. Sensor or
instrument failure or deactivation can result in areturned item value which is actually outside this
range. Client software must be prepared to deal with this. Similarly aclient may attempt to writea
value which is outside this range back to the server. The exact behavior (accept, reject, clamp, etc.) in
this caseis server dependent however in general servers must be prepared to handlethis.

For enumerated EU the information returned represents * string lookup table’ corresponding to
sequential integer values starting with 0. The number of values represented is determined by the size
of the SAFEARRAY. Again, robust clients should be prepared to handle item val ues outside the range
of thelist and robust servers should be prepared to handle writes of illegal values.

Servers may optionally support Localization of the enumeration. In this case the server should use the
current locale ID of the group. See IOPCServer::AddGroup and |OPCGroupStateM gt:: GetState and
SetState.

Theclient isresponsible for freeing the VARIANTsin the OPCITEMATTRIBUTES structure
including all elements of any SAFEARRAY s.

Client writers may wish to create and use acommon function such as
FreeOPCITEMATTRIBUTES(ptr) in order to minimize the chance of memory leaks.

154

OPC Data Access Custom | nterface Specification 2.03

6.7.5 OPCSERVERSTATUS

typedef struct {
FILETIME ftStartTime;
FILETIME ftCurrentTime;
HLETIME ftLastUpdateTime;
OPCSERVERSTATE dwServerState;
DWORD dwGroupCount;
DWORD dwBandWidth;
WORD wMajorVersion;
WORD wMinorVersion;
WORD wBUuildNumber;
WORD wReserved,
[string] LPWSTR szVendorInfo;

} OPCSERVERSTATUS;

This structure used to communicate the status of the server to the client. Thisinformation is provided by
the server in the IOPCServer::GetStatus() call.

Member Description

ftStartTime Time (UTC) the server was started. Thisisconstant for the
server instance and is not reset when the server changes
states. Each instance of a server should keep the time when
the process started.

ftCurrentTime

The current time (UTC) as known by the server.

ftLastUpdateTime

Thetime (UTC) the server sent the last data value update to
this client. Thisvalue is maintained on an instance basis.

dwServerState

The current status of the server. Refer to OPC Server
State values below.

dwGroupCount

Thetotal number of groups (all public and private) being
managed by the server. Thisismainly for diagnostic
purposes.

dwBandWidth

The behavior of thisfield is server specific. A suggested
useisthat it return the approximate Percent of Bandwidth
currently in use by server. If multiplelinksarein useit
could return the ‘worst case’ link. Note that any value over
100% indicates that the aggregate combination of items and
UpdateRate istoo high. The server may also return
OxFFFFFFFF if thisvalueis unknown.

wMajorVersion

The major version of the server software

wMinorVersion

The minor version of the server software

wBuildNumber

The ‘build number’ of the server software

szVendorinfo

Vendor specific string providing additional information
about the server. It isrecommended that this mention the
name of the company and the type of device(s) supported.

155

OPC Data Access Custom | nterface Specification 2.03

OPCSERVERSTATE Values Description

OPC_STATUS RUNNING The server isrunning normally. Thisisthe usual statefor a
server
OPC_STATUS FAILED A vendor specific fatal error has occurred within the server.

The server is no longer functioning. The recovery
procedure from this situation is vendor specific. An error
code of E_FAIL should generally be returned from any
other server method.

OPC_STATUS NOCONFIG The server isrunning but has no configuration information
loaded and thus cannot function normally. Note this state
implies that the server needs configuration information in
order to function. Servers which do not require
configuration information should not return this state.

OPC_STATUS SUSPENDED The server has been temporarily suspended via some
vendor specific method and is not getting or sending data.
Note that Quality will be returned as

OPC QUALITY_OUT_OF SERVICE.

OPC_STATUS TEST The server isin Test Mode. The outputs are disconnected
from thereal hardware but the server will otherwise behave
normally. Inputs may be real or may be simulated
depending on the vendor implementation. Quality will
generally be returned normally.

6.7.6 Access Rights

Thisrepresents the server's ability to access a single OPC dataitem. Note the low 16 bits of the
DWORD arereserved for OPC use and currently include the OPC Access Rights defined in the IDL
and described below. The high 16 bits of the DWORD are available for vendor specific use.

The OPC_READABLE and OPC_WRITABLE bits are intended to indicate whether the Item is
inherently readable or writable. For example avalue representing a physical input would generally be
readable but not writeable. A value representing a physical output or an adjustable parameter such asa
setpoint or alarm limit would generally be readable and writable. It is possible that a val ue representing
aphysical output with no readback capability might be marked writable but not readable. Itis
recommended that Client applications use thisinformation only as something to be viewed by the user.
Attempts by the user to read or write a value should always be passed by the client program to the
server regardless of the access rights that were returned when the item was added. The Server can
return E BADRIGHTS if needed.

Also, the returned Access Rights value is not related to security issues. It is expected that a server
implementing security would validate any reads or writes for the currently logged in user as they
occurred and in case of a problem would return an appropriate vendor specific HRESULT in response
to that read or write.

AccessRights Values Description
OPC_READABLE The client can read the dataitem's value.
OPC WRITEABLE The client can change the dataitem's value.

156

OPC Data Access Custom | nterface Specification 2.03

6.8 OPC Quality flags

These flags represent the quality state for aitem's datavalue. Thisisintended to be similar to but
slightly simpler than the Fieldbus Data Quality Specification (section 4.4.1in the H1 Final
Specifications). This design makesit fairly easy for both serversand client applications to determine
how much functionality they want to implement.

Thelow 8 bits of the Quality flags are currently defined in the form of three bit fields; Quality,
Substatus and Limit status. The 8 Quality bits are arranged as follows:

QQSSSSLL

The high 8 bits of the Quality Word are available for vendor specific use. If these bits are used, the
standard OPC Quiality bits must still be set as accurately as possible to indicate what assumptions the
client can make about the returned data. In addition it is the responsibility of any client interpreting
vendor specific quality information to insure that the server providing it uses the same ‘rules’ asthe
client. The details of such anegotiation are not specified in this standard although a Querylnterface
call to the server for avendor specific interface such as IMyQualityDefinitionsis a possible approach.

Details of the OPC standard quality bits follow:

The Quality BitField

QQ BIT VALUE DEFINE DESCRIPTION

0 00SSSSLL Bad Valueis not useful for reasons indicated by
the Substatus.

1 01SSSSLL Uncertain The quality of the valueis uncertain for
reasons indicated by the Substatus.

2 10SSSSLL N/A Not used by OPC

3 11SSSSL L Good The Quality of the valueis Good.

Comment:

A server which supports no quality information must return 3 (Good). It is also acceptable for a server
to simply return Bad or Good (0x00 or 0xCO) and to always return O for Substatus and limit.

It is recommended that clients minimally check the Quality Bit field of all results (even if they do not
check the substatus or limit fields).

Even when a‘BAD’ valueisindicated, the contents of the value field must still be awell defined
VARIANT even though it does not contain an accurate value. Thisisto simplify error handling in
client applications. For example, clients are aways expected to call VariantClear() on the results of a
Sychronous Read. Similarly the |AdviseSink needs to be able to interpret and ‘ unpack’ the Value and
Dataincluded in the Stream even if that dataisBAD.

If the server has no known value to return then some reasonabl e default should be returned such asa
NUL string or a0 numeric value.

157

OPC Data Access Custom | nterface Specification 2.03

The Substatus BitField
The layout of thisfield depends on the value of the Quality Field.

Substatusfor BAD Quality:

SSSS

BIT VALUE

DEFINE

DESCRIPTION

0

000000LL

Non-specific

Thevalueis bad but no specific reasonis
known

000001LL

Configuration Error

Thereis some server specific problem with the
configuration. For example theitem is question
has been deleted from the configuration.

000010LL

Not Connected

Theinput isrequired to be logically connected
to something but is not. This quality may
reflect that no valueis available at thistime,
for reasons like the value may have not been
provided by the data source.

000011LL

Device Failure

A devicefailure has been detected

000100LL

Sensor Failure

A sensor failure had been detected (the
"Limits' field can provide additional diagnostic
information in some situations.)

000101LL

Last Known Value

Communications have failed. However, the | ast
known value is available. Note that the ‘age’ of
thevalue may be determined from the
TIMESTAMPin the OPCITEMSTATE.

000110LL

Comm Failure

Communications have failed. Thereisno last
known valueis available.

000111LL

Out of Service

Theblock is off scan or otherwiselocked This
quality is also used when the active state of the
item or the group containing theitemis
InActive.

815

N/A

Not used by OPC

Comment

Servers which do not support Substatus should return 0. Note that an ‘old’ value may be returned with
the Quality set to BAD (0) and the Substatus set to 5. Thisisfor consistency with the Fieldbus
Specification. Thisisthe only case in which aclient may assumethat a‘BAD’ valueisstill usable by
the application.

158

OPC Data Access Custom | nterface Specification 2.03

Substatusfor UNCERTAIN Quality:

BIT VALUE

DEFINE

DESCRIPTION

010000LL

Non-specific

Thereis no specific reason why the valueis
uncertain.

010001LL

Last Usable Vaue

Whatever was writing this value has stopped
doing so. The returned value should be
regarded as ‘stale’. Note that thisdiffersfrom a
BAD value with Substatus 5 (Last Known
Value). That statusis associated specifically
with a detectable communications error on a
‘fetched’ value. Thiserror is associated with
the failure of some external sourceto ‘ put’
something into the value within an acceptable
period of time. Note that the ‘age’ of the value
can be determined from the TIMESTAMP in
OPCITEMSTATE.

N/A

Not used by OPC

010100LL

Sensor Not Accurate

Either the value has ‘pegged’ at one of the
sensor limits (in which case the limit field
should be set to 1 or 2) or the sensor is
otherwise known to be out of calibration via
some form of internal diagnostics (in which
case the limit field should be 0).

010101LL

Engineering Units
Exceeded

Thereturned value is outside the limits defined
for this parameter. Note that in this case (per
the Fieldbus Specification) the ‘Limits' field
indicates which limit has been exceeded but
does NOT necessarily imply that the value
cannot move farther out of range.

010110LL

Sub-Normal

The value is derived from multiple sources and
has |less than the required number of Good
sources.

7-15

N/A

Not used by OPC

Comment

Servers which do not support Substatus should return O.

159

OPC Data Access Custom | nterface Specification 2.03

Substatusfor GOOD Quiality:

SSSS BIT VALUE DEFINE DESCRIPTION

0 110000LL Non-specific Thevalueisgood. There are no special
conditions

15 N/A Not used by OPC

6 110110LL Local Override The value has been Overridden. Typically this
is meansthe input has been disconnected and a
manually entered value has been ‘forced'.

7-15 N/A Not used by OPC

Comment

Servers which do not support Substatus should return O.

TheLimit BitField

TheLimit Field isvalid regardless of the Quality and Substatus. In some cases such as Sensor Failure
it can provide useful diagnostic information.

LL BIT VALUE DEFINE DESCRIPTION

0 QQSSSS00 Not Limited Thevalueisfreeto move up or down

1 QQSSSS01 Low Limited Thevalue has ‘pegged’ at some lower limit

2 QQSSSS10 High Limited Thevalue has‘pegged’ at some high limit.

3 QQSsss11 Constant The value is a constant and cannot move.
Comment

Servers which do not support Limit should return O.

Symbolic Equates are defined for values and masks for these BitFieldsin the“QUALITY” section of
the OPC header files.

160

OPC Data Access Custom | nterface Specification 2.03

v

Summary of OPC Error Codes

We have attempted to minimize the number of unique errors by identifying common generic problems

and defining error codes that can be reused in many contexts. An OPC server should only return those
OPC errorsthat are listed for the various methods in this specification or are standard Microsoft errors.
Note that OLE itself will frequently return errors (such as RPC errors) in addition to those listed in this

specification.

The most important thing for aclient isto check FAILED for any error return. Other than that, (the
statements above not withstanding) arobust, user friendly client should assume that the server may
return any error code and should call the GetErrorString function to provide user readable information

about those errors.

Standard COM errorsthat are Description

commonly used by OPC Servers

E FAIL Unspecified error

E INVALIDARG The value of one or more parameters was not valid. Thisis

generally used in place of amore specific error where it is expected
that problems are unlikely or will be easy to identify (for example
when there is only one parameter).

E_NOINTERFACE

No such interface supported

E NOTIMPL

Not implemented

E_OUTOFMEMORY

Not enough memory to complete the requested operation. This can
happen any time the server needs to allocate memory to complete
the requested operation.

CONNECT_E _ADVISELIMIT

Advise limit exceeded for this object

OLE_E_NOCONNECTION

Cannot Unadvise - thereis no existing connection

DV_E FORMATETC

Invalid or unregistered Format specifiedin FORMATETC

161

OPC Data Access Custom | nterface Specification 2.03

OPC SpecificErrors Description

OPC_E BADRIGHTS The Items AccessRights do not allow the operation.

OPC_E BADTYPE The server cannot convert the data between the specified format/
requested data type and the canonical datatype.

OPC_E DUPLICATENAME Duplicate name not allowed.

OPC_E _INVALIDCONFIGFILE The server's configuration fileisan invalid format.

OPC_E_INVALIDFILTER Thefilter string was not valid

OPC_E _INVALIDHANDLE The value of the handleisinvalid. Note: a client should never pass

aninvalid handleto aserver. If this error occurs, itisdueto a
programming error in the client or possibly in the server.

OPC_E _INVALIDITEMID Theitem ID doesn't conform to the server's syntax.

OPC_E INVALID_PID The passed property ID isnot valid for theitem.

OPC_E NOTFOUND Requested Object (e.g. apublic group) was not found.

OPC _E PUBLIC The requested operation cannot be done on a public group.

OPC_E RANGE The value was out of range.

OPC_E_UNKNOWNITEMID Theitem ID is not defined in the server address space (on add or
validate) or no longer existsin the server address space (for read or
write).

OPC_E UNKNOWNPATH Theitem's access path is not known to the server.

OPC_S CLAMP A value passed to WRITE was accepted but the output was
clamped.

OPC_S INUSE The operation cannot be performed because the object is bering
referenced.

OPC_S UNSUPPORTEDRATE The server does not support the requested data rate but will use the

closest available rate.

You will seein the appendix that these error codesuse ITF_FACILITY. This meansthat they are context
specific (i.e. OPC specific). The calling application should check first with the server providing the error
(i.e. call GetErrorString).

Error codes (the low order word of the HRESULT) from 0000 to 0200 are reserved for Microsoft use

(although some were inadverdantly used for OPC 1.0 errors). Codes from 0200 through 7FFF are reserved
for future OPC use. Codes from 8000 through FFFF can be vendor specific.

162

OPC Data Access Custom | nterface Specification 2.03

Appendix A - OPCError.h

8

[*++

Modul e Nane:
OpcError. h

Aut hor :

OPC Task Force
Revi si on History:
Rel ease 1. 0A

Rel e

.y

/*

Renmoved Unused nessages
Added OPC_S | NUSE, OPC _E_I NVALI DCONFI GFI LE, OPC_E_NOTFOUND

ase 2.0

Added OPC_E_| NVALI D_PI D

Code Assi gnenents:
0000 to 0200 are reserved for Mcrosoft use
(al though some were inadverdantly used for OPC 1.0 errors).
0200 to 7FFF are reserved for future OPC use.
8000 to FFFF can be vendor specific.

*/

#ifn
#def

11
11
11
11
11
11
/1
11
/1
11
11
11
11
11
11
/1
/1
/1
11
11
11
11
11
11
/1
/1
/1

def __ OPCERROR_H
i ne __ OPCERROR_H

Val ues are

3322
10938

00
01
10
11
C-is
R- is
Faci |

Code -

32 bit values laid out as foll ows:

is the severity code

- Success

- I nformational

- Warni ng

- Error

the Custonmer code flag
a reserved bit

ty - is the facility code

is the facility's status code

163

OPC Data Access Custom | nterface Specification 2.03

H Messagel d: OPC_E_I NVALI DHANDLE

H MessageText :

H The value of the handle is invalid.

iﬁijef i ne OPC_E_| NVALI DHANDLE ((HRESULT) 0xC0040001L)
/1

/1 Messagel d: OPC_E_BADTYPE

% MessageText :

/1 The server cannot convert the data between the

/'l requested data type and the canonical data type.

/1

#defi ne OPC_E_BADTYPE ((HRESULT) 0xC0040004L)

H Messagel d: OPC_E_PUBLI C

H MessageText :

H The requested operation cannot be done on a public group.
/i

#defi ne OPC_E_PUBLIC ((HRESULT) 0xC0040005L)

H Messagel d: OPC_E_BADRI GHTS

H MessageText :

H The Itenms AccessRights do not allow the operation.

;fﬁjef i ne OPC_E_BADRI GHTS ((HRESULT) 0xC0040006L)

H Messagel d: OPC_E_UNKNOMNI TEM D

H MessageText :

H The itemis no longer available in the server address space
/i

#defi ne OPC_E_UNKNOWNI TEM D ((HRESULT) 0xC0040007L)

H Messagel d: OPC_E_I NVALI DI TEM D

H MessageText :

H The item definition doesn't conformto the server's syntax.
:#élefi ne OPC_E_I NVALI DI TEM D ((HRESULT) 0xC0040008L)

164

OPC Data Access Custom | nterface Specification 2.03

H Messagel d: OPC_E_I NVALI DFI LTER

H MessageText :

H The filter string was not valid

iﬁijef i ne OPC_E_| NVALI DFI LTER ((HRESULT) 0xC0040009L)
/1

/1 Messagel d: OPC_E_UNKNOWNPATH

22 MessageText :

/1 The item s access path is not known to the server.
/1

/1

#def i ne OPC_E_UNKNOWNPATH ((HRESULT) 0xC004000AL)
/1

/1 Messagel d: OPC_E_RANGE

/1

/'l MessageText:

/1

/1 The val ue was out of range.

/1

/1

#def i ne OPC_E_RANGE ((HRESULT) 0xC004000BL)
/1

/1 Messagel d: OPC_E_DUPLI CATENAVE

/1

/1 MessageText:

/1

/1 Duplicate nanme not all owed.

/1

/1

#tdefi ne OPC_E_DUPLI CATENAME ((HRESULT) 0xC004000CL)
/1

/1 Messagel d: OPC_S_UNSUPPORTEDRATE

/1

/1 MessageText :

/1

/1 The server does not support the requested data rate

/1 but will use the closest avail able rate.

/1

/1

#defi ne OPC_S_UNSUPPORTEDRATE ((HRESULT) 0x0004000DL)
/1

/1 Messageld: OPC_S CLAMP

/1

/1 MessageText :

/1

165

OPC Data Access Custom | nterface Specification 2.03

/1 A value passed to WRITE was accepted but the output was cl anped.
/1

#define OPC_S_CLAMP ((HRESULT) 0x0004000EL)
/1

/1 Messageld: OPC_S | NUSE

/1

/1 MessageText:

/1

/1 The operation cannot be conpl eted because the

/1 object still has references that exist.

/1

/1

#defi ne OPC_S_| NUSE ((HRESULT) 0x0004000FL)
/1

/1 Messagel d: OPC_E_| NVALI DCONFI GFI LE

/1

/1 MessageText :

/1

/1 The server's configuration file is an invalid format.
/1
#tdefi ne OPC_E_I NVALI DCONFI G-I LE ((HRESULT) 0xC0040010L)

H Messagel d: OPC_E_NOTFOUND

H MessageText :

H The server could not |ocate the requested object.

;Gefine OPC_E_NOTFOUND ((HRESULT) 0xC0040011L)

H Messagel d: OPC_E_|I NVALI D _PI D

H MessageText :

H The server does not recognise the passed property ID.
;Gefine OPC _E_I NVALID PI D ((HRESULT) 0xC0040203L)

#endif // OpcError

166

OPC Data Access Custom | nterface Specification 2.03

9 Appendix B - Data Access IDL Specification
The current filesrequire MIDL compiler 3.00.15 or later and the WIN NT 4.0 release SDK.

Use the command line MIDL //QOicf opcda.idl.
Theresulting OPCDA.H file should beincludedin all clients and servers.

Theresulting OPCDA_I.C filedefinesthe interface IDs and should be linked into all clients and
servers.

NOTE: ThisIDL fileand the Proxy/Stub generated from it should NEVER be
modified in any way. If you add vendor specific interfacesto your server (which
isallowed) you must generate a SEPARATE vendor specific IDL fileto describe
only those interfaces and a separ ate vendor specific ProxyStub DLL to mar shall
only thoseinterfaces.

Note: Seethe OPC Overview document (OPCOVW.DOC) for alisting and disucssion of
OPCCOMN.IDL.

/| OPCDA. | DL

/1 REVISION: 6/17/98 04:00 PM (EST)

/1 VERSI ONI NFO 2.0.0.0

/1 12/ 05/ 97 acc fixed UNCERTAIN bits, add Asyncl 2, OPCDat aCal | back,

/1 OPCl tenProperties, BROWNSE_TO

/1 06/19/98 acc change V2 uuids prior to final rel ease

/1 to avoid conflict with 'old OPCDA Autonmation uuids
/1 Change nane of 3 methods on Asyncl Q2 to

/1 Cancel 2, Set Enabl e, Get Enabl e to elinm nate conflicts
/1

i mport "oaidl.idl" ;

typedef enum t agOPCDATASOURCE {
OPC_DS_CACHE = 1,
OPC_DS_DEVI CE } OPCDATASOURCE ;

typedef enum t agOPCBROWNSETYPE {
OPC BRANCH = 1,
OPC_LEAF,
OPC_FLAT} OPCBROWSBETYPE;

t ypedef enum t agOPCNAMESPACETYPE {
OPC_NS_HI ERARCHI AL = 1,
OPC_NS_FLAT} OPCNAMESPACETYPE;

typedef enum t agOPCBROWSEDI RECTI ON {
OPC BROASE_UP = 1,
OPC_BROWSE_DOWN, OPC BROWSE_TO} OPCBROWSEDI RECTI ON;

/1 **NOTE** the 1.0 IDL contained an error for ACCESSRI GHTS.
/1 They shoul d not have been an ENUM

/1 They shoul d have been two nask bits as noted here.
cpp_quot e("#defi ne OPC_READABLE 1")

cpp_quot e(" #defi ne OPC_WRI TEABLE 2")

typedef enum t agOPCEUTYPE ({

167

OPC Data Access Custom | nterface Specification 2.03

OPC_NOENUM = 0,
OPC_ANALOG,
OPC_ENUVERATED } OPCEUTYPE;

t ypedef enum t agOPCSERVERSTATE {
OPC_STATUS_RUNNI NG = 1,
OPC_STATUS_FAI LED,
OPC_STATUS_NOCONFI G,
OPC_STATUS_SUSPENDED,

OPC_STATUS _TEST } OPCSERVERSTATE;

typedef enum t agOPCENUMSCOPE { OPC_ENUM PRI VATE_CONNECTI ONS = 1,
OPC_ENUM_PUBLI C_CONNECTI ONS,
OPC_ENUM_ALL_CONNECTI ONS,
OPC_ENUM PRI VATE,
OPC_ENUM PUBLI C,
OPC_ENUM ALL } OPCENUNMSCOPE;

t ypedef DWORD OPCHANDLE;

typedef struct tagOPCGCROUPHEADER ({

DWORD dwsi ze;

DWORD dwl t emCount ;
OPCHANDLE hCl i ent G oup;
DWORD dwTr ansacti onl D;
HRESULT hr St at us;

} OPCCROUPHEADER;

typedef struct tagOPCl TEVHEADERL {
OPCHANDLE hdient;

DWORD dwval ueOr f set ;
WORD wQual ity;
WORD wReser ved;

FI LETI ME ftTi meStanpltem
} OPCI TEMHEADERL;

typedef struct tagOPCl TEVHEADER2 {
OPCHANDLE hdient;

DWORD dwval ueXf f set ;
WORD wQual i ty;
WORD wReser ved;

} OPClI TEMHEADERZ;

typedef struct tagOPCGROUPHEADERWRI TE {

DWORD dwl t enCount ;
OPCHANDLE hCl i ent G oup;
DWORD dwTr ansacti onl D;
HRESULT hr St at us;

} OPCGROUPHEADERWRI TE;

typedef struct tagOPCl TEMHEADERWRI TE {
OPCHANDLE hCl i ent;
HRESULT dwer r or ;

} OPClI TEMHEADERWRI TE;

typedef struct tagOPCI TEMSTATE{
OPCHANDLE hdient;

168

OPC Data Access Custom | nterface Specification 2.03

FI LETI ME ft Ti meSt anp;
WORD wQual i ty;
WORD wReser ved,;
VARI ANT vDat aVal ue;

} OPClI TEMSTATE;

typedef struct tagOPCSERVERSTATUS {

FI LETI ME
FI LETI ME
FI LETI ME
OPCSERVERSTATE
DWORD
DWORD
WORD
WORD
WORD
WORD
[string] LPWSTR

ftStartTi ne;
ftCurrentTi nme;
ft Last Updat eTi ne;
dwSer ver St at e;
dwG oupCount ;
dwBandW dt h;
wiVRj or Ver si on;
wM nor Ver si on;
wBui | dNunber ;
wReser ved;
szVendor | nf o;

} OPCSERVERSTATUS;

t ypedef struct tagOPClI TEMDEF {
[string] LPWSTR
[string] LPWSTR

BOOL

OPCHANDLE

DWORD
BYTE
VARTYPE
WORD

[size_is(dwBl obSi ze)]

} OPCI TEMDEF;

szAccessPat h;
szltem D

bActi ve ;

hd i ent;

dwBl obSi ze;

pBl ob;

vt Request edDat aType;
wReser ved,;

typedef struct tagOPCl TEMATTRI BUTES {

[string] LPWSTR
[string] LPWSTR
BOOL

szAccessPat h;
szltem D
bActi ve;

OPCHANDLE hd i ent;
OPCHANDLE hServer;

DWORD
DWORD
BYTE
VARTYPE
VARTYPE

[size_is(dwBl obSi ze)]

dwAccessRi ght s;

dwBl obSi ze;

pBl ob;

vt Request edDat aType;
vt Canoni cal Dat aType;

OPCEUTYPE dwEUTYype;

VARI ANT
} OPCI TEMATTRI BUTES;

typedef struct tagOPCl TEMRESULT {

VEUI nf o;

OPCHANDLE hServer;

VARTYPE

WORD

DWORD

DWORD
[size_is(dwBl obSi ze)] BYTE
} OPCI TEMRESULT;

vt Canoni cal Dat aType;
wReser ved;
dwAccessRi ght s;

dwBl obSi ze;

* pBl ob;

//**

169

OPC Data Access Custom | nterface Specification 2.03

/1 OPC Quality flags

11

/1 Masks for extracting quality subfields

/'l (note 'status' nmask also includes '"Quality'

/1

cpp_quot e("#defi ne
cpp_quot e("#defi ne
cpp_quot e("#defi ne

/1 Values for QUALITY_MASK bit field

/1

cpp_quot e(" #defi ne
cpp_quot e(" #defi ne
cpp_quot e("#defi ne

bits)
OPC_QUALI TY_MASK 0xC0")
OPC_STATUS_MASK OxFC")
OPC_LI M T_MASK 0x03")
OPC_QUALI TY_BAD 0x00")
OPC_QUALI TY_UNCERTAI N 0x40")
OPC_QUALI TY_GOOD 0xC0")

/1 STATUS_MASK Val ues for Quality = BAD

/1

cpp_quot e("#defi ne
cpp_quot e(" #defi ne
cpp_quot e(" #defi ne
cpp_quot e(" #defi ne
cpp_quot e(" #defi ne
cpp_quot e("#defi ne
cpp_quot e("#defi ne

OPC_QUALI TY_CONFI G_ERROR
OPC_QUALI TY_NOT_CONNECTED
OPC_QUALI TY_DEVI CE_FAI LURE
OPC_QUALI TY_SENSOR_FAI LURE
OPC_QUALI TY_LAST_KNOWN
OPC_QUALI TY_COWM FAI LURE
OPC_QUALI TY_OUT_OF_SERVI CE

/1 STATUS_MASK Val ues for Quality = UNCERTAI N

/1

cpp_quot e(" #defi ne
cpp_quot e(" #defi ne
cpp_quot e(" #defi ne
cpp_quot e(" #defi ne

OPC_QUALI TY_LAST_USABLE
OPC_QUALI TY_SENSOR_CAL
OPC_QUALI TY_EGU_EXCEEDED
OPC_QUALI TY_SUB_NORMAL

/1 STATUS_MASK Val ues for Quality = GOOD

/1
cpp_quot e("#defi ne

/1 Values for Limt
/1

cpp_quot e(" #defi ne
cpp_quot e("#defi ne
cpp_quot e("#defi ne
cpp_quot e("#defi ne

OPC_QUALI TY_LOCAL_OVERRI DE

Bitfield

OPC LIMT_OK
OPC_LIM T_LOW

OPC_LIM T_HI GH
OPC_LI M T_CONST

0x04")
0x08")
0x0c")
0x10")
0x14")
0x18")
0x1C")

0x44")
0x50")
0x54")
0x58")

0xD8")

0x00")
0x01")
0x02")
0x03")

//**

//1nterface Definitions

11

//**

[

obj ect,

uui d(39c13a4d-011e- 11d0-9675- 0020af d8adh3) ,
poi nt er _defaul t (uni que)

]

i nterface | OPCServer

HRESULT AddGr oup(

[in, string]

I Unknown

LPCWSTR szNane,

170

OPC Data Access Custom | nterface Specification 2.03

[in] BOOL bActi ve,
[in] DWORD dwRequest edUpdat eRat e,
[in] OPCHANDLE hCl i ent G oup,
[uni que, in] LONG * pTi neBi as,
[uni que, in] FLOAT * pPer cent Deadband,
[in] DWORD dwiCl D,
[out] OPCHANDLE * phServer Group,
[out] DWORD * pRevi sedUpdat eRat e,
[in] REFI | D riid,
[out, iid_is(riid)] LPUNKNOWN * ppUnk
);
HRESULT GetError String(
[in] HRESULT dwError,
[in] LCI D dwLocal e,
[out, string] LPWSTR * ppString
)
HRESULT Get Gr oupByNarme(
[in, string] LPCWSTR szNane,
[in] REFIID riid,
[out, iid_is(riid)] LPUNKNOMN * ppUnk
)

HRESULT Get St at us(
[out] OPCSERVERSTATUS ** ppServer St at us

)

HRESULT RemoveG oup(
[in] OPCHANDLE hServer Group,
[in] BOOL bForce

)

HRESULT Creat eGr oupEnuner at or (
[in] OPCENUMSCOPE dwScope,

[in] REFIID riid,
[out, iid_is(riid)] LPUNKNOWN* ppUnk
)

}

//**
[

obj ect,

uui d(39cl3ade-011le- 11d0- 9675- 0020af d8adb3),

poi nt er _defaul t (uni que)

]

i nterface 1 OPCServerPublicG oups : | Unknown
{
HRESULT Get Publ i cG oupByNane(
[in, string] LPCWSTR szNane,
[in] REFI | D riid,
[out, iid_is(riid)] LPUNKNOWN * ppUnk
)

HRESULT RempvePubl i cGroup(
[in] OPCHANDLE hServer Group,

171

OPC Data Access Custom | nterface Specification 2.03

[in] BOOL bForce
);

//**

[

obj ect,

uui d(39cl13a4f-011le-11d0- 9675- 0020af d8adb3),

poi nt er _defaul t (uni que)
]
i nterface | OPCBr owseSer ver Addr essSpace: | Unknown
{

HRESULT QueryOr gani zati on(

[out] OPCNAMESPACETYPE * pNanmeSpaceType

)

HRESULT ChangeBr owsePosi ti on(

[in] OPCBROWSEDI RECTI ON dwBr owseDi r ecti on,
[in, string] LPCWSTR szString
)
HRESULT Br owseOPClt em Ds(
[in] OPCBROWSETYPE dwBr owseFi | t er Type,
[in, string] LPCWSTR szFilterCriteria,
[in] VARTYPE vt Dat aTypeFi |l ter,
[in] DWORD dwAccessRi ghtsFilter,
[out] LPENUMSTRI NG * ppl Enunttring
);
HRESULT Getltem D(
[in] LPWSTR szl tenDat al D,
[out, string] LPWSTR * szltem D
)
HRESULT BrowseAccessPat hs(
[in, string] LPCWSTR szltem D,
[out] LPENUMSTRI NG * ppl EnuntStri ng
)

//**

[
obj ect,
uui d(39c13a50-011le- 11d0- 9675- 0020af d8adb3),
poi nt er _def aul t (uni que)

]

interface | OPCG oupStateMgt : | Unknown
{
HRESULT Get St at e(
[out] DWORD * pUpdat eRat e,
[out] BOOL * pActive,
[out, string] LPWSTR * ppNane,
[out] LONG * pTi meBi as,
[out] FLOAT * pPer cent Deadband,

172

OPC Data Access Custom | nterface Specification 2.03

[out] DWORD * pLCI D,

[out] OPCHANDLE * phdlient G oup,
[out] OPCHANDLE * phServer Group
);

HRESULT Set St at e(

[unique, in] DWORD * pRequest edUpdat eRat e,
[out] DWORD * pRevi sedUpdat eRat e,
[unique, in] BOOL * pActive,

[unique, in] LONG * pTi meBi as,

[uni que, in] FLOAT * pPer cent Deadband,
[uni que, in] DWORD * pLCl D,

[uni que, in] OPCHANDLE * phClient Goup

)

HRESULT Set Nange(
[in, string] LPCWSTR szNane

)

HRESULT Cl oneG oup(
[in, string] LPCWSTR szNane,
[in] REFI | D riid,
[out, iid_is(riid)] LPUNKNOWN * ppUnk
)

//**
[

obj ect,

uui d(39c13a51-011e- 11d0- 9675- 0020af d8adh3) ,

poi nt er _defaul t (uni que)

]
interface | OPCPubl i cG oupStateMyt : | Unknown

HRESULT Get St at e(
[out] BOOL * pPublic
);

HRESULT MoveToPubl i c(
voi d

)

//**
[

obj ect,

uui d(39c13a52-011e-11d0-9675- 0020af d8adh3) ,

poi nt er _defaul t (uni que)

]
interface 1 OPCSyncl O : | Unknown

HRESULT Read(
[in] OPCDATASOURCE ~ dwSour ce,

173

OPC Data Access Custom | nterface Specification 2.03

[in] DWORD dwCount ,
[in, size_is(dwCount)] OPCHANDLE * phServer,
[out, size_is(,dwCount)] OPCl TEMSTATE ** ppl t enVval ues,
[out, size_is(,dwCount)] HRESULT ** ppErrors
);

HRESULT Wit e(
[in] DWORD dwCount ,
[in, size_is(dwCount)] OPCHANDLE * phServer,
[in, size_is(dwCount)] VARI ANT * pltenval ues,
[out, size_is(,dwCount)] HRESULT ** ppErrors
)

//**

[
obj ect,
uui d(39c13a53-011le-11d0- 9675- 0020af d8adb3),
poi nt er _defaul t (uni que)

]
interface 1 OPCAsyncl O : | Unknown

{

HRESULT Read(
[in] DWORD dwConnecti on,
[in] OPCDATASOURCE dwSour ce,
[in] DWORD dwCount ,
[in, size_is(dwCount)] OPCHANDLE * phServer,
[out] DWORD * pTransactionl D,
[out, size_is(,dwCount)] HRESULT ** ppErrors
);

HRESULT Wit e(
[in] DWORD dwConnecti on,
[in] DWORD dwCount ,
[in, size_is(dwCount)] OPCHANDLE * phServer,
[in, size_is(dwCount)] VARI ANT * pltenval ues,
[out] DWORD * pTransactionl D,
[out, size_is(,dwCount)] HRESULT ** ppErrors
);

HRESULT Ref resh(
[in] DWORD dwConnecti on,
[in] OPCDATASOURCE dwSour ce,
[out] DWORD * pTransactionl D
);

HRESULT Cancel (
[in] DWORD dwTransactionl D

)

//**

[

obj ect,

174

OPC Data Access Custom | nterface Specification 2.03

]

interface | OPCltemwt:
{

uui d(39c13a54-011le-11d0-9675- 0020af d8adb3),

poi nt er _defaul t (uni que)

HRESULT AddI t ems(
[in]

[in, size_is(dwCount)]
[out, size_is(,dwCount)]
[out, size_is(,dwCount)]
);

HRESULT Val i dateltens(
[in]

[in, size_is(dwCount)]
[in]

[out, size_is(,dwCount)]
[out, size_is(,dwCount)]
);

HRESULT Renovel t ems(
[in]

[in, size_is(dwCount)]
[out, size_is(,dwCount)]
)

HRESULT Set Acti veSt at e(
[in]
[in,
[in]

[out, size_is(,dwCount)]

)

HRESULT Set Cl i ent Handl es(
[in]
[in,
[in,
[out,

)

HRESULT Set Dat at ypes(
[in]
[in,
[in,
[out,

)

HRESULT Cr eat eEnuner at or (
[in]
[out,

)

si ze_i s(dwCount)]

si ze_i s(dwCount)]
si ze_i s(dwCount)]
si ze_i s(, dwCount)]

si ze_i s(dwCount)]
si ze_i s(dwCount)]
si ze_i s(, dwCount)]

iid_is(riid)]

| Uhknown

REFI | D
LPUNKNOWN * ppUnk

DWORD
OPCl TEMDEF

dwCount ,
* pltenmArray,

OPCI TEMRESULT ** ppAddResul ts,

HRESULT

DWORD
OPCl TEMDEF
BOOL

OPCl TEMRESULT

HRESULT

DWORD
OPCHANDLE
HRESULT

DWORD
OPCHANDLE
BOCOL
HRESULT

DWORD
OPCHANDLE
OPCHANDLE
HRESULT

DWORD
OPCHANDLE
VARTYPE
HRESULT

riid,

*

* %

*

* %

*

*

* %

*

*

* %

** ppErrors

dwCount ,
* pltemArray,

bBI obUpdat e,
** ppVal i dati onResults,
** ppErrors

dwCount ,
phServer,
ppErrors

dwCount ,
phServer,
bActi ve,
ppErrors

dwCount ,
phServer,
phC i ent,
ppErrors

dwCount ,
phServer,
pRequest edDat at ypes,
ppErrors

//**

[

obj ect,

175

OPC Data Access Custom | nterface Specification 2.03

uui d(39c13a55-011e-11d0-9675- 0020af d8adbh3) ,
poi nt er _defaul t (uni que)
]
interface | EnumOPCltemAttri butes : | Unknown
{
HRESULT Next (
[in] ULONG celt,
[out, size_is(,*pceltFetched)] OPCI TEMATTRI BUTES ** ppltenmArray,
[out] ULONG * pceltFetched

)

HRESULT Ski p(
[in] ULONG celt

)

HRESULT Reset (
voi d

)

HRESULT Cl one(
[out] IEnunOPCltemAttributes ** ppEnumtemAttri butes

)

/1 Data Access V2.0 additions

[
obj ect,
uui d(39c13a70-011e-11d0- 9675- 0020af d8adb3),
poi nt er _def aul t (uni que)

]
i nterface | OPCDat aCal | back : | Unknown

{

HRESULT OnDat aChange(
[in] DWORD dwTr ansi d,
[in] OPCHANDLE hG oup,
[in] HRESULT hr Masterqual ity,
[in] HRESULT hr Mast ererror,
[in] DWORD dwCount ,
[in, size_is(dwCount)] OPCHANDLE * phCientltens,
[in, size_is(dwCount)] VARIANT * pvVal ues,
[in, size_is(dwCount)] WORD * pwQualities,
[in, size_is(dwCount)] FILETIME * pftTineStanps,
[in, size_is(dwCount)] HRESULT * pErrors

)

HRESULT OnReadConpl et e(

[in] DWORD dwTr ansi d,
[in] OPCHANDLE hG oup,
[in] HRESULT hr Mast erqual ity,
[in] HRESULT hr Mast ererror,
[in] DWORD dwCount ,

[in, size_is(dwCount)] OPCHANDLE * phClientltens,
[in, size_is(dwCount)] VARIANT * pvVal ues,

[in, size_is(dwCount)] WORD * pwQualities,
[in, size_is(dwCount)] FILETIME * pftTi meStanps,
[in, size_is(dwCount)] HRESULT * pErrors

176

OPC Data Access Custom | nterface Specification 2.03

);
HRESULT OnW it eConpl et e(
[in] DWORD dwTr ansi d,
[in] OPCHANDLE hG oup,
[in] HRESULT hr Mast ererr,
[in] DWORD dwCount ,
[in, size_is(dwCount)] OPCHANDLE * pClienthandl es,
[in, size_is(dwCount)] HRESULT * pErrors
);
HRESULT OnCancel Conpl et e(
[in] DWORD dwTr ansi d,
[in] OPCHANDLE hG oup
)
}

//**

[
obj ect,
uui d(39cl13a71-011le-11d0- 9675- 0020af d8adb3),
poi nt er _defaul t (uni que)

]

interface | OPCAsyncl @2 : | Unknown

HRESULT Read(
[in] DWORD dwCount ,
[in, size_is(dwCount)] OPCHANDLE * phServer,
[in] DWORD dwTr ansacti onl D,
[out] DWORD * pdwCancel | D,
[out, size_is(,dwCount)] HRESULT ** ppErrors
)

HRESULT Wit e(
[in] DWORD dwCount ,
[in, size_is(dwCount)] OPCHANDLE * phServer,
[in, size_is(dwCount)] VARI ANT * pltenval ues,
[in] DWORD dwTr ansacti onl D,
[out] DWORD * pdwCancel | D,
[out, size_is(,dwCount)] HRESULT ** ppErrors
)

HRESULT Refresh2(
[in] OPCDATASOURCE dwSour ce,
[in] DWORD dwTr ansacti onl D,
[out] DWORD * pdwCancel | D
);

HRESULT Cancel 2(
[in] DWORD dwCancel | D
);

HRESULT Set Enabl e(
[in] BOCOL bEnabl e

)

177

OPC Data Access Custom | nterface Specification 2.03

HRESULT Get Enabl e(
[out] BOOL *pbEnabl e
);

//**

[
obj ect,
uui d(39cl13a72-011le-11d0-9675- 0020af d8adb3),
poi nt er _def aul t (uni que)

]

interface | OPCltenProperties : |Unknown
{
HRESULT QueryAvail abl eProperties (
[in] LPWSTR szltem D,
[out] DWORD * pdwCount ,
[out, size_is(,*pdwnCount)] DWORD ** ppPropertyl Ds,
[out, size_is(,*pdwCount)] LPWSTR ** ppDescri pti ons,
[out, size_is(,*pdwCount)] VARTYPE ** ppvt Dat aTypes
)
HRESULT GetltenProperties (
[in] LPWSTR szltemn D,
[in] DWORD dwCount ,
[in, size_is(dwCount)] DWORD * pdwPropertyl Ds,
[out, size_is(,dwCount)] VARI ANT ** ppvDat a,
[out, size_is(,dwCount)] HRESULT ** ppErrors
);
HRESULT Lookupltenm Ds(
[in] LPWSTR szlten D,
[in] DWORD dwCount ,
[in, size_is(dwCount)] DWORD * pdwPropertyl Ds,
[out, string, size_is(,dwCount)] LPWSTR ** ppszNew tem Ds,
[out, size_is(,dwCount)] HRESULT ** ppErrors
);
}

/1 This TYPELIB is generated as a conveni ence to users of high |eve
tool s
/1 which are capabl e of using or browsing TYPELI Bs.
/1 *Smart Pointers' in VC5 is one exanple.
[
uui d(B28EEDB2- AC6F- 11d1- 84D5- 00608CB8A7E9) ,
version(1l.0),
hel pstring("OPCDA 2.0 Type Library")
]
i brary OPCDA
{
i mportlib("stdole32.tlb");
importlib("stdole2.tlb");

interface | OPCServer ;

178

OPC Data Access Custom | nterface Specification 2.03

nterface | OPCServer PublicG oups ;
nt erface | OPCBr owseSer ver Addr essSpace;
nterface | OPCG oupSt at eMgt
nterface | OPCPubl i cG oupStateMyt ;
nterface | OPCSyncl O ;

nterface | OPCAsyncl O ;

nterface | OPCltemvpt;

nterface | EnunOPCltemAttri butes ;
nterface | OPCDat aCal | back ;
nterface | OPCAsyncl Q2 ;

nterface | OPCltenProperties ;

179

OPC Data Access Custom | nterface Specification 2.03

10 Appendix D - OPCProps.h

Thisfileis provided as a convenience. It duplicates the information presented in the Specification in
the |OPCltemProperties | nteface discussion.

[*++

Modul e Nane:
OPCProps. h

Aut hor :

OPC Task Force

Revi si on History:
Rel ease 2.0

Creat ed
o

/*
Property I D Code Assignenents:

0000 to 4999 are reserved for OPC use
*/

#i f ndef __ OPCPROPS_H
#define __ OPCPROPS_H

#def i ne OPC_PROP_CDT 1
#tdef i ne OPC_PROP_VALUE 2
#tdefi ne OPC_PROP_QUALI TY 3
#defi ne OPC_PROP_ti ne 4
#defi ne OPC_PROP_RI GHTS 5
#defi ne OPC_PROP_SCANRATE 6
#defi ne OPC_PROP_UNI T 100
#def i ne OPC_PROP_DESC 101
#tdef i ne OPC_PROP_HI EU 102
#tdefi ne OPC_PROP_LOCEU 103

#def i ne OPC_PROP_HI RANGE 104
#def i ne OPC_PROP_LORANGE 105

#defi ne OPC_PROP_CLCSE 106
#defi ne OPC_PROP_OPEN 107
#defi ne OPC_PROP_TI MEZONE 108
#defi ne OPC_PROP_FGC 200
#defi ne OPC_PROP_BGC 201
#tdefi ne OPC_PROP_BLI NK 202
#defi ne OPC_PROP_BMP 203
#defi ne OPC_PROP_SND 204
#defi ne OPC_PROP_HTM. 205
#defi ne OPC_PROP_AVI 206

#def i ne OPC_PROP_ALNMSTAT 300
#define OPC_PROP_ALMHELP 301
#def i ne OPC_PROP_ALMAREAS 302
#def i ne OPC_PROP_ALMPRI MARYAREA 303
#define OPC_PROP_ALMCONDI TION 304
#define OPC_ PROP_ ALMLIMT 305

180

OPC Data Access Custom | nterface Specification 2.03

#def i
#def i
#def i
#def i
#def i
#def i
#def i

ne
ne
ne
ne
ne
ne
ne

OPC_PROP_ALNDB
OPC_PROP_ALMHH
OPC_PROP_ALM
OPC_PROP_ALM.
OPC_PROP_ALM.L
OPC_PROP_ALMROC
OPC_PROP_ALMDEV

306
307
308
309
310
311
312

181

