_d
OLE I’m' Process Gontrol

OPC Alarmsand Events
JUNE 2, 1999

Version 1.01

OPC Alarms and Events Version 1.01

06/02/99

Specification Type Industry Standard Specification
Title: OPC Alarms and Events Date: June2, 1999
Verson: 1.01 Soft M SWord
Source: OPC Alarms and
Events.doc
Author: Opc Foundation Status: Release 1.01
Synopsis

This specification is the specification of the interface for developers of OPC

clients and OPC servers.. The specification is aresult of an analysis and

design process to develop a standard interface to facilitate the devel opment of

servers and clients by multiple vendors that shall inter-operate seamlessly

together.

Trademarks:

Most computer and software brand names have trademarks or registered
trademarks. The individual trademarks have not been listed here.

Required Runtime Environment:

This specification requires Windows 95 Windows NT 4.0 or later

OPC Alarms and Events Version 1.01 06/02/99

NON-EXCLUSVE LICENSE AGREEMENT

The OPC Foundation, a non-profit corporation (the “OPC Foundation™), has established a set of standard
OLE/COM interface protocolsintended to foster greater interoperability between automation/control
applications, field systems/devices, and business/office applicationsin the process control industry.

The current OPC specifications, prototype software examples and related documentation (collectively, the
“OPC Materials"), form a set of standard OLE/COM interface protocols based upon the functional
requirements of Microsoft’s OLE/COM technology. Such technology defines standard objects, methods,
and properties for servers of real-time information like distributed process systems, programmable logic
controllers, smart field devices and analyzersin order to communicate the information that such servers
contain to standard OLE/COM compliant technol ogies enabled devices (e.g., servers, applications, etc.).

The OPC Foundation will grant to you (the “User”), whether an individual or legal entity, alicenseto use,
and provide User with acopy of, the current version of the OPC Materials so long as User abides by the
terms contained in this Non-Exclusive License Agreement (“ Agreement”). If User does not agree to the
terms and conditions contained in this Agreement, the OPC Materials may not be used, and all copies (in
al formats) of such materialsin User’s possession must either be destroyed or returned to the OPC
Foundation. By using the OPC Materials, User (including any employees and agents of User) agreesto be
bound by the terms of this Agreement.

LICENSE GRANT:

Subject to the terms and conditions of this Agreement, the OPC Foundation hereby grantsto User anon-
exclusive, royalty-free, limited license to use, copy, display and distribute the OPC Materialsin order to
make, use, sell or otherwise distribute any products and/or product literature that are compliant with the
standardsincluded in the OPC Materials.

All copies of the OPC Materials made and/or distributed by User must include all copyright and other
proprietary rights notices include on or in the copy of such materials provided to User by the OPC
Foundation.

The OPC Foundation shall retain al right, title and interest (including, without limitation, the copyrights) in
the OPC Materials, subject to the limited license granted to User under this Agreement.

WARRANTY AND LIABILITY DISCLAIMERS:

User acknowledges that the OPC Foundation has provided the OPC Materials for informational purposes
only in order to help User understand Microsoft’s OLE/COM technology. THE OPC MATERIALS ARE
PROVIDED “ASIS’ WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,

INCLUDING, BUT NOT LIMITED TO, WARRANTIES OF PERFORMANCE, MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT. USER BEARSALL RISK
RELATING TO QUALITY, DESIGN, USE AND PERFORMANCE OF THE OPC MATERIALS. The

OPC Foundation and its members do not warrant that the OPC Materials, their design or their use will meet
User’ srequirements, operate without interruption or be error free.

IN NO EVENT SHALL THE OPC FOUNDATION, ITSMEMBERS, ORANY THIRD PARTY BE
LIABLE FOR ANY COSTS, EXPENSES, LOSSES, DAMAGES (INCLUDING, BUT NOT LIMITED
TO, DIRECT, INDIRECT, CONSEQUENTIAL, INCIDENTAL, SPECIAL OR PUNITIVE DAMAGES)
ORINJURIESINCURRED BY USER ORANY THIRD PARTY ASA RESULT OF THIS
AGREEMENT OR ANY USE OF THE OPC MATERIALS.

OPC Alarms and Events Version 1.01 06/02/99

GENERAL PROVISONS

This Agreement and User’ s license to the OPC Materials shall be terminated (a) by User ceasing all use of
the OPC Materials, (b) by User obtaining a superseding version of the OPC Materials, or (c) by the OPC
Foundation, at its option, if User commits a material breach hereof. Upon any termination of this
Agreement, User shall immediately cease all use of the OPC Materials, destroy all copies thereof theninits
possession and take such other actions as the OPC Foundation may reasonably request to ensure that no
copies of the OPC Materialslicensed under this Agreement remain in its possession.

User shall not export or re-export the OPC Materials or any product produced directly by the use thereof to
any person or destination that is not authorized to receive them under the export control laws and
regulations of the United States.

The Software and Documentation are provided with Restricted Rights. Use, duplication or disclosure by
the U.S. government is subject to restrictions as set forth in (a) this Agreement pursuant to DFARs
227.7202-3(a); (b) subparagraph (c)(1)(i) of the Rightsin Technical Dataand Computer Software clause at
DFARs 252.227-7013; or (c) the Commercial Computer Software Restricted Rights clause at FAR 52.227-
19 subdivision (c)(1) and (2), as applicable. Contractor/ manufacturer isthe OPC Foundation, 20423 State
Road 7, Suite 292, Boca Raton, FL 33498.

Should any provision of this Agreement be held to be void, invalid, unenforceable or illegal by a court, the
validity and enforceability of the other provisions shall not be affected thereby.

This Agreement shall be governed by and construed under the laws of the State of Minnesota, excluding its
choice or law rules.

This Agreement embodies the entire understanding between the parties with respect to, and supersedesany
prior understanding or agreement (oral or written) relating to, the OPC Materials.

OPC Alarms and Events Version 1.01 06/02/99

Revision 1.01 Highlights

This revision includes minor additionsto the IDL in the form of "reserved" words added to various
structures. Adding these words to pad the structuresinsures that the structures will give the same result
regardless of the 'packing' value used by the compiler and that clients and servers compiled with different
packing values will be compatible. If you have used any packing value other than the default packing value
of '8' then you should rebuild and relink your applications to insure they are compatible with other OPC
Alarms and Events applications.

OPC Alarms and Events Version 1.01 06/02/99

Tableof Contents
1.
11
12
13
14
141
142 Multiple Levels of Capabilitycccoeveveverrrernenns
1421 Typesof Alarm and Event Servers........ccocccveinene
1422 Typesof Alarm and Event Clients..........cccoeeveene
1423 Client — Server Interactions........cccoeeveveverenieenns
15 REFERENCES.......o ottt ittt sttt e et teaese et bese s ssebese st esebesessebebe e s esebans st beseasssebene e sebesensssebesenssetenesen
16 AVUDIENCE ...ttt te ettt se et be et aebe s st et esese s s et ese e s sebensseebeseas s et ese e et ebesensseebese e sesase s etebesesssntanesnntas
17
2.
21
22
23
24
241 General
242 Attributes of OPCConditions
2421 CONAITION QUAITLY ...ttt b e bt e b e e e e b et eb e e e b e b e e e beeaenennan
243 Attributes of OPCSUDCONAILIONS.........ccccueieieieieiceeerere ettt bbb bt benas 8
2431
2432 SEVESIY oo
244 Enabling and Disabling
245 Interfacesoeveecevecrenene.
24.6 CONAITION SEALES ...ttt ettt ettt e et et bebese et bese s esebess s seseseaeetesensnene
25 EVENTS AND EVENT NOTIFICATIONS
251 GENELAl ...
252 Event Natifications..........
2521 Standard Attributes.................
2522 Vendor-Specific AtHDULESoccvevriceccene
253 Event Categories........oureerreerreeeriemneeeeseeseseeessenens
254 INEEITACES ..o
26 SUBSCRIPTIONS TO EVENT NOTIFICATIONS.
26.1
26.2
26.3
G S 1 0 (= = o=
2.7 CONDITION STATE SYNCHRONIZATION.....uctititeteirestesisesereesesessssesensssssesessssssessssssssssensssssensssssssssssssessssnses
28 ERROR HANDLINGc.cititrisirteteiseseeteeses e seessseeseesessssenesessesesessssssesessssesenssansessssnsessssnsssesensnsssnsensssnsesssensnsasen
3. ARCHITECTURAL OVERVIEW ...ttt s et sess e e ss et s s s s ses s s sensennnen 17
31 RELATIONSHIP TO OPC DATA ACCESS SERVERc.coiiecteueeeeeeetesessssessssssssessssssssssessssssesssssssssssssssssssssssseses 17
32 OVERVIEW OF OBJECTSAND INTERFACES........ceeteeeteteeeseeeeteeesssesessssssessssssssesessssssessasssssessassssssssssssesenssnes 17
321
322 OPCEVENLSEIVEr ODJECLccuiiieiteeirirereieireresie ettt sas bbb s bbbttt 18
323 OPCEVENtSUDSCIiPtiON ODJECL........cueieieireeieiririeieieisisisiesessetess st sssstssesssssesssssssesesssssesesssssesesasasesesans 19
324 OPCEventAreaBrowser ObjeCt (OpLioNal)ccceeieirieeininieesinsisie st sssssesesns 19
4. OPC EVENT SERVER QUICK REFERENCE ...ttt 21
41 CUSTOM INTERFACE — SERVER SIDEcctctiiiiectecses et st e e sasssse s et e e sassesesessesasessssssensssssssesssssesesensnns 21

OPC Alarms and Events Version 1.01 06/02/99

411 OPCEVENLSEIVEr ODJECLcecvevieieceeiriresireriresee et asessse e sessss s ssssssssessssssssesssssessssssssesssssssesssnees 22
412 OPCEventAreaBrowser OBJect (OPLtIONal)cvecureerrererieneniresseresseie s 23
413 OPCEventSubscription Object
42 CUSTOM INTERFACE — CLIENT SIDE
5. OPC EVENT SERVER CUSTOM INTERFACES ...t 25
51 OVERVIEW ...ttt tete st etesae e ste e stesaese st e e steseese st e e eaessene et e e ese et eseebessesebaseebenseseasasessensesesasessenseteseeneneanen
52 GENERAL INFORMATION.....ccctitiiteuisieseetestesessesesseseesessesessesseseasessesessasessessssesasessensesessasssssnsesessessssensesessensssenes
53 OPCEVENT SERVER OBUIECT ...octeuiieieteieseeteteseessaeteesestesesssssse e e ssssesessssstesessssssessssssesasensssssensasssesessssssessssnsans
531 OVEIVIBW ...ttt
532 TUNKNOWN ..ottt
533 [OPCCOMMONcoverererrereseseeseseassersesesseesesessessesesssessesenss
534 [OPCEVENSEIVES ...ttt sne s
534.1 |OPCEventServer::GetStatus
534.2 IOPCEventServer:: CreateEVentSUDSCIIPLION.coiueirereee e 30
5343 |OPCEventServer::QuUeryAVai labIEFIITENS. ..o 32
5344 |OPCEventServer::QUErYEVENTCAIEQOIES.........cueuirirerieirerieeeiesiree ettt see bbb 33
5345 |OPCEventServer::QUeryConditionNNGAIMEScooreeieirriieerereeesesre e 34
5.3.4.6 |OPCEventServer::QuerySUbCONItiONNAMESc..cciiriiirieirerec e 35
5.3.4.7 IOPCEventServer::QuerySourceCONItIONS..........ccuiueirerieiiieieeseee sttt 36
5348 |OPCEventServer::QUEryEVENTATIDULES ..o 37
5.3.4.9 IOPCEventServer:: Trand ateTOHEMIDScccoiireeeieree e 38
5.3.4.10 |OPCEventServer::GetCONiti ONSLALE.ceiueerieieierieerie et 40
534.11 | OPCEventServer::EnableConditiONBYATEA...........cccceieieieiieesieieesiee st 44
534.12 |OPCEventServer::EnableConditioNBYSOUICE........c..cucuiiririeeiiririereesesieiee et 45
5.3.4.13 |OPCEventServer::DisableConditiONBYATER..........cceeiiieriieerie et e 46
5.34.14 |OPCEventServer::Disabl eConditioNBYSOUICE.........c.ciueieiirieeiieieiesieesieseere s s e sness s 47
5.3.4.15 |OPCEVENSErvVer::ACKCONITION.....c.cieiieiieesieieese et neene s
5.34.16 |OPCEventServer::CreateAreaBrowser
535 [ConnectionNPOINtCONEAINEYccceuverereeirereeeirereeeeiserenes
536 [CONNECTTIONPOINL.......cutuititieeieieieereeee s ei e bbb bbb bbb es et s s
54 OPCEVENTA REABROWSER OBJECT (OPTIONAL)u.vuvuvueeceeeeesesessssssessessessssssssssssssssssssssessessesssssssassanes
54.1 |OPCEVENtATEABIOWSEYcveveceirreecrisieiee st
54.1.1 |OPCEventAreaBrowser::ChangeBrowsePostion
54.1.2 IOPCEVeNntAreaBrowser::BroWSEOPCAIEEScererieiierieriesie sttt sttt e i i sse e eeeneens
54.1.3 IOPCEventAreaBrowser::GetQualifiedATreaNamME........cccccevevecesese e 56
54.14 |OPCEventAreaBrowser::GetQualifiedSOUrCENAME.cccoveiiiivieiiieeee et 57
55 OPCEVENT SUBSCRIPTION OBJIECTcueiiiteteuiireeteesestesesesessesesessssssensssssessssssssessssssesesesssssensasssssessssssessssses
551 |OPCEVentSUbSCriptioNMgt.......cccvevvreenereseeseseeeeirenenns
5511 |OPCEventSubscriptionMgt:: SetFilter
55.1.2 |OPCEventSUbSCriptioNM gt: i GEIFTITEN.......c.eieeeeee e 61
55.1.3 | OPCEventSubscriptionMgt:: SelectReturnedAttributes
55.14 |OPCEventSubscriptionM gt:: GEtREUrNEALIITDULES..........c.cerreeeireerese e
5515 |OPCEVentSUBSCriptioNM i REFIESN........cceiieceere e
55.1.6 |OPCEventSubscriptionM gt:: CanCElREFTESN...........oouiieeee s
55.1.7 |OPCEVeNtSUDSCIiptiONM QL i GEISLALEeveeeeieieieseeceseee ettt enas
55.1.8 | OPCEVeNtSUDSCIiPtiONM Qi SEESEALE.vveuieeeieireeiecsesi et
552 [CONNECEI ONPOINECONTAINE ...t sessae e ss st n s eeseneansesaen
553 [CONNECLIONPOIN.........coeveerereeirereneeerereeee e
56 CLIENT SIDE INTERFACES. ..ottt st seene e
56.1 [OPCEVENISINKooveveviireeeeiiireeeserise st sssssssees
56.1.1 IOPCEventSIink::OnEVeNt..........cocoveereineneenereeeeens
56.2 [OPCShULAOWN.....c.erieieeieeiee e
56.2.1 |OPCShutdown:: SNULAOWNREGUESL.......c.cvvieireeieieiri ettt
6. INSTALLATION ISSUES ... rtrese st e sesteesestess e sesessesesessesesesessess e sessssesessesasesssssensssssessnssensessaen
6.1 COMMON TOPICS.....ueuerirereereererteiesessssesessssesesssessesesessessssssssesesessssssensssssessnsssssesesessesesensssssessasssesesessssesesensnes
6.2 COMPONENT CATEGORIES REGISTRATION
6.2.1 SEIVEr REGISIIAIION.....ceueceeceietieeetiee e

Vi

OPC Alarms and Events Version 1.01 06/02/99

6.2.2 ClIENt ENUMETELION.....o.cvueeeeeeeeeeeceeeres s s s sesessessessssss s s ses s sse s s sssse s ssssssssessessessssnssnees 80
7. SUMMARY OF OPC ERROR CODES. ...t 81
APPENDIX A —SAMPLE STRING FILTER FUNCTION ...ttt 83
APPENDIX B— EVENT TYPES, EVENT CATEGORIES, AND CONDITIONScccooeiiiirieniennas 87
APPENDIX C —EVENT ATTRIBUTES. ...ttt 88
APPENDIX D — EVENT SERVER IDL SPECIFICATION ...ttt 89
APPENDIX E — OPCAEDEF . H ...ttt 96
APPENDIX F — OPCAE_ER . H ..ottt bbbt 98

Vii

OPC Alarms and Events Version 1.01 06/02/99

1. Introduction

1.1 Background

Today with the level of automation that is being applied in manufacturing, operators are dealing with
higher and higher amounts of information. Alarming and event subsystems have been used to indicate
areas of the process that require immediate attention. Areas of interestinclude (but are not limited to);
safety limits of equipment, event detection, abnormal situations. In addition to operators, other client
applications may collect and record alarm and event information for later audit or correlation with

other historical data.

Alarm and event engines today produce an added stream of information that must be distributed to
users and software clients that are interested in thisinformation. Currently most alarming/event
systems use their own proprietary interfaces for dissemination and collection of data. Thereisno
capability to augment existing alarm solutions with other capabilitiesin a plug-n-play environment.
Thisrequires the devel oper to recreate the same infrastructure for their products as all other vendors
have had to develop independently with no interoperability with any other systems.

In keeping with the desire to integrate data at all levels of abusiness (as was stated in the OPC Data
background information), alarm information can be considered to be another type of data. This
information is avaluable component of the information architecture outlined in the OPC Data
specification.

Manufacturers and consumers want to use off the shelf, open solutions from vendors that offer superior
value that solves a specific need or problem.

1.2 Purpose

Toidentify interfaces used to pass alarm and event information between components which would be
suitable to standardization. Additionally this document details the design of those interfacesin such a
way asto compliment the existing OPC Data Access | nterfaces.

1.3 Relationship to Other OPC Specifications

This specification complements but is separate from the OPC Data Access and the OPC Historical
Data Access specifications. It referencesthe OPC Common specification, in that OPC Event Servers
support the interfaces specified there.

1.4 Scope

1.4.1 General

The scope of this document isto provide a specification for a software “conduit” for alarm and event
information to be broadcast from serversto clients. “ Conduit” refersto the notion that this document is
not intended to specify solutions for aarming problems, but rather provide an enabling technol ogy that
will permit multi-vendor solutions to operate in a heterogeneous computing environment.

1.4.2 Multiple Levels of Capability

The OPC Alarms and Event specification accommodates a variety of applications that need to share
alarm and event information. In particular, there are multiple levels of capability for handling alarm
and event functionality, from the simple to the sophisticated.

OPC Alarms and Events Version 1.01 06/02/99

1.4.2.1 Types of Alarm and Event Servers

There are several types of OPC Alarm and Event Servers. Some key types supported by this
specification are:

Components that can detect alarms and/or events and report them to one or more clients.

Components that can collect alarm and event information from multiple sources (whether by
subscribing to other OPC alarm and event servers or by detecting alarms and eventsoniit’s
own) and report such information to one or more clients.

Distinctions are made between these two roles because this specification does not overburden simple
alarm and event servers, but also facilitates more sophisticated servers. Simpler software components
or devicesthat can detect and report alarms and events, should not have to also perform advanced
sorting or filtering operations. In other words, the required server interface is kept simple. It supports
the reporting of information but not much more.

Thus, simple event servers may choose to restrict the functionality of the event filtering they provide.
Also, they may choose to not implement such functions as area browsing, enabling/disabling of
conditions, and translation to itemlIDs.

Optional objects and interfaces are noted in the reference portion of this specification. Similarly,
methods which may return E_NOTIMPL, or which may have varying levels of functionality are also
noted.

1.4.2.2 Types of Alarm and Event Clients

Clientsfor OPC alarm and event servers are typically components that subscribe to and display,
process, collect and/or log alarm and event information. The clients of OPC alarms and events servers
may include (but are not limited to) :

operator stations
event/alarm logging components

event/alarm management subsystems

OPC Alarms and Events

Version 1.01 06/02/99

1.4.2.3 Client — Server Interactions

server

client

Operator

Station 2

Simple Alarm/
Event Server

Device w/
Alarm Info

>
>

Operator
Station 1

Event
Logger, etc.

Alarm/Event
Management Server

Simple Alarm/
Event Server

SPC Module

Figure 1-1. Interaction between severa OPC Alarm and Event Servers and Clients

Figure 1-1 shows several types of OPC Alarm and Event clients and serversincluding a Device, SPC
Module, Operator Stations, Event Logger, and an Alarm/Event Management subsystem. The
arrowhead end of the lines connecting the components indicate the client side of the connection.
Notice that there are multiple roles played by some components. The Alarm/Event Management
server isalso aclient to more than one OPC Alarm and Event server. Inthis model, the Alarm/Event
Management server is acting as kind of a collector or data concentrator, providing its clients with
perhaps more organized information or a more advanced interface. Unlike the Alarm/Event
Management server, the Device and SPC Modulesimplement the simplest Alarm/Event server

interface.

1.5 References

OPC Data Access Custom Interface Standard, Version 2.0 (Release Candidate 1), OPC Task

force, January 8, 1998.

The Component Object Model Specification, Version 0.9, Microsoft Corporation, (available
from Microsoft’s FTP site), October 24, 1995.

1.6 Audience

Thisdocument isintended to be used as reference material for developers of OPC compliant alarm

clients and servers. It is assumed that the reader is familiar with Microsoft OLE/COM technology, the

needs of the process control industry and the OPC Data Access 2.0 specification.

OPC Alarms and Events Version 1.01 06/02/99

1.7 Deliverables

This document covers the analysis and design for a COM compliant custom interface. A separate
document describes arelated OLE Automation interface.

OPC Alarms and Events Version 1.01 06/02/99

2. Fundamental Concepts

2.1 Overview

This specification describes objects and interfaces which are implemented by OPC Event Servers, and
which provide the mechanisms for OPC Clientsto be notified of the occurrence of specified events and
alarm conditions. These interfaces also provide services which allow OPC Clients to determine the
events and conditions supported by an OPC Event Server, and to obtain their current status.

This specification deals with entities commonly referred to in the process control industry asalarms
and events. Ininformal conversation, the termsalarm and event are often used interchangeably and
their meanings are not distinct.

Within this specification, analarmisan abnormal condition and isthus a special case of acondition.
A condition isanamed state of the OPC Event Server, or of one of its contained objects, which is of
interest to its OPC Clients. For example, thetag FIC101 may havethe“LevelAlarm” or
“DeviationAlarm” conditions associated with it.

Furthermore, a condition may be defined (optionally) to include multiple sub-conditions. For example,
alLevelAlarm condition may include the “HighAlarm”, “HighHighAlarm”, “LowAlarm”, and
“LowLowAlarm” sub-conditions'.

On the other hand, an event is a detectable occurrence which is of significance to the OPC Event
Server, the device it represents, and its OPC Clients. An event may or may not be associated with a
condition. For example, the transitions into the Level Alarm condition and the return to normal are
events which are associated with conditions. However, operator actions, system configuration
changes, and system errors are examples of events which are not related to specific conditions. OPC
Clients may subscribe to be notified of the occurrence of specified events.

2.2 OPC Event Servers
Any COM object which implements the IOPCEventServer interface isan OPC Event Server.

The IOPCEventServer interface provides methods enabling the OPC Client to:
Determine the types of events which the OPC Event Server supports.

Enter subscriptions to specified events, so that OPC Clients can receive notifications of their
occurrences.

Specify aclient callback interface to beinvoked if the OPC Event Server is shutting down.

2.3 Areas

The expectation isthat events and conditions available in the server are organized within one or more
process areas. An areaisagrouping of plant equipment configured by the user, typically according to
areas of operator responsibility. The definition of the area configuration is outside the scope of this
specification. Implementation of the area concept is optional.

If areas are available, an OPCEventAreaBrowser object may be created by the client to browse the
process area organization. The client can filter event subscriptions by specifying the process areas to
limit the event notifications sent by the server.

! Some servers may choose to represent these asconditions, rather than sub-conditions, asis shownin
Appendix B.

OPC Alarms and Events Version 1.01 06/02/99

2.4 Conditions

2.4.1 General

A condition is anamed state of the OPC Event Server, or of one of its contained OPC Items (if it is
also an OPC Data Access Server), whichis of interest to its OPC Clients. Analarmismerely aspecial
case of a condition, one which is deemed to be abnormal and requiring special attention. This
specification deals with conditions in general, and does not treat alarmsin any special way.

Within the OPC Event Server, conditions are represented by objects of type OPCCondition®. Each
OPCCondition is associated with an OPCSource, as shown in figure 2-1. An OPCSource may bea
process tag (e.g. FIC101) or possibly adevice or subsystem. An OPCSource may be an OPCltem if
the OPC Event Server is (or is associated with) an OPC Data Access Server.

Conditions may be single state, or multi-state. A multi-state condition is one whose state encompasses
multiple “ranges’ or sub-stateswhich are of interest. For example, a“LevelAlarm” condition may

have multiple sub-states including “HighAlarm” and “HighHighAlarm”. Each sub-state is represented
by an abject of the type OPCSubCondition (which again is not a COM object). Each

OPCSubCondition is associated with an OPCCondition , as shownin figure 2-1. The sub-states of a
multi-state condition must be mutually exclusive, e.g. atag cannot be in both HighAlarm and
HighHighAlarm at the sametime.

Therationale for sub-conditionsisto allow clientsto more easily deal with closely related event
notifications. For example, it iseasier for an alarm display client to detect and correctly display the
fact that FIC101 has moved from “HighAlarm” to “HighHighAlarm” if these states are modeled as
sub-conditions of the same condition (“LevelAlarm”), than if they are modeled as independent
conditions. The independent condition model makesit more difficult for the client to determine when
conditions are mutually exclusive.

A single state condition has only one sub-state of interest, and thus has only one sub-condition
associated with it. Anexample of asingle state conditionisa*“hardware failure” condition, where a
hardware deviceis either in the failed condition or not.

It isimportant to maintain aclear distinction between OPCCondition/OPCSubCondition classes and
instances. When discussing a condition or sub-condition in isolation, we are likely dealing with a class
of conditions or sub-conditions. However, when discussing a condition or sub-condition in
conjunction with an OPCSource, we are dealing with a particular instance. For example, a
“LevelAlarm” isaclass of OPCConditions, which may be defined for many anal og tags in the process
control system. However, if we say that FIC101isin“LevelAlarm”, we are dealing with the particular
instance of “Level Alarm” associated with FIC101.

2 The OPCCondition discussed hereis not aCOM object, but is an abstract model of what we think will
commonly be happening within the vendor specific server. Itis not directly exposed through any of the
interfaces defined in this specification. Strictly speaking, this specification defines the interfaces and their
behaviors on a“black box” called an OPC Event Server, and says nothing about any internal details which
might produce such behavior. However, the OPCCondition is auseful model to help explain and clarify
the various behaviors.

OPC Alarms and Events Version 1.01 06/02/99
1 N 1 ..N
has has
OPCSource OPCCondition OPCSubCondition

Attributes: Attributes: Attributes:

Name Name Name
Active Definition
ActiveSubCondition Severity
Quality Description
Enabled
Acked
LastAckTime
SubCondLastActive
CondLastActive

Lastlnactive
AcknowledgerID
Comment

Figure2-1. Relationship between Server Objects, OPCConditions, and OPCSubConditions.

OPCConditions and OPCSubConditions are defined by the implementer of the OPC Event Server, and
the mechanisms for defining OPCConditions and OPCSubConditions are outside the scope of this

specification.

2.4.2 Attributes of OPCConditions
Each OPCCondition has the following attributes:

Name

must be unique within the event server.
Active The associated object is currently in the state represented by the condition.

ActiveSubCondition If Active, thisis the name of the SubCondition which is currently active. For
example, if the Level Alarm condition is active, the ActiveSubCondition value might
be “HighAlarm”. For single-state conditions, the value would be the condition name.

Enabled The condition is currently being checked by the OPC Event Server.

Quality

Condition Quality below)
Acked If Active, the condition has been acknowledged.
LastAckTime Time of the most recent acknowledgement (of any sub-condition).

SubCondLastActive Time of the most recent transition into the currently active sub-condition.
This is the time vaue which must be specified when acknowledging the condition.

CondLastActive Time of most recent transition into this condition. There may be transitions
among the sub-conditions which are more recent.

Lastlnactive Time of most recent transition out of this condition.
AcknowledgerlD The ID of the client who last acknowledged this condition.

Comment

The name assigned to the condition, e.g. “LevelAlarm”. The name of a condition

The current quality of the data value(s) upon which this condition is based. (see

The comment string passed in by the client who last acknowledged this condition.

OPC Alarms and Events Version 1.01 06/02/99

2.4.2.1 Condition Quality

Since a condition is usually based on one or more OPCltems which have a Quality attribute, the
condition also has an associated quality. If the processvaueis“Uncertain”, the“LevelAlarm”
condition is also questionable. A swith OPCltems, conditions will have a mandatory Quality attribute
and when the quality changes, it will generate an event notification. The quality is not handled as
another parameter sinceit is closely associated with the condition.

It is up to the server to determine how to derive the value of Quality. Servers may also wish to define
aspecial EventCategory to report bad quality attributes for values.

Valuesfor the Quality property conform to the OPC Quality Flags definition in the OPC Data Access
server specification.

2.4.3 Attributes of OPCSubConditions
Each OPCSubCondition has the following attributes:

Name The name assigned to the sub-condition, e.g. “HighAlarm” for a sub-condition of
“LevelAlarm”. |In the case of a single-state alarm, the sub-condition name is the
same as the associated condition name. The name of the sub-condition must be
unique within its associated condition.

Definition ~ An expression which defines the sub-state represented by the sub-condition (see
Condition Definitions below).

Severity The severity of any event notifications generated on behalf of this sub-condition (see
Severity below). Note that different sub-conditions of the same condition may have
different severity levels.

Description The text string to be included in any event notification generated on behalf of this
sub-condition.

2.4.3.1 Condition Definitions
Condition definitions are server specific. Some examples are:

1. A boolean expression over one or more OPCltems, e.g. FIC101.PV > 100 & FIC101.PV < 150.
This might be the definition for the HighAlarm sub-condition of the Level Alarm condition.

2. A text string referring to a condition defined by the underlying system or device, e.g.
“DeviceFailure’.

3. A text string indicating a condition which is associated with the OPC Event Server. Examples of
OPC Event Server conditions are:

Shutting Down at specified time
Server overloaded

Underlying system/device is down
Etc.

2.4.3.2 Severity

The severity value is an indication of the urgency of the sub-condition. Thisis aso commonly called
‘priority’, especially inrelation to process alarms. Vaueswill range from 1 to 1000, with 1 being the
lowest severity and 1000 being the highest. Typically, a severity of 1 would indicatein event whichis
informational in nature, while avalue of 1000 would indicate an event of catastrophic nature which
could potentially result in severe financial loss or loss of life.

OPC Alarms and Events

Version 1.01

06/02/99

It is expected that few server implementations will support 1000 distinct severity levels. Therefore,
server developers are responsible for distributing their severity levels across the 1 — 1000 range in such
amanner that clients can assume alinear distribution. For example, aclient wishing to present five
severity levelsto a user should be able to do the following mapping:

Client Severity

OPC Severity

HIGH 801 - 1000
MEDIUM HIGH 601 — 800
MEDIUM 401 - 600
MEDIUM LOW 201-400
LOW 1-200

In many cases a strict linear mapping of underlying device severities to the OPC Severity rangeis not
appropriate. The server developer will instead intelligently map the underlying device severitiesto the

1- 1000 OPC Severity range in some other fashion. In particular, it isrecommended that server

developers map device events of high urgency into the OPC severity range of 667 — 1000, device
events of medium urgency into the OPC severity range of 334 — 666, and low urgency device events
into OPC severities of 1 — 333.

For example, if a device supports 16 severity levels, which are clustered such that severities0, 1, and 2
are considered to be LOW, 3—-7 are MEDIUM, and 8 — 15 are HIGH, then an appropriate mapping
might be as follows:

OPC Range Device Severity OPC Severity

HIGH (667 — 1000) 15 1000
14 955
13 910
12 865
1 820
10 775
9 730
8 685

MEDIUM (334 — 666) 7 650
6 575
5 500
4 425
3 350

LOW (1-333) 2 300
1 150
0 1

OPC Alarms and Events Version 1.01 06/02/99

Some servers may not support any events which are catastrophic in nature, so they may choose to map
al of their severitiesinto a subset of the 1 — 1000 range (for example, 1 —666). Other servers may not
support any events which are merely informational, so they may choose to map all of their severities
into adifferent subset of the 1 — 1000 range (for example, 334 — 1000).

The purpose of this approach isto allow clientsto use severity values from multiple serversfrom
different vendorsin a consistent manner.

2.4.4 Enabling and Disabling

Clients may enable and disable conditions, and the resulting behavior isillustrated in the state diagram
below. Additional behaviors are noted below:

The server may choose to continue to test for acondition whileit is disabled. However, no
event notifications will be generated while the condition is disabled, nor can it be acknowledged
whileitisdisabled.

It is server-specific asto whether or not the following condition properties are defined whilein
the disabled state: Active, ActiveSubCondition, Quality, Acked, LastAckTime,
SubCondL astActive, CondLastActive, LastInactive, AcknowledgerlD, and Comment.

On arefresh, no event notifications will be generated for disabled conditions.

When enabled, the Time attribute associated with the “ Condition Active” event notification will

either be the time the condition isfirst discovered after enabling, or the time it became active
(server-specific).

2.45 Interfaces

None. OPCConditions and OPCSubConditions are not COM objects. They are defined by the
implementer of the OPC Event Server, and their definition is outside the scope of this specification.
Methods to support client accessto conditions are defined in the IOPCEv entServer interface.

2.4.6 Condition States

Figure 2-2 shows a state machine for an OPCCondition which requires acknowledgement. Note that
the intent of thisdiagram isto convey the expected behavior of conditions, as viewed by aclient of the
OPC Event Server. Itisnot intended to specify implementation, other than that the implementation
must support the expected behavior.

Each state transition is an event. Event notification messages are sent at each state transition.

10

OPC Alarms and Events Version 1.01 06/02/99

Enable Received:

Disnable Received:
(No Notification)

Ignore

0

Condition State: Becomes Active:
Inactive, Acked Enabled Send "Condition Active”
’) Notification

Send notification of
new sub-condition
Sub-condition changes:
Send notification of
new sub-condition
d

Condition State:

Disabled Sub-condition changes:

Disable Received:
Possibly Send
“Disabled” Notif.*

Condition State:
/ LActlve Unacked, Enable

Becomes Inactive:
Send “Condition Inactive;
Notification

Valid Ack Received:
Send “Acknowledged”
Notification Invalid Ack

Condition State: Recvd:
Active, Acked, Enabled Ignore

Becomes Inactive:
Valid Ack Received: Send “Condition Inactive”
Send “Acknowledged” Notification
Notification

Becomes Active:
Send “Condition Active”
Notification

Condition State:
Inactive, Unacked, Enabled (For all enabled states)

Condition State:

Enabled, ...
Invalid Ack Received:
Ignore) Quality Changes:
Enable Received: Send “Quality Changed”
Ignore Notification

* Notification sent only if prior state was “Active” or “Inactive” and “Unacked”.

Figure2-2. OPCCondition State Machine

Every event notification which is condition-related (see the section below on Events and Event
Notifications) and which requires acknowledgment includes the Name of the condition, the time that
the condition most recently entered the active state or transitioned into a new sub-condition
(SubCondL astActive property), and the Cookie which uniquely identifies the event notification. This
information is specified by an OPC Client when acknowledging the condition. Thisinformation is
used by the OPC Event Server to identify which specific event occurrence (state transition) is being
acknowledged. If an acknowledgment is received with an out-of-date SubCondL astActive property
(this can occur due to latency in the system), the condition state does not become acknowledged.

Note that an acknowledgement effects the condition state only if it (the condition) is currently active or
it iscurrently inactive and the most recent active condition was unacknowledged. If aninactive,
unacknowledged condition again becomes active, all subsequent acknowledgements will be validated
against the newly active condition state attributes. The server may optionally use the Cookie attribute
of the Event Notification to log acknowledgement of “old” condition activations, but such “late”
acknowledgements have no affect on the current state of the condition.

Acknowledgment of the condition active state may come from the OPC client or may be due to some
logicinternal to the OPC Event Server. For example, acknowledgment of arelated OPCCondition
may result in this OPCCondition becoming acknowledged, or the OPCCondition may be set up to
automatically acknowledge itself when the condition becomes inactive.

For conditionsthat do not track or require acknowledgement, the state transitions are simpler - just
between enabled inactive, enabled-active, and disabled states.

11

OPC Alarms and Events Version 1.01 06/02/99

Enabling a condition placesit in the inactive-acked-enabled state. It is possible for the condition to
become active very quickly after being enabled. No special scan/calculation are performed as part of
the enabling action.

It isrecommended that the event server generate tracking events for enable and disable operations,
rather than generating an event notification for each condition instance being enabled or disabled.
Enabling and disabling by area could result in aflood of event notificationsif this recommendation is
not followed.

2.5 Events and Event Notifications

2.5.1 General

An event is adetectable occurrence which is of significance to the OPC Event Server, the deviceit
represents, and its OPC Clients. An event has no direct representation within the OPC model. Rather,
its occurrence is made known via an Event Notification. Event Notifications are represented by objects
of class OPCEventNotification®, which are described in the following section.

(OPCEventNotifications are not COM objects.)

There are three types of events:

1. Condition-related events are associated with OPCConditions, and represent transitions into or out
of the states represented by OPCConditions and OPCSubConditions. An exampleisthetag
FIC101 transitioning into the Level Alarm condition and HighAlarm sub-condition.

2. Tracking-related events are not associated with conditions, but represent occurrences which
involve the interaction of an OPC Client with a“target” object within the OPC Event Server. An
example of such an event is acontrol change in which the operator, (the OPC Client), changes the
set point of tag FIC101 (the “target”).

3. Smpleeventsare all events other than the above. An example of asimple event isacomponent
failure within the system/device represented by the OPC Event Server.

2.5.2 Event Notifications

OPCEventNotifications are sent to subscribing clients using the Connection Point callback interface
supplied by the OPC Client in the event subscription (see Subscriptions to Event Notifications bel ow).

Thetypes of OPCEventNotifications form an inheritance hierarchy as shown in figure 2-3.

3 The OPCEventNotification discussed hereisnot a COM object, but is an abstract model of what we think
will commonly be happening within the vendor specific server. Itisnot directly exposed through any of
the interfaces defined in this specification, although event notification attributes are provided to the client
inthe ONEVENTSTRUCT (see the description of the IOPCEventSink interface later in this document).
Strictly speaking, this specification defines the interfaces and their behaviors on a“black box” called an
OPC Event Server, and says nothing about any internal details which might produce such behavior.
However, the OPCEventNotification is auseful model to help explain and clarify the various behaviors.

12

OPC Alarms and Events Version 1.01 06/02/99

OPCSimpleEventNotification

Standard Attributes:
Source

Time

Type
EventCategory
Severity

Message

Vendor-Specific Attributes:
(Attributes defined by the server

implementer)
|
i
OPCConditionEventNotification OPCTrackingEventNotification
Standard Attributes: Standard Attributes:
ConditionName ActorlD
SubConditionName Vendor-Specific Attributes:
NewState (Attributes defined by the server
Quality implementer)
AckRequired
ActiveTime
Cookie
ActorlD
Vendor-Specific Attributes:
(Attributes defined by the server
implementer)

Figure 2-3. OPCEventNotification Type Hierarchy

2.5.2.1 Standard Attributes

All OPCEventNotifications have standard attributes which are defined by this specification, and are
included in the ONEVENTSTRUCT returned to clients with event notifications. See the discussion of
the IOPCEventSink interface in Section 5.6.1.

2.5.2.1.1 OPCSimpleEventNotifications

OPCSimpleEventNotifications have the following standard attributes. Note that
OPCConditionEventNotifications and OPCTrackingEventNotifications also include these standard
attributes through inheritance.

Source A reference to the object which generated the event notification. For example, this
would be atag name (e.g. FIC101) if the event pertains to a tag entering the
Level Alarm condition (condition-related event). It could also be atag name for a
tracking event such as the operator changing the set point value for FIC101. For a
simple event such as a system error, the Source value might be “System”.

Time The time that the event occurred.

Type The type of the event, i.e. condition-related, tracking-related, or simple.
EventCategory The category to which this event belongs (see Event Categories below).

Severity The urgency of the event. This may be avalue in the range of 1 — 1000, as described

13

OPC Alarms and Events Version 1.01 06/02/99

Message

in Section 2.4.3.2.

Message text which describes the event. For condition-related events, this will
generally include the description property of the active sub-condition.

2.5.2.1.2 OPCTrackingEventNotifications
Tracking events have the attributes of a simple event plus the following:

ActorlD

The identifier of the OPC Client which initiated the action resulting in the tracking-
related event. For example, if the tracking-related event is a change in the set point
of FIC101, the ActorID might be a reference to the client application which initiated
the change or might be the userID of the operator who specified the change. This
value is server specific, and its definition is outside the scope of this specification.

2.5.2.1.3 OPCConditionEventNotifications
Condition events have the attributes of asimple event plusthe following:

ConditionName The name of the associated OPCCondition.
SubConditionName The name of the currently active OPCSubCondition.
ChangeMask Indicates to the client which properties of the condition have changed, to have caused the

NewState

server to send the event notification.

Indicates the new state of the condition. This indicates the new values for the
Enabled, Active, and Acked properties of the condition.

ConditionQuality Indicates the quality of the underlying data items upon which this condition is

based.

AckRequired An indicator asto whether or not an acknowledgement is required. Many event

ActiveTime

Cookie

ActorID

notifications related to conditions do not normally require an acknowledgment, e.g.
the receipt of an acknowledgment or the transition to the inactive state. Furthermore,
some conditions may be configured (using facilities outside the scope of this
specification) to not require acknowledgment even for transitions into the condition,
or for transitions among sub-conditions (e.g. transition into LevelAlarm or transition
from HighAlarm to HighHighAlarm). In this case, it is the responsibility of the
server to automatically place the condition into the Acknowledged state, since an
acknowledgment will never be received.

The time of the transition into the condition or sub-condition which is associated
with this event notification. This corresponds to the SubCondL astActive property of
the associated OPCCondition object and is used to correlate condition
acknowledgements with a particular transition into the condition/sub-condition.

Server defined cookie associated with the event notification. This value is used by
the client when acknowledging the condition. This value is opague to the client.

The identifier of the OPC Client which acknowledged the condition, which is
maintained as the AcknowledgerID property of the condition. Thisisincluded in
event notifications generated by condition acknowledgments.

2.5.2.2 Vendor-Specific Attributes

In addition to the standard attributes described above, implementers of OPC Event Servers may choose
to provide additional attributes with event notifications. In order to promote consistency among event
server implementations, implementers are encouraged to select their attribute names from those listed
in Appendix C where applicable.

14

OPC Alarms and Events Version 1.01 06/02/99

2.5.3 Event Categories

EventCategories define groupings of events supported by an OPC Event server. Examples of event
categories might include “ Process Events’, “ System Events’, or “Batch Events’. Event categories
may be defined for all event types, i.e. Simple, Tracking, and Condition-Related. However, a

particular event category can include events of only onetype. A given Source (e.g. “ System” or
“FIC101") may generate events for multiple event categories. Names of event categories must be
unique within the event server. The definition of event categoriesis server specific and is outside the
scope of this specification. A list of recommended event categories for each event typeisprovidedin
Appendix B.

The name of the event category isincluded in every event notification. Event subscriptions may be
filtered based on event category.

2.5.4 Interfaces

OPC Event Servers provide interfaces to allow OPC Clients to determine the types of events which the
OPC Event Server supports, and to enter subscriptions to specified events.

2.6 Subscriptions to Event Notifications

2.6.1 General

In order to receive event notifications, OPC Clients must subscribe to them. A subscription is entered
with an OPC Event Server by requesting it to create an OPCEventSubscription object. An OPC Client
may have one or more OPCEventSubscriptions active with asingle OPC Event Server.

OPCEventSubscriptions are “connectable objects’ in that they implement the DCOM Connection
Point interfaces. Thisisthe mechanism used to send event notificationsto OPC Clients.

2.6.2 Properties of OPCEventSubscriptions
OPCEventSubscriptions have the following property:
Filter A structure containing criteria for selecting events of interest to the client (see Filters
below). A null Filter results in the OPC Client receiving all event notifications.

2.6.3 Filters
Events may be selected using the following criteria:

Type of event, i.e. simple, condition, or tracking.

Event categories

Lowest severity, i.e. al eventswith aseverity greater than or equal to the specified severity.
Highest severity, i.e. al events with a severity less than or equal to the specified severity.
Process areas

Event sources

A list of valuesfor asingle criterion are logically ORed together (e.g. if two event categories are
specified, event notifications for both categories will be received). If multiple criteriaare specified,
they will belogically ANDed together, i.e. only those events satisfying all criteriawill be selected. An
exampleis specifying both lowest priority and highest priority will result in the selection of events
with prioritieslying between the two values.

For example, the following filter:

15

OPC Alarms and Events Version 1.01 06/02/99

Type = CONDI TI ON
Cat egory = PROCESS
LowSeverity = 600
Area = AREAl, AREA2

would result in the selection of condition-related events within the “Process” category in both AREA1
and AREA2 which are of high urgency (greater than or equal to 600).

An OPCEventSubscription has only onefilter.

2.6.4 Interfaces

OPCEventSubscriptions provide an interface to allow the OPC Client to specify the Filter. In addition,
they implement the standard DCOM Connection Point interfaces, to provide the mechanism for
notifying OPC Clients of event occurrences.

2.7 Condition State Synchronization

OPC Clients can obtain the current state of all conditions which are active, or which are inactive but
unacknowledged, by requesting a“refresh” from each active OPCEventSubscription object. The
server will respond by sending the appropriate eventsto the client, viathe event call back mechanism,
for al conditions selected by thefilter for each subscription. When invoking the client’s call back, the
server will indicate whether the invocation isfor arefresh or isan original notification. Refresh and
original event notifications will not be mixed inthe same call back invocation.

This design assumes that the client needs only the current state information for conditions, so only
condition-rel eated event notifications are refreshed. It should be noted that “refresh” is not ageneral
replay capability, since the server is not required to maintain an event history.

Refresh event notifications may be sent in an arbitrary order and may be out of sequence. Since
conditions may change state while the server isreplying to arefresh request, the refresh event
notification may no longer reflect the current condition state by the time the client receivesit.
Similarly, aclient may receive an original event notification after receiving arefresh event notification
for the same event. Clientswill need to comp are timestamps to ensure that they have the correct state
of the condition.

2.8 Error Handling

OPC Event Servers may report internal or source connection errors as standard events, which may be
simple events or condition-related events. Eventsfor server errors belong to the
OPC_SERVER_ERROR event category. The specific eventsincluded in this category are vendor
specific, but they should cover cases such as:

Internal buffer overflow
Event source communication problems
Client communication problems

In the case of loss of communication from an event source, the currently active conditions from that
source should have their quality attribute updated to signify the loss of communication. Thiscan be
accomplished by setting the quality to “Bad” with a substatus of “Comm Failure”. Thischangein
quality must result in event notificationsto all subscribers.

16

OPC Alarms and Events Version 1.01 06/02/99

3. Architectural Overview

3.1 Relationship to OPC Data Access Server

Any COM object which supports the |IOPCEventServer interfaceis an OPC Event Server. In many
cases, an OPC Data Access Server will also expose an OPCEventServer object and will fill both the
roles of data server and event server. However, there may be other situations where it is advantageous
to have a dedicated OPC Event Server, i.e. one which isnot also an OPC Data Access Server object.

3.2 Overview of Objects and Interfaces

3.2.1 General

This specification defines the following COM objects, which are briefly covered in the following
sections: OPCEventServer, OPCEventSubscription, and OPCEventAreaBrowser.

Figure 3-1 shows the how these objects are related.

OPC Event Server

OPC Event
Subscription

OPC Event
Area Browser

Figure 3-1 - Relationship of OPC Event Server Objects

17

OPC Alarms and Events Version 1.01 06/02/99

3.2.2 OPCEventServer Object

IUnknown

/ OPC Event Server

IOPCCommon _
Object
IOPCEventServer ?
IConnectionPointContainer IConnectionPoint
11D_10PCShutdown

o /

Figure 3-2 - OPC Event Server Object

Figure 3-2 isaview of an OPC Event Server and |1D_IOPCShutdown objects. These objectsare
created (or connected to) using the DCOM facilities CoCreatel nstance or CoCreatel nstanceEx. As
noted earlier, this may be an OPC (Data Access) Server object which also implementsthe
|OPCEventServer interface, or may be adistinct COM object which implements this interface but not
the data access interfaces.

The IOPCCommon interface is used to perform certain functions which are common to other OPC
servers, e.g. Data Access. Examplesof such common functions are the management of Localel Ds and
retrieval of error strings.

The IOPCEventServer interface is used to create OPC Event Subscription and OPC Event Area
Browser objects, query vendor-specific event categories and event parameters, and manage conditions.

The IConnectionPointContainer and | ConnectionPoint interfaces are the standard DCOM interfaces for
connectable objects, and are used to handle the callbacks for server notificationsto the client of
impending shutdown.

18

OPC Alarms and Events Version 1.01 06/02/99

3.2.3 OPCEventSubscription Object

IUnknown

O

IOPCEventSubscriptionMgt / OPC Event SUbSCription \
O— Object

IConnectionPointContainer ?

IConnectionPoint

11D_10PCEventSink
N /

Figure 3-3 - OPC Event Subscription Object

Figure 3-3 isaview of the OPCEventSubscription and 11D_IOPCEventSink objects, which are created
by the OPC Event Server when the client subscribesto events using the
| OPCEvent Server: : Creat eEvent Subscri pti on method.

The IOPCEventSubscriptionMgt interface is used to configure filters and other attributes for OPC
event reporting.

The I ConnectionPointContainer and | ConnectionPoint interfaces are the standard DCOM interfaces for
connectable objects, and are used to handl e the callbacks for event notifications.

3.2.4 OPCEventAreaBrowser Object (optional)

IUnknown

4 N\

IOPCEventAreaBrowser ()—— OPC Event A_\rea
Browser Object

AN /

Figure 3-4 - OPC Event Area Browser Object

Figure 3-4 isaview of the OPCEventAreaBrowser object which is created by the OPC Event Server
when the client invokesthe | OPCEvent Ser ver : : Cr eat eAr eaBr owser method.

19

OPC Alarms and Events Version 1.01 06/02/99

The IOPCEventAreaBrowser interface provides away for clientsto browse the process area
organization implemented by the server. The expectation is that events and conditions provided by the
server are organized into one or more process areas, and that the client can filter event subscriptions
according to specified process areas.

This object is optional, and may not be exposed by simple event servers.

20

OPC Alarms and Events Version 1.01 06/02/99

4. OPC Event Server Quick Reference

This section includes a quick reference for the methodsin the Custom Interface. Theseinterfaces, their
parameters, and behavior are defined in detail in section 5.

4.1 Custom Interface — Server Side
Note: thissection does not show additional standard COM interfaces, such as |lUnknown, which are
also supported by the event server.
OPCEventServer
IOPCCommon
|OPCEventServer
| ConnectionPointContainer

OPCEventAreaBrowser (optional)
| OPCEventAreaBrowser

OPCEventSubscription
| OPCEventSubscriptionM gt
| ConnectionPointContainer

21

OPC Alarms and Events Version 1.01 06/02/99

4.1.1 OPCEventServer Object

IOPCCommon

HRESULT SetLocalelD (dwLcid)

HRESULT GetLocalelD (pdwLcid)

HRESULT QueryAvailablel ocalel Ds (pdwCount, pdwLcid)

HRESULT GetErrorString (dwError, ppString)

HRESULT SetClientName (szName)

| OPCEventServer

HRESULT GetStatus (ppEventServerStatus)

HRESULT CreateEventSubscription (bActive, dwBufferTime, dwMaxSize,
hClientSubscription, riid, ppUnk, pdwRevisedBufferTime,
pdwRevisedM axSize)

HRESULT QueryAvailableFilters (pdwFilterMask)

HRESULT QueryEventCategories (dwEventType, pdwCount, ppdwEventCategories,
ppEventCategoryDescs)

HRESULT QueryConditionNames (dwEventCategory, pdwCount, ppszConditionNames)

HRESULT QuerySubConditionNames (szConditionName, pdwCount,
ppszSubConditionNames)

HRESULT QuerySourceConditions (szSource, pdwCount, ppszConditionNames)

HRESULT QueryEventAttributes (dwEventCategory, pdwCount, ppdwAttriDs,
ppszAttrDescs, ppvtAttrTypes)

HRESULT TranslateToltemlds (szSource, dwEventCategory, szConditionName,
szSubConditionName, dwCount, pdwAssocAttrIDs, ppszAttritemIDs,
ppszNodeNames, pCLSIDs) — See Notel

HRESULT GetConditionState (szSource, szConditionName, ppConditionState)

HRESULT EnableConditionByArea (dwNumAreas, pszAreas) — See Notel

HRESULT EnableConditionBySource (dwNumSources, pszSources) — See Notel

HRESULT DisableConditionByArea (dwNumAreas, pszAreas) — See Notel

HRESULT DisableConditionBySource (dwNumSources, pszSources) — See Notel

HRESULT AckCondition (dwCount, szAcknowledger| D, szComment, pszSource,
pszConditionName, pftActiveTime, pdwCookie, ppErrors)

HRESULT CreateAreaBrowser (riid, ppUnk) — See Notel

| OPCConnectionPointContainer
HRESULT EnumConnectionPoints (ppEnum)
HRESULT FindConnectionPoint (riid, ppCP)

OPC Alarms and Events Version 1.01 06/02/99

4.1.2 OPCEventAreaBrowser Object (optional)

| OPCEventAreaBrowser
HRESULT ChangeBrowsePosition (dwBrowseDirection, szString)
HRESULT BrowseOPCAreas (dwBrowseFilterType, szFilterCriteria, ppl EnumString)
HRESULT GetQualifiedAreaName (szAreaName, pszQualifiedAreaName)
HRESULT GetQualifiedSourceName (szSourceName, pszQualifiedSourceName)

4.1.3 OPCEventSubscription Object

| OPCEventSubscriptionM gt

HRESULT SetFilter (dwEventType, dwNumCategories, pdwEventCategories,
dwL owSeverity, dwHighSeverity, dwNumAreas, pszAreal.ist,
dwNumSources, pszSourceList) — See Note2

HRESULT GetFilter (pdwEventType, pdwNumCategories, ppdwEventCategories,
pdwL owSeverity, pdwHighSeverity, pdwNumAreas, ppszArealist,
pdwNumSources, ppszSourcelist)

HRESULT SelectReturnedAttributes (dwEventCategory, dwCount, dwAttributel Ds)
HRESULT GetReturnedAttributes (dwEventCategory, pdwCount, pdwAttributel Ds)
HRESULT Refresh (dwConnection)

HRESULT Cancel Refresh (dwConnection)

HRESULT GetState (pbActive, pdwBufferTime, pdwMaxSize, phClientSubscription)
HRESULT SetState (bActive, dwBufferTime, dwMaxSize, hClientSubscription,

pdwRevisedBufferTime, pdwRevisedMaxSize)
| OPCConnectionPointContainer

HRESULT EnumConnectionPoints (ppEnum)
HRESULT FindConnectionPoint (riid, ppCP)

Notel: These methods may not be supported by simple event servers, and may return
E NOTIMPL.

Note2: The functionality of this method may be restricted by simple event servers.

23

OPC Alarms and Events Version 1.01 06/02/99

4.2 Custom Interface — Client Side

|OPCEventSink

HRESULT OnEvent (hClientSubscription, bRefresh, bL astRefresh, dwCount, pEvents)
[OPCShutdown

HRESULT ShutdownRequest (szReason)

24

OPC Alarms and Events Version 1.01 06/02/99

5. OPC Event Server Custom Interfaces

5.1 Overview
The OPC Event Server Custom Interface objectsinclude the following:

OPCEventServer
OPCEventSubscription
OPCEventAreaBrowser

The interfaces and behaviors of these objects are described in detail in this chapter. Developers of
OPC Event servers are required to implement the OPC objects by providing the functionality defined
in this chapter.

This chapter also references and defines expected behavior for the standard OLE interfaces that an
OPC Event server and an OPC Event client are required to implement to build and deliver OPC
compliant components.

In addition, standard and custom enumerator objects are created and interfaces to these objects are
returned in several cases. In general the enumerator objects and interfaces are described only briefly
since their behavior iswell defined by OLE.

Note that for proper operation, enumerators are created and returned from methods on objects rather
than through Querylnterface. The enumerator defined in this specificationis:

Server process area enumerator - (see |OPCEventAreaBrowser::BrowseOPCAreas)

Additional enumerators may be created when dealing with connection points (see the
| OPCEventSubscriptionMgt interface). However, they are created using standard COM interfaces
defined for connectable objects.

5.2 General Information

Owner ship of memory
Per the COM specification, clients must free all memory associated with ‘out’ or ‘in/out’ parameters.
Thisincludes memory that is pointed to by elements within any structures. Thisisvery important for
client writers to understand as problems will result in troublesome and difficult to locate memory
leaks. SeethelDL fileto determine which parameters are out parameters. The recommended
approach isfor the client to create a subroutine to be used for properly freeing each type of structure.

Standard I nterfaces

Note that (per the COM specification) all methods must be implemented on each interface. Methods
which are not required can return E_NOTIMPL or occasionally S OK depending on the situation.

Null Stringsand Null Pointers

Both of these terms are used below. They are NOT the samething. A NULL Pointer isaninvalid
pointer (0) which will cause an exceptionif used. A NULL Stringisavalid (non zero) pointertoa 1
character array where that character isaNULL (i.e. 0).

Note that COM does not allow NULL to be passed for Out or In/Out parameters.
Returned Arrays

Y ou will note the syntax “size_is(,dwCount)” inthe IDL used in combination with pointers to

pointers. Thisindicates that the returned item is a pointer to an actual array of the indicated type rather
than a pointer to an array of pointersto items of the indicated type. Thissimplifies marshaling aswell
as creation and access of the data by the server and client.

25

OPC Alarms and Events Version 1.01 06/02/99

5.3 OPCEventServer Object

5.3.1 Overview

The OPCEventServer object isthe primary object that an OPC Event Server exposes. The interfaces
that this object providesinclude:

IUnknown
1OPCCommon
|OPCEventServer

| ConnectionPointContai ner

5.3.2 IUnknown

The server must provide a standard |Unknown Interface. Sincethisisawell defined interfaceit is not
discussed in detail. Seethe OLE Programmer’ s reference for additional information. Thisinterface
must be provided, and all functionsimplemented as required by Microsoft..

5.3.3 IOPCCommon

Other OPC Servers such as Data Access share thisinterface design. It provides the ability to set and
query aLocalel D which would be in effect for the particular client/server session. That is, aswith a
Group definition, the actions of one client do not affect any other clients.

A quick reference for thisinterface is provided below. A more detailed discussion can be found in the
OPC Common specification.

HRESULT SetLocalelD (
[in] LCID dwLcid

)

HRESULT GetLocaelD (
[out] LCID *pdwLcid
);

HRESULT QueryAvailableLocalel Ds (
[out] DWORD * pdwCount,
[out, sizeis(dwCount)] LCID *pdwLcid

)

HRESULT GetErrorString(

[in] HRESULT dwError,
[out, string] LPWSTR *ppString
);

HRESULT SetClientName (
[in, string] LPCWSTR szName

);

26

OPC Alarms and Events Version 1.01 06/02/99

5.3.4 IOPCEventServer

Thisisthe main interface to the alarm and event capabilities of an OPC Event Server. Thisinterfaceis
used to create OPC Event Subscription objects, to create OPC Event Area Browser objects, to query
event categories and associated event parameters, to manage conditions, and to perform miscellaneous
operations such as getting the status of the event server.

27

OPC Alarms and Events Version 1.01 06/02/99

5.3.4.1 |IOPCEventServer::GetStatus

HRESULT GetStatus (
[out] OPCEVENTSERVERSTATUS ** ppEventServerStatus

)

Description
Returns current status information for the OPC Event server.
Parameters Description
ppEventServer Status Pointer to where the OPCEVENTSERVERSTATUS
structure pointer should be returned. The server allocates the
structure.
Return Codes
Return Code Description
E_FAIL The operation failed.
E_OUTOFMEMORY Not enough memory
E_INVALIDARG An argument to the function wasinvalid.
S OK The operation succeeded.
Comments

The OPCEVENTSERVERSTATUS s described below.
Client must free the structure as well as the VVendorInfo string within the structure.

Periodic callsto GetStatus would be agood way for the client to determine that the server is still
connected and available.

5.3.4.1.1 OPCEVENTSERVERSTATUS

typedef struct {
FILETIME ftStartTime;
FILETIME ftCurrentTime;
FILETIME ftLastUpdateTime;
OPCEVENTSERVERSTATE dwServerState;
WORD wMagjorVersion;
WORD wMinorVersion;
WORD wBUuildNumber;

[string] LPWSTR szVendorinfo;
} OPCEVENTSERVERSTATUS;

This structureis used to communicate the status of the server to the client. Thisinformation is provided by
the server in the IOPCEventServer::GetStatus() call.

28

OPC Alarms and Events Version 1.01 06/02/99

Member Description

ftStartTime Time (UTC) the event server was started. Thisis constant
for the server instance and is not reset when the server
changes states. Each instance of a server should keep the
time when the process started.

ftCurrentTime The current time (UTC) as known by the server.
ftLastUpdateTime Thetime (UTC) the server sent an event notification (via
the IOPCEventSink::OnEvent) to thisclient. Thisvaueis
maintained on an instance basis.

dwServerState The current status of the server. Refer to OPC Event
Server Statevaluesbeow.

wMagjorVersion The major version of the server software

wMinorVersion The minor version of the server software

wBuildNumber The ‘build number’ of the server software

szVendorinfo Vendor specific string providing additional information

about the server. It isrecommended that this mention the
name of the company and the type of device(s) supported.

OPCEVENTSERVERSTATE Values Description

OPC_STATUS RUNNING The server isrunning normally. Thisisthe usual
state for aserver

OPC_STATUS FAILED A vendor specific fatal error has occurred within

the server. The server isno longer functioning.
Therecovery procedure from this situation is
vendor specific. An error code of E_FAIL should
generally be returned from any other server
method.

OPC_STATUS NOCONFIG The server is running but has no configuration
information loaded and thus cannot function
normally. Note this state implies that the server
needs configuration information in order to
function. Serverswhich do not require
configuration information should not return this
state.

OPC_STATUS SUSPENDED The server has been temporarily suspended via
some vendor specific method and is not getting or
sending data.

OPC_STATUS TEST The server isin Test Mode. Events may be
generated in asimulation mode, thisis server
specific.

29

OPC Alarms and Events Version 1.01 06/02/99

5.3.4.2 IOPCEventServer:: CreateEventSubscription

HRESULT CreateEventSubscription(
[in] BOOL bActive,
[in] DWORD dwBufferTime,
[in] DWORD dwMaxSize,
[in] OPCHANDLE hClientSubscription,
[in] REFIID riid,
[out, iid_is(riid)] LPUNKNOWN * ppUnk
[out] DWORD * pdwRevisedBufferTime,
[out] DWORD * pdwRevisedMaxSize,

);
Description
Add an Event Subscription object to an Event Server.

Create an OPCEventSubcription object on behalf of this client and return an interface to the Client.
This object will support at least IlUnknown, |OPCEventSubscriptionM gt and

| ConnectionPointContainer. The client can manage the state of this interface including the filter and
can create subscriptionsto it via ConnectionPoints as described later.

The Event Subscription Object uses conventional reference counting and thus will be deleted with all
interfacesto it are released.

Parameters Description

bActive FALSE if the Event Subscription isto be created inactive.
TRUE if the Event Subscriptionsisto be created as active.

If the subscription isinactive, then the server will not send
event notificationsto the client based on the subscription,
and has no responsibility to buffer or maintain the event
notifications. Thus event notifications may be lost.
dwBufferTime The requested buffer time. The buffer timeisin milliseconds
and tellsthe server how often to send event notifications.
Thisisaminimum time - do not send event notifications any
faster that this UNLESS dwMaxSizeis greater than0, in
which case the server will send an event notification sooner
to obey the dwMaxSize parameter. A value of O for
dwBufferTime means that the server should send event
notifications as soon as it gets them. This parameter along
with the dwMaxSize parameter are used to improve
communications efficiency between client and server. This
parameter is arecommendation from the client, and the
server isalowed to ignore the parameter. The server will
return the buffer timeit isactually providing in
pdwRevisedBufferTime.

OPC Alarms and Events

Version 1.01

06/02/99

dwMaxSize

The requested maximum number of eventsthat will be sent
in asingle IOPCEventSink::OnEvent callback. A value of 0
means that thereis no limit to the number of eventsthat will
be sent in asingle callback.. Notethat avalue of
dwMaxSize greater than 0, may cause the server to call the
OnEvent callback more frequently than specified in the
dwBufferTime parameter when alarge number of events are
being generated in order to limit the number of eventsto the
dwMaxSize. Thisparameter isarecommendation from the
client and the server isallowed to ignore this parameter. The
server will return the actual number of eventsit is actually
providing in pdwRevisedM axSize.

hClientSubscription

Client provided handle for this event subscription. This
handleis passed back in the OnEvent callback to identify the
subscription object that is calling back. The client should
assign a unique value of hClientSubscription for each
subscription object in order to detect the source of the
callback information.

riid Thetype of interface desired (e.g.
I1D_1OPCEventSubscriptionMgt)

ppUnk Where to store the returned interface pointer. NULL is
returned for any FAILED HRESULT.

pdwRevisedBufferTime The buffer time that the server is actually providing, which
may differ from dwBufferTime.

pdwRevisedMaxSize The maximum number of events that the server will actually
be sending in asingle IOPCEventSink::OnEvent callback,
which may differ from dwMaxSize.

Return Codes
Return Code Description
E FAIL The operation failed.

E OUTOFMEMORY

Not enough memory

E_INVALIDARG

Bad argument was passed.

OPC_S INVALIDBUFFERTIME The buffer time parameter wasinvalid .

OPC_S INVALIDMAXSIZE

The max size parameter wasinvalid.

S OK

The operation succeeded.

Comments

31

OPC Alarms and Events

Version 1.01

5.3.4.3 IOPCEventServer::QueryAvailableFilters
HRESULT QueryAvailableFilters(

);

Description

The QueryAvailableFilters method gives clients ameans of finding out exactly which filter criteriaare
supported by agiven event server. This method would typically be invoked before configuring the

[out] DWORD * pdwFilterMask,

filter on an OPCEventSubscription object.

The client passes a pointer to where information is to be saved.

Parameters Description
pdwFilterMask Thisisapointer to abit mask which indicates which types of
filtering are supported by the server. See below for mask
values.
HRESULT Return Codes

Return Code Description

S OK The function was successful.

E_FAIL The function was unsuccessful.

Filter Mask Values

Filter Mask Item Value | Description

OPC_FILTER BY_EVENT 1 | The server supportsfiltering by event
type.

OPC_FILTER BY_CATEGORY 2 | The server supportsfiltering by event
categories.

OPC_FILTER BY_SEVERITY 4| The server supports filtering by severity
levels.

OPC_FILTER_BY_AREA 8 | The server supports filtering by process
area.

OPC FILTER BY_SOURCE 16 | The server supports filtering by event
sources.

Comments

32

OPC Alarms and Events Version 1.01 06/02/99

5.3.4.4 I0PCEventServer::QueryEventCategories

HRESULT QueryEventCategories(

[in] DWORD dwEventType,

[out] DWORD* pdwCount,

[out, size_is(* pdwCount)] DWORD** ppdwEventCategories,
[out, size is(,* pdwCount)] LPWSTR** ppEventCategoryDescs

);
Description

The QueryEventCategories method gives clients ameans of finding out the specific categories of
events supported by agiven server. This method would typically be invoked prior to specifying an
event filter. Serverswill be able to define their own custom event categories, but alist of
recommended categoriesis provided in Appendix B.

Parameters Description

dwEventType A DWORD bit mask specifying which event types are of
interest; OPC_SIMPLE_EVENT,

OPC_CONDITION_EVENT, OPC_TRACKING_EVENT,
OPC_ALL_EVENTS, Thesetypes can be OR’ ed together to
select multiple event types. A valueof Oisan error and
causes E_INVALIDARG to bereturned.

pdwCount The number of event categories (size of the
EventCategory|D, and EventCategoryDesc arrays) returned
by the function.

ppdwEventCategories Array of DWORD codes for the vendor-specific event
categories implemented by the server. These IDs can be
used in the event subscription interface for specifying filters.
ppEventCategoryDescs Array of stringsfor the text names or descriptions for each of
the event category IDs. Thisarray correspondsto the
EventCategories array.

Return Codes
Return Code Description
E FAIL The operation failed.
E INVALIDARG A bad parameter was passed.
E OUTOFMEMORY Not enough memory
S OK The operation succeeded.

Recommended Event Categories

Server implementers are encouraged to implement the event categories described in Appendix B, in
order to provide alevel of consistency among event server implementations.

Comments

The number of event categories returned will vary depending on the sophistication of the server, but is
expected to be less than 30 for most servers, making this interface more appropriate than a custom
enumerator.

OPC Alarms and Events Version 1.01 06/02/99

5.3.4.5 IOPCEventServer::QueryConditionNames

HRESULT QueryConditionNames{

[in] DWORD dwEventCategory,

[out] DWORD* pdwCount,
[out, size_is(,* pdwCount)] LPWSTR** ppszConditionNames
);

Description

The QueryConditionNames method gives clients a means of finding out the specific condition names
which the event server supports for the specified event category. This method would typically be
invoked prior to specifying an event filter. Condition names are server specific.

Parameters Description

dwEventCategory A DWORD event category code, as returned by the
QueryEventCategories method. Only the names of
conditions within this event category are returned.
pdwCount The number of condition names being returned.
ppszConditionNames Array of strings containing the condition names for the
specified event category.

Return Codes
Return Code Description
E FAIL The operation failed.
E INVALIDARG A bad parameter was passed.
E OUTOFMEMORY Not enough memory
S OK The operation succeeded.
Comments

The number of condition names returned will vary depending on the sophistication of the server, but is
expected to be less than 30 for most servers, making thisinterface more appropriate than a custom
enumerator.

OPC Alarms and Events Version 1.01 06/02/99

5.3.4.6 IOPCEventServer::QuerySubConditionNames

HRESULT QuerySubConditionNames{

[in] LPWSTR szConditionName,

[out] DWORD* pdwCount,
[out, size is(,* pdwCount)] LPWSTR** ppszSubConditionNames
);

Description

The QuerySubConditionNames method gives clients a means of finding out the specific sub-condition
names which are associated with the specified condition name. Condition names are server specific.

Parameters Description

szConditionName A condition name, as returned by the QueryConditionNames
method. Only the names of sub-conditions associated with
this condition are returned.

pdwCount The number of sub-condition names being returned.
ppszSubConditionNames | Array of strings containing the sub-condition names
associated with the specified condition.

Return Codes
Return Code Description
E FAIL The operation failed.
E INVALIDARG A bad parameter was passed.
E OUTOFMEMORY Not enough memory
S OK The operation succeeded.
Comments

The number of sub-condition names returned will vary depending on the sophistication of the server,
but is expected to be less than 10 for most servers, making thisinterface more appropriate than a

custom enumerator.

OPC Alarms and Events Version 1.01 06/02/99

5.3.4.7 I0OPCEventServer::QuerySourceConditions

HRESULT QuerySourceConditions{

[in] LPWSTR szSource,

[out] DWORD* pdwCount,
[out, size is(,* pdwCount)] LPWSTR** ppszConditionNames
);

Description

The QuerySourceConditions method gives clients ameans of finding out the specific condition names
associated with the specified source (e.g. FIC101).. Condition names are server specific.

Parameters Description

szSource A source name, as returned by the
| OPCEventAreaBrower::GetQualifiedSourceName method.
Only the names of conditions associated with this source are

returned.
pdwCount The number of condition names being returned.
ppszConditionNames Array of strings containing the condition names for the

specified source.

Return Codes
Return Code Description
E FAIL The operation failed.
E INVALIDARG A bad parameter was passed.
E OUTOFMEMORY Not enough memory
S OK The operation succeeded.
Comments

The number of condition names returned will vary depending on the sophistication of the server, but is
expected to be less than 10 for most servers, making thisinterface more appropriate than a custom
enumerator.

OPC Alarms and Events Version 1.01 06/02/99

5.3.4.8 IOPCEventServer::QueryEventAttributes

HRESULT QueryEventAttributes(
[in] DWORD dwEventCategory,
[out] DWORD* pdwCount,
[out, size is(,* pdwCount)] DWORD** ppdwALttriDs,
[out, size is(,* pdwCount)] LPWSTR** ppszAttrDescs
[out, size is(,* pdwCount)] VARTY PE** ppvtAttrTypes

);
Description

Using the EventCategories returned by the QueryEventCategories method, client application can
invoke the QueryEventAttributes method to get information about the vendor-specific attributes the
server can provide as part of an event notification for an event within the specified event category.
Simple servers may not support any vendor-specific attributes for some or even all EventCategories.

Attributes of event notifications are described in Section 2.5.2. Some possible vendor-specific
attributes areincluded in Appendix C.

Parameters Description

dwEventCategory One of the Event Category codes returned from the
QueryEventCategories function.

pdwCount The number of event attributes (size of the AttrID, and
AttrDescs, and AttrTypes arrays) returned by the function.

ppdwAttriDs Array of DWORD codes for vendor-specific event attributes

associated with the event category and available from the
server. These attribute IDs can be used in the event
subscription interface to specify the information to be
returned with an event notification.

ppszAttrDescs Array of stringsfor the text names or descriptions for each of
the event attribute IDs. Thisarray correspondsto the
AttrIDs array.
ppVvtAttrTypes Array of VARTY PESidentifying the datatype of each of
the event attributes. Thisarray corresponds to the AttriDs
array.
Return Codes
Return Code Description
E FAIL The operation failed.
E INVALIDARG A bad parameter was passed.
E OUTOFMEMORY Not enough memory
S OK The operation succeeded.
Comments

All events of aparticular event category have the potential of supporting the same attribute
information. For event categories, where different instances of that category in the same server have
different attributes, the server should return the union of all attributes and the client must allow for
some attributes in event notificationsto be null.

37

OPC Alarms and Events Version 1.01 06/02/99

5.3.4.9 IOPCEventServer::TranslateToltemIDs

HRESULT TrandateTolteml Ds(
[in] LPWSTR szSource,
[in] DWORD dwEventCategory
[in] LPWSTR szConditionName,
[in] LPWSTR szSubconditionName,
[in] DWORD dwCount,
[in, size_is(dwCount)] DWORD* pdwAssocAttrIDs,
[out, size is(,dwCount)] LPWSTR** ppszAttritemIDs,
[out, size is(,dwCount)] LPWSTR** ppszNodeNames,
[out, size is(,dwCount)] CLSID** ppCLSIDs

);
Description

Many OPC Alarm & Event servers are associated with OPC Data Access servers. Since these servers
may provide a Data Access interface to some or all of the attributes associated with events,
applications need the ability to determine the specific ItemlID for one or more specific attribute 1D
codes given an associated source ID in order to be able to access the attribute viathe Data Access
interface. TranglateToltemlDs performsthe required translation. This function will be useful for the
case where the client wishes to use the OPC Data Access interface to subscribe to real-time data
associated with agiven event or alarm.

Given an event source, and an array of associated attribute ID codes, return an array of theitem ID
strings corresponding to each attribute ID. The event source, along with the associated attribute IDs
arereturned as part of the |IOPCEventSink::OnEvent callback mechanism. Attribute ID codes and
descriptions for a given event category can also be queried viathe
|OPCEventServer::QueryEventAttributes function. The server must return aNULL string for those
attribute I Ds that do not have a corresponding item ID.

Parameters Description

szSource An event source for which to return theitem IDs
corresponding to each of an array of attribute IDsif they
exist. (From OnEvent or from |OPCEventAreaBrowser)
dwEventCategory A DWORD event category code indicating the category of
eventsfor which item IDs areto bereturned. (From
OnEvent or from QueryEventCategories)
szConditionName The name of a condition within the event category for which
item IDs are to bereturned. (From OnEvent or from
QueryConditionNames)

szSubconditionName The name of a sub-condition within a multi-state condition.
(From OnEvent or from QuerySubconditionNames) This
should beaNULL string for a single state condition.

dwCount The number of event attribute | Ds (size of the AssocAttrIDs
array) passed into the function.
ppdwA ssocAttriDs Array of DWORD IDs of vendor-specific event attributes

associated with the generator ID and available from the
server for which to return ItemIDs. Note: these attribute IDs
arereturned by the IOPCEventSink::OnEvent callback, and
are selected viathe

| OPCEventSubscriptionMgt:: Sel ectReturnedAttributes
method.

OPC Alarms and Events

Version 1.01

06/02/99

ppszAttritemIDs

Array of item ID strings corresponding to each event
attribute | D associated with the generator ID. Thisarray is
the same length as the AssocAttrIDs array passed into the
function. A Null string isreturned if noitem ID isavailable
for this attribute.

ppszNodeNames Array of network node names of the associated OPC Data
Access Servers. A Null string isreturned if the OPC Data
Access Server is running on the local node.
ppCLSIDs Array of classIDsfor the associated OPC Data Access
Servers.
Return Codes
Return Code Description
E_FAIL The operation failed.
E NOTIMPL This capability not implemented by this server.
E INVALIDARG A bad parameter was passed.
E OUTOFMEMORY Not enough memory
S OK The operation succeeded.
Comments

OPC Alarms and Events Version 1.01 06/02/99

5.3.4.10 IOPCEventServer::GetConditionState

HRESULT GetConditionState (

[in] LPWSTR szSource,

[in] LPWSTR szConditionName,

[in] DWORD dwNumEventALttrs,

[in, size_is(dwNumEventAttrs)] DWORD* pdwAdttributel Ds,
[out] OPCCONDITIONSTATE ** ppConditionState

);
Description

Returns the current state information for the condition instance corresponding to the szSource and
szConditionName. The OPCCONDITIONSTATE structure is defined below. See section 2.4 for a
discussion of conditions and their states.

Parameters Description

szSource A source name, as returned by the

| OPCEventAreaBrower::GetQualifiedSourceName
method. The state of the condition instance associated
with this source is returned.

szConditionName A condition name, as returned by the
QueryConditionNames method. The state of this
condition is returned.

dwNumEventAttrs The requested number of event attributes to be returned in the
OPCCONDITIONSTATE structure. Can be zero if no
attributes are desired

pdwAttributel Ds The array of Attribute I Ds indicating which event attributes
should be returned in the OPCCONDITIONSTATE
structure.

ppConditionState Pointer to where the OPCCONDITIONSTATE structure
pointer should be returned. The server allocates the
structure.

OPC Alarms and Events Version 1.01 06/02/99
Return Codes
Return Code Description
E FAIL The operation failed.
E OUTOFMEMORY Not enough memory
E_INVALIDARG An argument to the function wasinvalid.
E NOTIMPL This method is not implemented by this server.
OPC_E NOINFO Although this server implements this method and the
specified condition nameisvalid, noinformationis
currently available for this condition. Sucha
situation may arise for servers which maintain
condition state information only for active or
unacknowledged conditions.
S OK The operation succeeded.
Comments

Client must free the structure.

Some servers may not maintain sufficient condition state information to fully implement this method.
In this case, the server should return E_NOTIMPL. If aserver chooses to implement this method, it
must return valid information for every member of OPCCONDITIONSTATE

5.3.4.10.1 OPCCONDITIONSTATE

typedef struct {

WORD wState;

LPWSTR szActiveSubCondition;
LPWSTR szASCDefinition;
DWORD dwA SCSeverity;
LPWSTR szASCDescription;
WORD wQuadlity;

FILETIME ftLastAckTime;
FILETIME ftSubCondLastActive;
FILETIME ftCondLastActive;
FILETIME ftCondLastlnactive;
LPWSTR szAcknowledgerID;
LPWSTR szComment;

DWORD dwNumSCs;

[size_is (dWNumSCs)] LPWSTR * pszSCNames;
[size_is (dwNumSCs)] LPWSTR * pszSCDefinitions;
[size_is (dwNumSCs)] DWORD * pdwSCSeverities;
[size_is (dwNumSCs)] LPWSTR * pszSCDescriptions;

DWORD

} OPCCONDITIONSTATE;

dwNumEventAttrs;
[size_is(dwNumEventAttrs)] VARIANT*
[size_is(dwNumEventAttrs)] HRESULT*

pEventAttributes;
pErrors;

Member

Description

wState

A WORD bit mask of three bits specifying the new
state of the condition: OPC_CONDITION_ACTIVE,
OPC_CONDITION_ENABLED,

a4

OPC Alarms and Events

Version 1.01

06/02/99

OPC_CONDITION_ACKED.

szActiveSubCondition

The name of the currently active sub-condition, for
multi-state conditions which are active. For asingle-
state condition, this contains the condition name.

For inactive conditions, thisvalueis NULL.

szA SCD¥efinition

An expression which defines the sub-state represented
by the szActiveSubCondition, for multi-state
conditions. For asingle state condition, the expression
defines the state represented by the condition.

For inactive conditions, thisvalueis NULL.

dwA SCSeverity

The severity of any event notification generated on
behalf of the szA ctiveSubCondition (0..1000). See
section 2.4.3.2.

For inactive conditions, thisvalueis 0.

szASCDescription

Thetext string to be included in any event notification
generated on behalf of the szA ctiveSubCondition.

For inactive conditions, thisvalueis NULL.

wQuality

Quality associated with the condition state. See
Section 2.4.2.1. Values are as defined for the OPC
Quality Flagsin the OPC Data Access Server
specification.

ftLastAckTime

Thetime of the most recent acknowledgment of this
condition (of any sub-condition).

Contains 0 if the condition has never been
acknowledged.

ftSubCondL astActive

Time of the most recent transition into
szActiveSubCondition. Thisisthetime value which
must be specified when acknowledging the condition.

Contains 0 if the condition has never been active.

ftCondLastActive

Time of the most recent transition into the condition.
There may be transitions among the sub-conditions
which are more recent.

Contains 0 if the condition has never been active.

ftCondL astl nactive

Time of the most recent transition out of this condition.

Contains 0 if the condition has never been active, or if
itiscurrently activefor thefirst time and has never
been exited.

szAcknowledgerlD

Thisisthe ID of the client who last acknowledged this
condition.

Contains NULL if the condition has never been
acknowledged.

szComment The comment string passed in by the client who last
acknowledged this condition.
Contains NULL if the condition has never been
acknowledged.

dwNumSCs The number of sub-conditions defined for this

condition. For multi-state conditions, this value will be

V)

OPC Alarms and Events

Version 1.01

06/02/99

greater than one. For single-state conditions, thisvalue
will be 1.

pszSCNames

Pointer to an array of sub-condition names defined for
this condition. For single-state conditions, the array
will contain one element, the value of which isthe
condition name (see Section 2.4.3).

pszSCDefinitions

Pointer to an array of sub-condition definitions (see
Section 2.4.3).

pdwSCSeverities

Pointer to an array of sub-condition severities (see
Section 2.4.3).

pszSCDefinitions

Pointer to an array of sub-condition definitions (see
Section 2.4.3).

dwNumEventAttrs

The length of the arrays pEventAttributes and
pErrors. Must be equal todwNumEventAttrs passed
into function GetConditionState().

pEventAttributes

Pointer to an array of vendor specific attributes
associated with that latest event notification for this
condition. The order of the items returned matches the
order that was specified by pdwAttributel Ds. If a
server cannot provide reasonable data for an attribute,
the returned VARIANT should besettoVT_EMPTY.

pErrors Pointer to an array of HRESULT values for each
requested attribute 1D specified by pdwAttributel Ds.
Serversshould return S_OK if the Attribute ID isvalid
or E_FAIL if not.

State Values

State Value | Description

OPC_CONDITION_ACTIVE 1| The condition has become active.

OPC _CONDITION_ENABLED 2 | The condition has been enabled.

OPC_CONDITION_ACKED 4 | The condition has been

acknowledged.

OPC Alarms and Events Version 1.01 06/02/99

5.3.4.11 IOPCEventServer::EnableConditionByArea

HRESULT EnableConditionByArea(

[in] DWORD dwNumAreas,
[in, size_is(dwNumAreas)] LPWSTR* pszAreas
);

Description

Places all conditions for all sources within the specified process areas into the enabled state.
Therefore, the server will now generate condition-related events for these conditions.

The effect of this method is global within the scope of the event server. Therefore, if the server is
supporting multiple clients, the conditions are enabled for al clients, and they will begin receiving the
associated condition-related events.

Parameters Description

dwNumAreas The number of process areas for which conditions are to be
enabled.

pszAreas An array of areanames, as returned by
|OPCEventAreaBrowser::GetQualifiedAreaName.

Return Codes
Return Code Description
E_FAIL The operation failed.
E INVALIDARG One or more of the specified argumentsis not valid.
E NOTIMPL The server does not support this method.
S OK The operation succeeded.
Comments

Because of the global effect of this method, some event server implementers may choose not to
implement it. In this case, the server should retur E_NOTIMPL.

A condition may be associated with multiple sources (see Section 2.4). These sources may be
distributed among multiple areas. Enabling the conditionsin one area does not change the
enabled/disabled state of conditions of the same name, which are associated with sourcesin other
areas. For example, the“LevelAlarm” condition may be enabled for sourcesin “Areal” and disabled
for sourcesin “Area2”.

OPC Alarms and Events Version 1.01 06/02/99

5.3.4.12 IOPCEventServer::EnableConditionBySource

HRESULT EnableConditionBySource(
[in] DWORD dwNumSources,
[in, size_is(dwNumSources)] LPWSTR* pszSources

);
Description

Places all conditions for the specified event sources into the enabled state. Therefore, the server will
now generate condition-related events for these conditions.

The effect of this method is global within the scope of the event server. Therefore, if the server is
supporting multiple clients, the conditions are enabled for al clients, and they will begin receiving the
associated condition-related events.

Parameters Description

dwNumSources The number of event sources for which conditions are to be
enabled.

pszSources An array of source names, as returned by
|OPCEventAreaBrowser::GetQualifiedSourceName

Return Codes
Return Code Description
E_FAIL The operation failed.
E INVALIDARG One or more of the specified argumentsis not valid.
E NOTIMPL The server does not support this method.
S OK The operation succeeded.
Comments

Because of the global effect of this method, some event server implementers may choose not to
implement it. In this case, the server should return E_NOTIMPL.

A condition may be associated with multiple sources (see Section 2.4). Enabling conditions associated
with one source does not change the enabled/disabled state of conditions of the same name, which are
associated with other sources. For example, the“Level Alarm” condition may be enabled for “ A100”
and disabled for “FIC101".

OPC Alarms and Events Version 1.01 06/02/99

5.3.4.13 IOPCEventServer::DisableConditionByArea

HRESULT DisableConditionByArea(

[in] DWORD dwNumAreas,
[in, size_is(dwNumAreas)] LPWSTR* pszAreas
);

Description

Places all conditions for all sources within the specified process areas into the disabled state.
Therefore, the server will now cease generating condition-rel ated events for these conditions.

The effect of this method is global within the scope of the event server. Therefore, if the server is
supporting multiple clients, the conditions are disabled for all clients, and they will stop receiving the
associated condition-related events.

Parameters Description

dwNumAreas The nunber of process areas for which conditions are to be
disabled.

pszAreas An array of areanames, as returned by
|OPCEventAreaBrowser::GetQualifiedAreaName

Return Codes
Return Code Description
E_FAIL The operation failed.
E INVALIDARG One or more of the specified argumentsis not valid.
E NOTIMPL The server does not support this method.
S OK The operation succeeded.
Comments

Because of the global effect of this method, some event server implementers may choose not to
implement it. In this case, the server should return E_NOTIMPL.

A condition may be associated with multiple sources (see Section 2.4). These sources may be
distributed among multiple areas. Disabling the conditionsin one area does not change the
enabled/disabled state of conditions of the same name, which are associated with sourcesin other
areas. For example, the“LevelAlarm” condition may be enabled for sourcesin “Areal” and disabled
for sourcesin “Area2”.

OPC Alarms and Events Version 1.01 06/02/99

5.3.4.14 IOPCEventServer::DisableConditionBySource

HRESULT DisableConditionBySource(
[in] DWORD dwNumSources,
[in, size_is(dwNumSources)] LPWSTR* pszSources

);
Description

Places all conditions for the specified event sources into the disabled state. Therefore, the server will
no longer generate condition-related events for these conditions.

The effect of this method is global within the scope of the event server. Therefore, if the server is
supporting multiple clients, the conditions are disabled for all clients, and they will stop receiving the
associated condition-related events.

Parameters Description

dwNumSources The number of event sources for which conditions are to be
disabled.

pszSources An array of source names, as returned by
|OPCEventAreaBrowser::GetQualifiedSourceName

Return Codes
Return Code Description
E_FAIL The operation failed.
E INVALIDARG One or more of the specified argumentsis not valid.
E NOTIMPL The server does not support this method.
S OK The operation succeeded.
Comments

Because of the global effect of this method, some event server implementers may choose not to
implement it. In thiscase, the server should return E_NOTIMPL.

A condition may be associated with multiple sources (see Section 2.4). Disabling conditions
associated with one source does not change the enabl ed/disabled state of conditions of the same name,
which are associated with other sources. For example, the “LevelAlarm” condition may be enabled for
“A100" and disabled for “FIC101".

47

OPC Alarms and Events Version 1.01

06/02/99

5.3.4.15 |IOPCEventServer::AckCondition

HRESULT AckCondition(
[in] DWORD dwCount
[in, string] LPWSTR szAcknowledgerID,
[in, string] LPWSTR szComment,
[in, size_is(dwCount)] LPWSTR* pszSource,
[in, size_is(dwCount)] LPWSTR* pszConditionName,
[in, size_is(dwCount)] FILETIME* pftActiveTime,
[in, size_is(dwCount)] DWORD* pdwCookie,
[out, size_is(,dwCount)] HRESULT **ppErrors

);

Description

The client uses the AckCondition method to acknowledge one or more conditionsin the Event Server.
The client receives event notifications from conditions via the |OPCEventSink::OnEvent callback.

This AckCondition method specifically acknowledges the condition becoming active or transitioning
into adifferent sub-condition (and no other state transition of the condition). One or more conditions
belong to a specific event source — the source of the event notification. For each condition-related
event notification, the corresponding Source, Condition Name, Active Time and Cookie isreceived by
the client as part of the OnEvent callback parameters.

Parameters

Description

dwCount

The number of acknowledgments passed with this function.

szAcknowledgerID

A string passed in by the client, identifying who is
acknowledging the conditions. Thisis an attribute
(AcknowledgerI D) of the condition that identifies who
acknowledged the condition. Thisisjust astring generated
by theclient. Thisisalso alsoincluded asthe ActorID inthe
acknowledgment event notification sent to all subscribing
clients. A NULL stringisnot allowed, sinceaNULL
Acknowledger|D indicates that the event was automatically
acknowledged by the server.

szComment Comment string passed in by the client associated with
acknowledging the conditions. A NULL string indicating no
comment is allowed.

pszSource Array of event source strings identifying the source (or

owner) of each condition that is being acknowledged, e.g.
FIC101. Sources are passed to the client in the szSource
member of the ONEVENTSTRUCT by the

| OPCEventSink::OnEvent callback.

pszConditionName

Array of Condition Name strings identifying each condition
that is being acknowledged. Condition Names are unique
within the scope of the event server. Examples of Condition
Names might be “LevelAlarm” or “Deviation”. Condition
Names are passed to the client in the szConditionName
member of the ONEVENTSTRUCT by the

| OPCEventSink::OnEvent callback.

OPC Alarms and Events

Version 1.01

06/02/99

pftActiveTime

Array of active times corresponding to each Source and
ConditionName pair. This parameter uniquely identifiesa
specific transition of the condition to the active state or into a
different sub-condition and is the same as the

SubCondL astActive condition attribute. Active Times are
passed to the client in the ftActiveTime member of the
ONEVENTSTRUCT by the IOPCEventSink::OnEvent
callback. If the condition has become active again or
transitioned into a different sub-condition at a later time, this
acknowledgment will be ignored.

pdwCookie

Array of server supplied “cookies’ corresponding to each
Source and Condition Name pair, that in addition to the
Active Time, uniquely identifies a specific event
notification. Cookies are passed to the client inthe
dwCookie member of the ONEVENTSTRUCT by the
|OPCEventSink::OnEvent callback. Theclientis
responsible for returning the same cookie parameter,
received in the event notification, back to the server in the
condition acknowledgment.

ppErrors

Array of HRESUL TS indicating the success of the individual
acknowledgments. The errors correspond to the Source and
ConditionName pairs passed in to the method.

Return Codes

Return Code

Description

E_FAIL

The operation failed.

E_INVALIDARG

A bad parameter was passed. (szAcknowledgerID is
aNULL string)

E_OUTOFMEMORY

Not enough memory.

S OK The operation succeeded.

S FALSE One or more of ppErrorsinnot S_OK.
ppError Codes

Return Code Description

S OK The acknowledgment succeeded for the

corresponding Source and ConditionName pair.

OPC_S ALREADYACKED

The condition has already been acknowledged.

OPC_E_INVALIDTIME

Time does not match latest activetime. The
pftActiveTime did not match the current
SubCondL astActive attribute of the condition.

E INVALIDARG

A bad parameter was passed. (source, condition
name or cookie)

Comments

Theclient isrequired to pass the ftActiveTime and dwCookie received from the
| OPCEventSink::OnEvent callback to the AckCondition method without modification.

49

OPC Alarms and Events Version 1.01 06/02/99

5.3.4.16 IOPCEventServer::CreateAreaBrowser

HRESULT CreateAreaBrowser(
[in] REFIID riid,
[out, iid_is(riid) LPUNKNOWN* ppUnk
);
Description
Create an OPCEventAreaBrowser object on behalf of thisclient and return the interface to the Client.
This object will support the IlUnknown and | OPCEventAreaBrowser interfaces. The client can usethis

interface to browse the process areas avail able from the server as described in the
|OPCEventAreaBrowser interface shown below.

If the OPC Event Server does not support browsing of the process area space, then this method will
fail.

The client may create multiple OPCEventAreaBrowser objectsin order to support concurrent access to
multiple levels, in the case of a hierarchical area name space.

The OPCEventAreaBrowser uses conventional reference counting and thus will be deleted with al
interfacesto it are released.

Parameters Description

riid Thetype of interface desired (e.g.
I1D_IOPCEventAreaBrowser)

ppUnk Where to store the returned interface pointer. NULL is
returned for any HRESULT other than S_OK.

Return Codes
Return Code Description
E FAIL The operation failed.
E OUTOFMEMORY Not enough memory
E INVALIDARG Bad argument was passed.
E NOTIMPL The server does not support area browsing.
S OK The operation succeeded.
Comments

OPC Alarms and Events Version 1.01 06/02/99

5.3.5 IConnectionPointContainer

The general principles of ConnectionPoints are not discussed here asthey are covered very clearly in
the Microsoft Documentation. The reader is assumed to be familiar with this technology.

Likewise the details of the IEnumConnectionPoints, | ConnectionPoint and | EnumConnections
interfaces and their proper use in this context are well defined by Microsoft and are not discussed here.

The IConnectionPointContainer interface discussed here isimplemented on the OPCEventServer
object. Intheory, the Advise and Unadvise methods of the connection points could be implemented
within the IOPCEventServer interface. However use of a separate ConnectionPoint implementationis
more in keeping with state of the art Microsoft implementations.

The IOPCShutdown callback object implemented by the client application is assumed to service a
single Event Server, since no identification information is passed to the client.

Note: OPC Compliant servers are not required to support more than one connection between each
Event Server Object. Given this, it isexpected that a single connection will be sufficient for virtually
all applications. For this reason (as per Microsoft Recommendations) the EnumConnections method
for the | ConnectionPoint interface for |OPCShutdown:: ShutdownReguest callback is allowed to return
E NOTIMPL.

EnumConnectionPoints
See the Microsoft documentation for a description of this method.
OPC Event Servers must return an enumerator that includes |OPCShutdown. Additional vendor
specific callbacks are also allowed.

FindConnectionPoint
See the Microsoft documentation for a description of this method.

OPC Event Servers must support I1D_ IOPCShutdown. Additional vendor specific callbacks are also
allowed.

51

OPC Alarms and Events Version 1.01 06/02/99

5.3.6 IConnectionPoint

An | ConnectionPoint for IOPCShutdown is returned from the Event Server’'s
ConnectionPointContainer. Refer to the Microsoft documentation of thisinterface for additional
information on its methods, which included Advise and Unadvise.

52

OPC Alarms and Events Version 1.01 06/02/99

5.4 OPCEventAreaBrowser Object (optional)

The OPCEventAreaBrowser isthe object that an OPC Event server supplies to manage browsing the
process area space of the server. The interfaces that this object providesinclude:

IUnknown
|OPCEventAreaBrowser

Thisobject is optional, and may not be supported by simple event servers.

5.4.1 IOPCEventAreaBrowser

Thisinterface provides away for clients to browse the process area organi zation implemented by the
server. The expectation isthat events and conditions available in the server are organized in one or
more process areas, and the client can filter event subscriptions by specifying the process areas to limit
the event notifications sent by the server. These areas are for use in specifying event filters (see the

| OPCEventSubscriptionM gt interface below). They arelogically independent of the

| OPCBrowseServerAddressSpace of the OPC Data Access interfaces and associated ItemIDs. The

relationship between the Server Address Space and the Server process area space is completely up to
the server implementation.

Note that the reason for making this a set of methods rather than an ActiveX control isto allow it to
more easily be integrated with other browsing methods and address spaces that the Client may already
be dealing with.

Note that thisinterface behaves very much like an Enumerator in that it creates an object ‘ behind the

scenes’ and maintains state information (the current position in the address hierarchy) on behalf of the
client.

Hereisan overview of how thisinterfaceis used:

The browse position isinitially set to the ‘root’ of the area space. The client can optionally choose a
starting point by calling ChangeBrowsePosition. For aHIERARCHICAL space the client may pass
any partial path (although the client will typically passaNULL string to indicate theroot). This sets
aninitial position from which to browse up or down.

The Client can browse the items below (contained in) the current position via BrowseOPCAreas. For a
hierarchical space you can specify AREA (which returns only areas on that level) or SOURCE (which
returns only sources on that level). A String enumerator is returned.

This browse can also befiltered by avendor specific filter string.

Note that in a hierarchy, the enumerator will return ‘short’ strings; the name of the ‘child’. These short
strings will generally not be sufficient for the AreaList array of the event subscription filter. The
client should always convert this short string to a’ fully qualified’ string via GetQualifiedAreaName or
GetQualifiedSourceName. For example the short string might be REACTORS; the fully qualified

string might be AREA1.REACTORS.

If the client browsed for AREAS then the result (short string) may be passed to ChangeBrowsePosition
to move ‘down’. This method can also move ‘up’ in which case the short string is not used.

OPC Alarms and Events Version 1.01 06/02/99

5.4.1.1 I0OPCEventAreaBrowser::ChangeBrowsePosition

HRESULT ChangeBrowsePosition(

[in] OPCAEBROWSEDIRECTION dwBrowseDirection,
[in, string] LPCWSTR szString
);

Description

Providesaway to move ‘up’ or ‘down’ in ahierarchical space from the current position, or away to
move to aspecific position in the area space tree. Thetarget szString must represent an area, rather

than a source.
Parameters Description
dwBrowseDirection OPCAE_BROWSE _UP,OPCAE_BROWSE_DOWN or
OPCAE_BROWSE TO
szString For DOWN, the partial area name of the areato move
into. Thiswould be one of the strings returned from
BrowseOPCAreas.
For UP this parameter isignored and should point to a
NULL string.
For BROWSE_TO, thefully qualified areaname (as
obtained from GetQualifiedAreaName method) or
NULL to go to the root.
Return Codes
Return Code Description
E FAIL The function failed
E_INVALIDARG Bad Direction or String.
OPC_E_INVALIDBRANCHNAME szString is not arecognized area name.
S OK The function was successful
Comments

An error isreturned if the passed string does not represent an area.

OPC Alarms and Events

Version 1.01

06/02/99

5.4.1.2 |IOPCEventAreaBrowser::BrowseOPCAreas

HRESULT BrowseOPCAreas(

[in] OPCAEBROWSETY PE dwBrowseFilterType,
[in, string] LPCWSTR szFilterCriteria,
[out] LPENUMSTRING * pplEnumString

);

Description

Return an |EnumsString for alist of Areas as determined by the passed parameters. The position
from which the browse is done can be set viathe ChangeBrowsePosition.

Parameters

Description

dwBrowseFilterType

OPC_AREA - returnsonly areas.
OPC_SOURCE - returns only sources.

szFilterCriteria

A server specific filter string. See Appendix A for the
definition of the syntax which must be supported by all
servers. Theimplementer may extend this syntax to
provide additional capabilities. A NULL string indicates
no filtering.

ppl EnumString

Where to save the returned interface pointer. NULL if
the HRESULT isother than S OK

Return Codes
Return Code Description
E FAIL The function failed
S FALSE Thereis nothing to enumerate
E_INVALIDARG A bad parameter was passed.
E OUTOFMEMORY Not enough memory
S OK The function was successful
Comments

The returned enumerator may be empty if no Areas or Sources satisfied the filter constraints. The
strings returned by the enumerator represent the Areas or Sources contained in the current level. They
do not include ?? and delimiter or “parent” names.

Clients are allowed to create and hold multiple enumeratorsin order to maintain more than one

“browse position” at atime. Changing the browse position in one enumerator will not affect any other
enumerator the client has created. The client must rel ease each enumerator when finished with it.

OPC Alarms and Events Version 1.01 06/02/99

5.4.1.3 I0OPCEventAreaBrowser::GetQualifiedAreaName

HRESULT GetQualifiedAreaName(
[in] LPCWSTR szAreaName,
[out, string] LPWSTR * pszQualifiedAreaName
)i

Description

Provides a mechanism to assemble afully qualified Areanamein ahierarchical space. Thisisrequired
since at each point oneis browsing just the names bel ow the current node.

Parameters Description

szAreaName The name of an Areaat the current level, obtained from
the string enumerator returned by BrowseOPCAreas
with aBrowseFilterType of OPC_AREA.

pszQualifiedAreaName Where to return the resulting fully qualified area name.

Return Codes
Return Code Description
E FAIL The function failed
E INVALIDARG A bad parameter was passed.
E OUTOFMEMORY Not enough memory
S OK The function was successful
Comments

The server must return strings that can be added to the pszArealL.ist for the

| OPCEventSubscriptionMgt:: SetFilter method, and can be used in the

| OPCEventAreaBrowser::ChangeBrowsePosition method to move to a specific place in the process
area spacetree.

OPC Alarms and Events Version 1.01 06/02/99

5.4.1.4 10PCEventAreaBrowser::GetQualifiedSourceName

HRESULT GetQualifiedSourceName(
[in] LPCWSTR szSourceName,
[out, string] LPWSTR * pszQualifiedSourceName
);

Description

Provides a mechanism to assemble afully qualified Source namein ahierarchical space. Thisis
required since at each point oneis browsing just the names below the current node.

Parameters Description
szSourceName The name of a Source at the current level, obtained
from the string enumerator returned by
BrowseOPCAreas with a BrowseFilterType of
OPC_SOURCE.
pszQualifiedSourceName | Whereto return the resulting fully qualified source
name.
Return Codes
Return Code Description
E FAIL The function failed
E INVALIDARG A bad parameter was passed.
E OUTOFMEMORY Not enough memory
S OK The function was successful
Comments

The server must return strings that can be added to pszSources for the
| OPCEventServer::EnableConditionBySource method.

57

OPC Alarms and Events Version 1.01 06/02/99

5.5 OPCEventSubscription Object

The OPCEventSubscription object is the object that an OPC Event server deliversto manage asingle
event subscription. It is created by invoking |OPCEventServer::CreateEventSubscription. This object
provides the following interfaces:

IUnknown
IOPCEventSubscriptionM gt
| ConnectionPointContai ner

In addition, OPCEventSubscription contains an |1D_1OPCEventSink object which supportsthe
| ConnectionPoint interface.

Each subscription between a client and server will have only one filter, though that filter can include
several criteria. Clients can implement multiple filters using multiple subscriptions, each with their
own filter. When the subscription is established, a default filter is created that is equivalent to “no
filtering” i.e. send all event notifications.

The criteriafor defining the scope of thefilter isto eliminate the majority of eventsaclient is not
interested in, without having to be exhaustive. The primary reason for the filter isto reduce
unnecessary communication overhead and to improve performance. The most important filtering
criteriathen are severity and process area. This filter mechanism provides a set of filter criteriathat are
simple yet powerful - but do not cover every possible specific type of filter the client may wish for.
The client can do additional filtering on received event notifications, further customizing exactly which
event notifications are displayed or stored.

The functionality provided by each of these interfacesis defined in this section.

5.5.1 IOPCEventSubscriptionMgt

Thisinterface specifies how to manage a particular subscription to OPC event information. Itisused
to specify criteriafor selecting events of interest, to specify vendor-specific information to be returned
in event notifications, and to request arefresh of selected conditions.

OPC Alarms and Events Version 1.01 06/02/99

5.5.1.1 IOPCEventSubscriptionMgt::SetFilter

HRESULT SetFilter(
[in] DWORD dwEventType,
[in] DWORD dwNumCeategories,
[in, size_is(dwNumCategories)] DWORD* pdwEventCategories,
[in] DWORD dwL owSeverity,
[in] DWORD dwHighSeverity,
[in] DWORD dwNumAreas,
[in, size_is(dwNumAreas)] LPWSTR* pszAreal.ist,
[in] DWORD dwNumSources,
[in, size_is(dwNumSources] LPWSTR* pszSourceL.ist

);
Description

Setsthefiltering criteriato be used for the event subscription.

Events may be selected using the following criteria:
Type of event, i.e. simple, condition, or tracking.
Event categories
Lowest severity, i.e. all eventswith aseverity greater than or equal to the specified severity.
Highest severity, i.e. all events with a severity less than or equal to the specified severity.
Process areas

Event Sources

A list of valuesfor asingle criterion are logically ORed together (e.g. if two event categories are
specified, event notifications for both categories will be received). If multiple criteriaare specified,
they will belogically ANDed together, i.e. only those events satisfying all criteriawill be selected. An
exampleis specifying both lowest severity and highest severity will result in the selection of events
with severities lying between the two values.

An OPCEventSubscription object has only onefilter.

Parameters Description

dwEventType A DWORD bit mask specifying which event types are of
interest; OPC_SIMPLE_EVENT,
OPC_CONDITION_EVENT, OPC_TRACKING_EVENT,
OPC_ALL_EVENTS. These types can be OR' ed together to
filter multiple types. A valueof Oisan error and
E_INVALIDARG will bereturned.

dwNumCategories Length of array of event categories. A length of O indicates
all categories should be included in thefilter.
pdwEventCategories Array of event categories of interest. These are DWORD

event category codes returned by
|OPCEventServer::QueryEventCategories. A NULL pointer
should be specified if dwNumCategoriesisO.

dwL owSeverity Lowest severity of interest. To receive events of al
severities, set dwlL owSeverity to 0.

OPC Alarms and Events

Version 1.01

06/02/99

dwHighSeverity Highest severity of interest. To receive events of all
severities, set dwHighSeverity to 1000. The server is
responsible for mapping itsinternal severity levelsto evenly
span the 0 to 1000 range.

dwNumAreas Length of array of areas. A length of Oindicates al areas
should beincluded in thefilter.

pszArealist Array of process area strings of interest - only events or
conditionsin these areas will be reported. Areastrings can
be obtained using IOPCEventAreaBrowser::GetArea. A
NULL pointer should be specified if dwNumAreasisO.

dwNumSources Length of array of event sources. A length of O indicates all
sources should be included in thefilter.

pszSourceList Array of event sources of interest - only events from these
sources will bereported. It ispossible to specify sources
using the wildcard syntax described in Appendix A. A
NULL pointer should be specified if dwNumSourcesis 0.

Return Codes

Return Code Description

E FAIL The operation failed.

E INVALIDARG A bad parameter was passed.

E_OUTOFMEMORY Not enough memory

OPC_E BUSY A refresh operation is currently in progress on this

event subscription object.
S OK The operation succeeded.
S FALSE One or more of the specified filter criteriawere
ignored.
Comments

Servers may not support all the variousfilter criteria. The specific filter criteria supported by agiven
server can be determined viathe |OPCEventServer::QueryAvailableFilters method. If afilter criterion
is specified that is not supported by the server, it will ignore that filter criterion and return S_FALSE.

Note that for agiven condition, if the event notifications corresponding to acknowledge or return to
normal have different severity levels than the event notification for the condition becoming active, itis
possible that the client may receive one set of notifications but not the others due to filtering by

severity.

OPC Alarms and Events

Version 1.01

06/02/99

5.5.1.2 IOPCEventSubscriptionMgt::GetFilter

HRESULT GetFilter(

[out] DWORD* pdwEventType,

[out] DWORD* pdwNumCategories,

[out, size is(,* pdwNumCategories)] DWORD** ppdwEventCategories,
[out] DWORD* pdwL owSeverity,

{out% DWORD* pmHighSeverity,

out] DWORD* pdwNumAreas,

[out, size is(,* pdwNumAreas)] LPWSTR** ppszAreal ist

[out] DWORD* pdwNumSources,

[out, size is(,* pdwNumSources)] LPWSTR** ppszSourcelL ist

)

Description

Returnsthefilter currently in use for event subscriptions.

Parameters

Description

pdwEventType

A DWORD bit map specifying which event types are of
allowed through the filter; OPC_SIMPLE_EVENT,
OPC_CONDITION_EVENT, OPC_TRACKING_EVENT,
OPC_ALL_EVENTS. These types can be OR’ ed together to
filter multiple types.

pdwNumCategories

Length of the event category array returned. A length of O
indicates an empty array.

ppdwEventCategories

Array of event categoriesfor thefilter.

pdwL owSeverity

Lowest severity allowed through filter. If the server does not
support filtering on severity, the returned value will be O.

pdwHighSeverity

Highest severity allowed through filter. If the server does not
support filtering on severity, the returned value will be 1000.

padwNumAreas Length of the arealist array returned. A length of O indicates
an empty array.

ppszArealist List of process areasfor thefilter.

pdwNumSources Length of the event source list returned. A length of O

indicates an empty array.

ppszSourceList

List of sourcesfor thefilter.

Return Codes
Return Code Description
E FAIL The operation failed.
E INVALIDARG A bad parameter was passed.
E OUTOFMEMORY Not enough memory
S OK The operation succeeded.
Comments

If aserver does not support one or more of the filter criteriarequested in SetFilter, it returns empty
arraysfor lists, and values which indicate no filtering is taking place for non-list items. In these cases,
it does not return any filters which may have been requested in SetFilter, but which were ignored.

61

OPC Alarms and Events Version 1.01 06/02/99

5.5.1.3 IOPCEventSubscriptionMgt::SelectReturnedAttributes

HRESULT SelectReturnedAttributes(
[in] DWORD dwEventCategory,
[in] DWORD dwCount,
[in, size_is(dwCount)] DWORD* dwAttributel Ds,

);
Description

For each Event Category, SelectReturnedAttributes sets the attributes to be returned with event
notificationsin the |IOPCEventSink::OnEvent callback.

This method can be called multiple timesin order to specify the attributes to return for each unique
event type and event category pair. For agiven event type and event category pair, the attributes
returned can be “ cleared” by setting the dwCount parameter to zero. If thisiscalled multiple timesfor
the same event type and event category pair, then the latest call will bein effect.

Parameters Description

dwEventCategory The specific event category for which thelist of attributes
applies. These arereturned from the
| OPCEventServer::QueryEventCategories method.

dwCount The size of the attribute IDs array.

dwAttributel Ds Thelist IDs of the attributes to return with event
notifications for the event type and event category specified.
These are returned from the

| OPCEventServer::QueryEventAttributes method.

Return Codes
Return Code Description
E FAIL The operation failed.
E INVALIDARG A bad parameter was passed.
S OK The operation succeeded.
Comments

62

OPC Alarms and Events Version 1.01 06/02/99

5.5.1.4 IOPCEventSubscriptionMgt::GetReturnedAttributes

HRESULT GetReturnedAttributes(
[in] DWORD dwEventCategory,
[out] DWORD * pdwCount,
[out, size_is(,pdwCount)] DWORD* pdwAttributel Ds,

);
Description

For each Event Category, GetReturnedAttributes retrieves the attributes which are currently specified
to be returned with event notifications in the |IOPCEventSink::OnEvent callback. All retrieved
attributes have been specified by previous callsto SelectReturnedAttributes.

Parameters Description

dwEventCategory The specific event category for which to retrieve the list of
attributes.

pdwCount The size of the attribute |Ds array which is being returned.
Isset to zero if no attributes are currently specified.

dwAttributel Ds Thelist IDs of the attributes which are currently specified to
be returned with event notifications for the event type and
event category specified.

Return Codes
Return Code Description
E FAIL The operation failed.
E_INVALIDARG A bad parameter was passed.
S OK The operation succeeded.
Comments

OPC Alarms and Events Version 1.01 06/02/99

5.5.1.5 IOPCEventSubscriptionMgt::Refresh

HRESULT Refresh(
[in] DWORD dwConnection,
);

Description

Force arefresh for all active conditions and inactive, unacknowledged conditions whose event
notifications match the filter of the event subscription.

Clients will often need to get the current condition information from the server, particularly at client
startup, for things such as a current alarm summary. The OPC Event Server supports this requirement
by resending the most recent event notifications which satisfy the filter in the event subscription and
which arerelated to active and/or unacknowledged conditions. The client can then derive the current
condition status from the “refreshed” event notifications.

Parameters Description

dwConnection The OLE Connection number returned from

| ConnectionPoint::Advise. Thisis passed to help the
server determine which OPC event sink to call when
the request compl etes.

HRESULT Return Codes
Return Code Description
S OK The function was successful.
OPC_E BUSY Thereis currently another refresh in progress on this
event subscription.
E FAIL The function was unsuccessful.
Comments

When the client needs arefreshed list of active conditions, it will request a“refresh” from the server.
The server will send event notifications to that specific client indicating that they are “refresh” instead
of “original” event notifications. Since the client only needs to get the current state information for
conditions, only condition events will be refreshed. Note: “ Refresh” isnot a general “replay”
capability since the server isnot required to maintain an event history. Refresh isonly for updating
the client’ s state information for active or unacknowledged conditions. See section 2.6, Subscriptions
to Event Notifications

In addition to the refresh indicator, there may be other differences between original and refresh event
notifications. Specifically, since some attribute information available at the time of the original event
notification may be unavailable at the time of the refresh, some attributes in the refresh may be null.

Refresh event notifications and original event notifications will not be mixed in the same invocation of
the event callback, though refresh and original event callback invocations may be interleaved. Thus, it
isthe responsibility of the client to check time stamps on the event notifications and put them into the
correct order, to ensure correct condition statusis obtained.

The client will receive the maximum number of event notifications per single callback, according to

the specification in the |IOPCEventServer::CreateEventSubscription method. When sending refresh
event notifications, the server will indicate if there are more refresh event notifications to send (see the
bL astRefresh parameter of IOPCEventSink::OnEvent).

Thismethod is applicable to condition-related events only. Notifications for simple events and
tracking events are not returned, even if they would satisfy the filter of the event subscription.

OPC Alarms and Events Version 1.01 06/02/99

This method is applicable both when the subscription is active and when it isinactive (seethe
discussion of the pbActive flag for the SetState method).

OPC Alarms and Events Version 1.01 06/02/99

5.5.1.6 IOPCEventSubscriptionMgt::CancelRefresh

HRESULT Cancel Refresh(
[in] DWORD dwConnection,
);

Description
Cancelsarefresh in progress for the event subscription.

If arefreshisin progress, the server should send one final callback with the last refresh flag set and the
number of events equal to zero.

Parameters Description

dwConnection The OLE Connection number returned from

| ConnectionPoint::Advise. Thisis passed to help the
server determine which OPC event sink to call when
the request compl etes.

HRESULT Return Codes

Return Code Description

S OK The function was successful.

E FAIL The function was unsuccessful.
Comments

OPC Alarms and Events Version 1.01 06/02/99

5.5.1.7 IOPCEventSubscriptionMgt::GetState

HRESULT GetState(

[out] BOOL * pbActive,

[out] DWORD * pdwBufferTime,

[out] DWORD * pdwMaxSize,
[out] OPCHANDLE * phClientSubscription,
);

Description

Get the current state of the subscription. Client passes pointers to where information isto be saved.

Parameters Description
pbActive The current active state of the subscription.
pdwBuUfferTime The current buffer time configured for event

notification. See the discussion in
| OPCEventServer::CreateEventSubscription.

pdwMaxSize The current max number of eventsthat will besentina
single IOPCEventSink::OnEvent callback. Seethe
discussion in

| OPCEventServer::CreateEventSubscription.

phClientSubscription The client supplied subscription handle

HRESULT Return Codes

Return Code Description

S OK The function was successful.

E FAIL The function was unsuccessful.
Comments

Thisfunction istypically called to obtain the current values of thisinformation prior to calling
SetState. Thisinformation was all supplied by the client when the subscription was created. This
function is also useful for debugging.

67

OPC Alarms and Events

Version 1.01

06/02/99

5.5.1.8 IOPCEventSubscriptionMgt::SetState

HRESULT SetState(
[unique, in] BOOL * pbActive,

[unique, in] DWORD * pdwBufferTime,
[unique, in] DWORD * pdwMaxSize,

[in] OPCHANDLE hClientSubscription
[out] DWORD * pdwRevisedBufferTime,
[out] DWORD * pdwRevisedMaxSize,

)

Description

Client can set various properties of the event subscription. Pointersto items are used so that the client
can omit properties he does not want to change by passing a null pointer.

Parameters

Description

pbActive

TRUE (non-zero) to activate the subscription. FALSE (0)
to deactivate the subscription.

If the client deactivates the subscription, then the server
will no longer send event notifications to the client based
on that subscription, and has no responsibility to buffer or
maintain the event notifications. Thus event notifications
may be lost.

Even if the subscription isinactive, the Refresh method
will still function. In effect, this allows a client to obtain
current condition states from time to time (by invoking
Refresh) without the need to process event notificationsin
“real time”.

pawBuUfferTime

New buffer time requested for the subscription by the
client. Seethe discussion in
| OPCEventServer::CreateEventSubscription.

pdwMaxSize

New maximum number of event notifications to send with
asingle IOPCEventSink::OnEvent callback. Seethe
discussion in IOPCEventServer::CreateEventSubscription.

phClientSubscription

New client supplied handle for the subscription. This
handle isreturned in the data stream provided to the
client’s IOPCEventSink by the subscription’s

| ConnectionPoaint.

pdwRevisedBufferTime

The buffer time that the server is actually providing, which
may differ from dwBufferTime.

pdwRevisedMaxSize

The maximum number of eventsthat the server will
actually be sending in asingle IOPCEventSink::OnEvent
callback, which may differ from dwMaxSize.

OPC Alarms and Events Version 1.01 06/02/99
HRESULT Return Codes

Return Code Description

S OK The function was successful.

E INVALIDARG A bad parameter was passed.

E FAIL The function was unsuccessful.

OPC_S INVALIDBUFFERTIME The buffer time parameter wasinvalid .

OPC S INVALIDMAXSIZE The max size parameter wasinvalid.

Comments

OPC Alarms and Events Version 1.01 06/02/99

5.5.2 IConnectionPointContainer

The general principles of ConnectionPoints are not discussed here asthey are covered very clearly in
the Microsoft Documentation. The reader is assumed to be familiar with this technology.

Likewise the details of the [EnumConnectionPoints, | ConnectionPoint and | EnumConnections
interfaces and their proper use in this context are well defined by Microsoft and are not discussed here.

The IConnectionPointContainer interface discussed here isimplemented on an OPCEventSubscription
object as obtained from |OPCEventServer::CreateEventSubscription(). This EventSubscription object
will support at least the |IOPCEventSubscriptionMgt and 1 ConnectionPointContainer. Note that in
theory, the Advise and Unadvise methods of the connection points could be implemented within the
IOPCEventSubscriptionM gt interface however use of a separate ConnectionPoint implementationis
more in keeping with state of the art Microsoft implementations.

One callback object implemented by the client application can be used to service multiple Alarm
Servers. Therefore, information about the server must be provided to the client application for it to be
able to successfully interpret the items that are contained in the callback. Each callback will contain
only items from within the specified Server.

Note: OPC Compliant servers are not required to support more than one connection between each
Subscription Object and the Client (although they do need to support creation of multiple Subscription
Objects by aclient in case the client wants to monitor them based on more than one set of filter
criteria). Given thisand the fact that Subscription Objects are client specific entitiesit is expected that
asingle connection will be sufficient for virtually all applications. For this reason (as per Microsoft
Recommendations) the EnumConnections method for the | ConnectionPoint interface for
|OPCEventSink::OnEvent callback isalowed to return E_ NOTIMPL.

| EnumConnectionPoints
See the Microsoft documentation for a description of this method.
OPC Event Subscriptions must return an enumerator that includes |OPCEventSink. Additional vendor
specific callbacks are also allowed.
FindConnectionPoint
See the Microsoft documentation for a description of this method.

OPC Event Subscriptions must support 11D_ IOPCEventSink. Additional vendor specific callbacks are
also allowed.

70

OPC Alarms and Events Version 1.01 06/02/99

5.5.3 IConnectionPoint

An |ConnectionPoint for |IOPCEventSink is returned from the Event Subscription’s
ConnectionPointContainer. Refer to the Microsoft documentation of thisinterface for additional
information on its methods, which include Advise and Unadvise.

The datareturned to the Advise connection is returned via | OPCEventSink, which receives both new
and refresh event notifications.

Theregistered callback function may be specified by the client application such that it spans multiple
event subscriptions. Therefore, information about the event subscription must be provided to the client
application to be able to successfully interpret the items that are contained in the event stream. Each
event stream must only contain the items defined within the specified event subscription.

71

OPC Alarms and Events Version 1.01 06/02/99

5.6 Client Side Interfaces

5.6.1 IOPCEventSink

In order to use connection points, the client must create an object which supports both the lUnknown
and IOPCEventSink interfaces. The client would pass a pointer to the IlUnknown interface (NOT the

| OPCEventSink) to the Advise method of the proper |ConnectionPoint in the event subscription (as
obtained from | ConnectionPointContainer:: FindConnectionPoint or EnumConnectionPoints). The
event server will call Querylnterface on the client object to obtain the IOPCEventSink interface. Note
that the transaction must be performed in thisway in order for the interface marshalling to work
properly for Local or Remote servers.

The event server invokes the OnEvent method to notify the client of events which satisfy the filter
criteriafor the particular event subscription.

The client need only provide afull implementation of OnEvent. There are no other methods of
|OPCEventSink.

Note that callbacks can occur for two reasons. event notification or refresh. A server can be written
such that it performs several of these operationsin parallel. In this case the client can determine the
‘cause’ of aparticular callback by examining the bRefresh parameter in the OnEvent callback.

72

OPC Alarms and Events

Version 1.01

06/02/99

5.6.1.1 IOPCEventSink::OnEvent

HRESULT OnEvent(

[in] OPCHANDLE hClientSubscription,

[in] BOOL bRefresh,

[in] BOOL bLastRefresh,

[in] DWORD dwCount,

);

Description

[in, size_is(dwCount)] ONEVENTSTRUCT* pEvents,

This method is provided by the client to handle notifications from the OPCEventSubscription for

events. This method can be called whether thisis arefresh or standard event notification.

Parameters Description
hClientSubscription the client handle for the subscription object sending the
event notifications.
bRefresh TRUE if thisisasubscription refresh
bL astRefresh TRUE if thisisthe last subscription refresh in response
to aspecific invocation of the
| OPCEventSubscriptionMgt:: Refresh method.
dwCount number of event notifications
pEvents array of event notifications
HRESULT Return Codes
Return Code Description
S OK The client must always return S_OK. The server will
get an error following the call if the client or the
connection hasfailed.
Comments

The server needsto free pEvents after the client returns from this function.

Also — as per the COM specification, the client isrestricted in what functions are allowed within the
callback. For example, no blocking function may be called.

Callbacks can occur for one of the following reasons:;

One or more new events have occurred.

Thisisaresponse to a Refresh.

5.6.1.1.1 ONEVENTSTRUCT

typedef struct {

WORD wChangeMask,
WORD wNewState,
LPWSTR szSource,
FILETIME ftTime,
LPWSTR szMessage,
DWORD dwEventType,

73

OPC Alarms and Events

Version 1.01

06/02/99

DWORD
DWORD
LPWSTR
LPWSTR
WORD
BOOL
FILETIME
DWORD
DWORD

LPWSTR
} ONEVENTSTRUCT;

dwEventCategory,

dwSeverity,

szConditionName,
szSubConditionName,

wQuality,

bAckRequired,
ftActiveTime,

dwCookie,

dwNumEventALttrs,
[size_is (dwNumEventAttrs)] VARIANT* pEventAttributes,

szActorlD,

Member

Description

The following items are present for all event
types.

szSource

The source of event notification. This Source can be
used in the IOPCEventServer::TranslateToltemIDs
method to determine any related OPC Data Access
iteml Ds.

ftTime

Time of the event occurrence - for conditions, time that
the condition transitioned into the new state or sub-
condition. For example, if the event notification isfor
acknowledgment of a condition, thiswould be the time
that the condition became acknowledged.

szMessage

Event notification message describing the event.

dwEventType

OPC_SIMPLE_EVENT, OPC_CONDITION_EVENT,
or OPC_TRACKING_EVENT for Simple, Condition-
Related, or Tracking events, respectively.

dwEventCategory

Standard and V endor-specific event category codes.
See section 2.5.3

dwSeverity

Event severity (0..1000). See section 2.4.3.2.

dwNumEventAttrs

The length of the vendor specific event attribute array.

pEventAttributes

Pointer to an array of vendor specific event attributes
returned for this event notification. See the

| OPCEventSubscriptionMgt:: Sel ectReturnedAttributes
method.

The order of the items returned matches the order that
was specified by the select.

Thefollowing itemsare present only for Condition-
Reated Events (see dwEventType)

szConditionName

The name of the condition related to this event
notification.

szSubConditionName

The name of the current sub-condition, for multi-state
conditions. For asingle-state condition, this contains
the condition name.

74

OPC Alarms and Events

Version 1.01

06/02/99

wChangeM ask

Indicates to the client which properties of the condition
have changed, to have caused the server to send the
event notification. It may have one or more of the
following values:

OPC_CHANGE_ACTIVE_STATE
OPC_CHANGE_ACK_STATE
OPC_CHANGE_ENABLE_STATE
OPC_CHANGE_QUALITY
OPC_CHANGE_SEVERITY
OPC_CHANGE_SUBCONDITION
OPC_CHANGE_MESSAGE
OPC_CHANGE_ATTRIBUTE

If the event notification isthe result of a Refresh, these
bits are to beignored.

For a“new event”,

OPC_CHANGE_ACTIVE _STATE istheonly bit
which will always be set. Other values are server
specific. (A “new event” isany event resulting from
the related condition leaving the Inactive and
Acknowledged state.)

wNewState

A WORD bit mask of three bits specifying the new
state of the condition: OPC_CONDITION_ACTIVE,
OPC_CONDITION_ENABLED,
OPC_CONDITION_ACKED.

See section 2.4.9 and Figure 2-2 for exactly which state
transitions generate event notifications.

wQuality

Quality associated with the condition state. See Section
2.4.2.1. Vauesare asdefined for the OPC Quality
Flagsin the OPC Data Access Server specification.

bA ckRequired

Thisflag indicates that the related condition requires
acknowledgment of this event. The determination of
those events which require acknowledgment is server
specific. For example, transitioninto aLimitAlarm
condition would likely require an acknowledgment,
while the event notification of the resulting
acknowledgment would likely not require an
acknowledgment.

ftActiveTime

Time that the condition became active (for single-state
conditions), or the time of the transition into the current
sub-condition (for multi-state conditions). Thistimeis
used by the client when acknowledging the condition
(see IOPCEventServer::AckCondition method).

dwCookie

Server defined cookie associated with the event
notification. Thisvalueisused by the client when
acknowledging the condition (see
|OPCEventServer::AckCondition method). Thisvalue
isopaque to the client.

Thefollowing isused only for Tracking Eventsand
for Condition-Related Eventswhich are
acknowledgment natifications (see dwEventType).

75

OPC Alarms and Events

Version 1.01

06/02/99

szActorID For tracking events, thisisthe actor ID for the event

string.

notification.

For condition-related events, thisisthe
AcknowledgerlD when OPC_CONDITION_ACKED
issetinwNewState. If the AcknowledgerID isa
NULL string, the event was automatically
acknowledged by the server.

For other events, the valueisapointer toaNULL

Event Type Values

Event Type

Value | Description

OPC_SIMPLE_EVENT

1| Smple event.

OPC_TRACKING_EVENT

2 | Tracking event.

OPC_CONDITION_EVENT

4 | Condition-Related event.

Change Mask Values

ChangeMask Item

Value | Description

OPC_CHANGE_ACTIVE_STATE

1| The condition’s active state has
changed.

OPC_CHANGE_ACK_STATE

2 | The condition’s acknowledgment
state has changed.

OPC_CHANGE_ENABLE_STATE

4 | The condition’s enabled state has
changed.

OPC_CHANGE_QUALITY

8 | The ConditionQuality has
changed.

OPC_CHANGE_SEVERITY

16 | The severity level has changed.

OPC_CHANGE_SUBCONDITION

32 | The condition has transitioned
into a new sub-condition.

OPC_CHANGE_MESSAGE

64 | The event message has changed
(compared to prior event
notifications related to this
condition).

OPC_CHANGE_ATTRIBUTE

128 | One or more event attributes have
changed (compared to prior event
notifications related to this
condition).

New State Values

New State

Value | Description

OPC_CONDITION_ENABLED

1 | The condition has been enabled.

OPC_CONDITION_ACTIVE

2 | The condition has become active.

OPC_CONDITION_ACKED

4| The condition has been
acknowledged.

76

OPC Alarms and Events Version 1.01 06/02/99

5.6.2 IOPCShutdown

In order to use this connection point, the client must create an object that supports both the [lUnknown
and |OPCShutdown Interface. The client would pass a pointer to the lUnknown interface (NOT the
|OPCShutdown) to the Advise method of the proper | ConnectionPoint in the server (as obtained from

I ConnectionPointContainer:: FindConnectionPoint or EnumConnectionPoints). The Server will call
Querylnterface on the client object to obtain the |IOPCShutdown interface. Note that the transaction
must be performed in thisway in order for the interface marshalling to work properly for Local or
Remote servers.

The ShutdownReguest method on this interface will be called when the event server needsto
shutdown. The client should release all connections and interfaces for this event server.

A client which is connected to multiple servers (for example event servers and/or other servers such as
data access servers from one or more vendors) should maintain separate shutdown callbacks for each
object since any server can shut down independently of the others.

OPC Alarms and Events Version 1.01 06/02/99

5.6.2.1 IOPCShutdown::ShutdownRequest

HRESULT ShutdownRequest (
[in, string] LCPWSTR szReason
);

Description

Thismethod is provided by the client so that the server can request that the client disconnect from the
server. Theclient should UnAdvise all connections and release all interfaces.

Parameter Description
szReason A text string indicating the reason for the shutdown
reguest.
HRESULT Return Codes
Return Code Description
S OK The client must alwaysreturn S_OK.
Comments

The shutdown connection point ison a‘per server object’ basis. That is, it relates to the object created by
CoCreate... If aclient connects to multiple server objects then it should monitor each one separately (using
separate callbacks) for shutdown requests.

78

OPC Alarms and Events Version 1.01 06/02/99

6. Installation Issues

It is assumed that the server vendor will provide a SETUP.EXE to install the needed components for
their server. Thiswill not be discussed further. Other than the actual components, the main issue
affecting OLE software is management of the Windows Registry and Component Catagories. The
issues here are (a) what entries need to be made and (b) how they can be made.

6.1 Common Topics

Certain installation and registry topics are common to all of the OPC Servers. These include self
registration, automatic proxy/stub registration, and registry reference counting. Thesetopicsare
discussed in the OPC Common Specification and are not repeated here. Instead, the server devel oper
should refer to the OPC Common Specification for guidelines in these areas.

6.2 Component Categories Registration
During the registration process, each OPC Alarm and Events Server must register itself with the
Component Categories Manager, a Microsoft supplied system COM object. OPC Alarm and Events

Clientswill query the Components Category Manager to enumerate the CLSIDs of all registered OPC
Alarm and Events Servers.

Note: At thistime the Component Categories Manager storesitsinformation in the registry,
however thiswill changein the near future. Please use the Component Categories Manager
API to accessthisinformation rather than using theregistry directly.

6.2.1 Server Registration

To Register with the Component Categories Manager, a server should first register the OPC defined
Category ID (CATID) and the OPC defined Category Description by calling | CatRegister::
RegisterCategories(), and then register its own CLSID as an implementation of the CATID with acall
to |CatRegister:: RegisterClasslmpl Categories().

To get an interface pointer to | CatRegister, call CoCreatel nstance() asin this example:

#i ncl ude <concat. h>

CoCr eat el nst ance(CLSI D_St dConponent Cat egori esMgr, NULL, CLSCTX_ | NPROC_SERVER,
|1 D_I Cat Regi ster, (void**)&pcr);

The sample server code uses helper functions defined in CATHEL P.CPP to make the actual callsto
| CatRegister. Hereishow the sample server registers and un-registers the component categories:

#i ncl ude "cathel p. h"
#i nclude "opc_ae. h"
#i ncl ude "opcaedef. h"

voi d Regi sterServer()

{

/'l register conponent categories
HRESULT hr;

/1 11D _OPCEvent ServerCATID is the Category ID (a GU D) defined in opc_ae.idl.
/1 OPC_EVENTSERVER CAT_DESC is the category description defined in opcaedef.h
/1 Al servers should register the categogy this way

hr = Creat eConponent Cat egory(|1 D_OPCEvent Server CATI D,
OPC_EVENTSERVER_CAT_DESC) ;

/1 CLSI D _OPCEvent Server is the CLSID for this sanple server. Each server
/1 will need to register its own unique CLSID here with the conponent nanager.

hr = Regi sterCLSI DI nCat egory(CLSI D _OPCEvent Server, |1 D_OPCEvent ServerCATID);

7

OPC Alarms and Events Version 1.01 06/02/99

}
voi d Unregi sterServer()
{
UnRegi st er CLSI DI nCat egory(CLSI D_OPCEvent Server, || D_OPCEvent Server CATID);
}

6.2.2 Client Enumeration

Editor’s Note: This section will changeif the TSC adopts the proposed DCOM aware remote OPC
browse server.

Toget alist of CLSIDsof all OPC Alarm and Event Servers registered with the Component Categories
Manager, the client calls | Catlnformation:: EnumClassesOf Categories() to return an enumerator
interface, IENuUmCL SID asin this code snippet:

| Cat | nformati on* pcr = NULL ;
HRESULT hr = S_OK ;

hr = CoCreatel nstance(CLSI D_StdConponent Cat egori esMjr,
NULL, CLSCTX_I NPROC_SERVER, |ID_ICatlnformation, (void**)&pcr);

| EnunCLSI D* pEnumCLSI D;

CLSID catid = |1 D_OPCEvent Ser ver CATI D;
pcr->EnunCl assesOf Cat egori es(1, &catid, 1, &catid, &pEnunCLSID);

/1l get 10 at a time for efficiency
unsi gned | ong c;
CLSI D cl sids[10];
whi | e (SUCCEEDED(hr = pEnumCLSI D- >Next (10, clsids, &c)))
{
for(unsigned long i =0; i < c; i++)

/'l clsid[i] is a CLSID that inplements the conponent category ...

OPC Alarms and Events

Version 1.01 06/02/99

7. Summary of OPC Error Codes

We have attempted to minimize the number of unique errors by identifying common generic problems

and defining error codes that can be reused in many contexts. An OPC server should only return those
OPC errorsthat are listed for the various methods in this specification or are standard Microsoft errors.
Note that OLE itself will frequently return errors (such as RPC errors) in addition to those listed in this

specification.

The most important thing for aclient isto check FAILED for any error return. Other than that, (the
statements above not withstanding) arobust, user friendly client should assume that the server may
return any error code and should call the GetErrorString function to provide user readable information

about those errors.

Standard COM errorsthat are
commonly used by OPC Servers

Description

E FAIL

Unspecified error

E INVALIDARG

The value of one or more parameterswas not valid. Thisis
generaly used in place of amore specific error whereiit is expected
that problems are unlikely or will be easy to identify (for example
when thereis only one parameter).

E_NOINTERFACE

No such interface supported

E NOTIMPL

Not implemented

E_OUTOFMEMORY

Not enough memory to compl ete the requested operation. This can
happen any time the server needs to allocate memory to complete
the requested operation.

OPC SpecificErrors

Description

OPC_E BUSY

A refresh operation is currently in progress on the event
subscription object.

OPC_E INVALIDBRANCHNAME

The string was not recognized as an area name

OPC_S INVALIDBUFFERTIME

The specified buffer time parameter wasinvalid.

OPC_S INVALIDMAXSIZE

The specified max size parameter wasinvalid.

OPC_E_INVALIDTIME

The specified time does not match the latest sub-condition active
time for the condition being acknowledged.

OPC_E_NOINFO

No information is currently available for the specified condition.

OPC_S ALREADYACKED

The condition has already been acknowledged.

Y ou will seeinthe appendix that these error codesuse ITF_FACILITY. This meansthat they are
context specific (i.e. OPC specific). The calling application should check first with the server
providing the error (i.e. call GetErrorString).

The OPC Specific error codes and their associated strings (English) are embedded in the resource of
the proxy/stub (opc_aeps.dll) so FormatMessage() can be called to retrieve the strings:

rtn = For mat Message(

FORMAT_MESSAGE_ALLOCATE_BUFFER |
FORVAT_MESSAGE_| GNORE_I NSERTS | FORVAT_MESSAGE_FROM HMODULE,
Get Modul eHandl e(_T("opc_aeps")),

Get Scode(dwError

MAKELANGI D(LANG_NEUTRAL, SUBLANG_NEUTRAL),

(LPTSTR) &l pMsgBuf,

0, NULL);

81

OPC Alarms and Events Version 1.01 06/02/99

Error codes (the low order word of the HRESUL T) from 0000 to 0200 are reserved for Microsoft use
(although some were inadverdantly used for OPC 1.0 errors). Codes from 0200 through 8000 are
reserved for future OPC use. Codes from 8000 through FFFF can be vendor specific.

82

OPC Alarms and Events Version 1.01 06/02/99

Appendix A — Sample String Filter Function

This function provides essentially the same functionality asthe LIKE operator in Visual Basic.

MatchPattern

Syntax
BOOL MatchPattern(LPCTSTR string, LPCTSTR pattern, BOOL bCaseSensitive)

Return Value

If string matches pattern, return isTRUE; if there is no match, return isFAL SE If either string or
pattern is Null, return isFAL SE;

Parameters
string String to be compared with pattern.
pattern Any string conforming to the pattern-matching conventions described in Remarks.

bCaseSensitive TRUE if comparison should be case sensitive.

Remarks

A versatile tool used to compare two strings. The pattern-matching features allow you to use wildcard
characters, character lists, or character ranges, in any combination, to match strings. The following
table shows the characters allowed in pattern and what they match:

Charactersin pattern Matchesin string

? Any single character.

* Zero or more characters.

Any single digit (0-9).

[charlist] Any single character incharlist.
['charlist] Any single character not incharlist.

A group of one or more characters (charlist) enclosed in brackets ([]) can be used to match any single
character instring and can include ailmost any charcter code, including digits.

Note To match the special characters|eft bracket ([), question mark (?), number sign (#), and asterisk
(*), enclose them in brackets. The right bracket (]) can't be used within a group to match itself, but it
can be used outside agroup as an individual character.

By using ahyphen (-) to separate the upper and lower bounds of the range, charlist can specify arange
of characters. For example, [A- Z] resultsin amatch if the corresponding character positioninstring
contains any uppercase lettersin the range A -Z. Multiple ranges are included within the brackets
without delimiters.

Other important rules for pattern matching include the following:

An exclamation point (!) at the beginning of charlist means that a match is made if any

character except the charactersin charlist isfound in string. When used outside brackets, the
exclamation point matchesitself.

OPC Alarms and Events Version 1.01 06/02/99

A hyphen (-) can appear either at the beginning (after an exclamation point if oneis used) or at
the end of charlist to match itself. In any other location, the hyphen is used to identify arange of
characters.

When arange of charactersis specified, they must appear in ascending sort order (from lowest
to highest). [A-Z] isavalid pattern, but [Z-A] is not.

The character sequence[] isconsidered a zero-length string ().

Hereisthe code:

/1 matchpattern.h

#i fndef __ MATCHPATTERN H
#define _ MATCHPATTERN H

/1 By redefining MCHAR, _Mand _isndigit you may alter the type
/1 of string MatchPattern() works with. For exanple to operate on
/] wide strings, make the foll ow ng definitions:

/] #define MCHAR WCHAR

/1 #define _MXx) L ## x

/1 #define _isndigit i swdi git

#i f ndef MCHAR

#defi ne MCHAR TCHAR

#define _Ma) _T(a)
#define _ismdigit _istdigit
#endi f

extern BOOL MatchPattern(const MCHAR* String, const MCHAR * Pattern, BOCL
bCaseSensitive = FALSE);

#endi f

/1 matchpattern. cpp
#i ncl ude "Mat chPattern. h"

inline int ConvertCase(int ¢, BOOL bCaseSensitive)
{

return bCaseSensitive ? ¢ : toupper(c);

}

OPC Alarms and Events Version 1.01 06/02/99

//***

// return TRUE if String Matches Pattern --
/1 -- uses Visual Basic LIKE operator syntax
/] CAUTION: Function is recursive

//***

BOOL MatchPattern(const MCHAR *String, const MCHAR *Pattern, BOCL
bCaseSensitive)

if(!'String)
return FALSE;
if(!'Pattern)

return TRUE;
MCHAR ¢, p, |;
for (5 1)
{
switch (p = ConvertCase(*Pattern++, bCaseSensitive))
{
case O: /1 end of pattern

return *String ? FALSE : TRUE; // if end of string TRUE

case _M'*'):
while (*String)

{ /! match zero or nore char
if (MatchPattern (String++, Pattern, bCaseSensitive))
return TRUE;

}
return MatchPattern (String, Pattern, bCaseSensitive);

case _M'?'):

if (*String++ == 0) /1 match any one char
return FALSE; /1 not end of string
br eak;
case _M'['):
if ((c = ConvertCase(*String++, bCaseSensitive)) == 0) /1 match
char set
return FALSE; /1 syntax
I =0;
if(*Pattern == _M'!")) // match a char if NOT in set []
{
++Pattern;
while((p = ConvertCase(*Pattern++, bCaseSensitive)) !'= M'\0"))
if (p=_M']")) /1 if end of char set, then
br eak; // no match found

/'l check a range of chars?

if (p==_M"-"))
{
p = ConvertCase(*Pattern, bCaseSensitive); /1 get high

limt of range

if (p== [l p=_M'1]"))
return FALSE; /1 syntax
if (c>=1 && c <=p)
return FALSE; /1 if in range, return FALSE
}
I = p;
if (c ==p) [/ if char natches this el enent
return FALSE; [l return fal se

}

else // match if char is in set []

OPC Alarms and Events

Version 1.01

while((p = ConvertCase(*Pattern++,
{

if (p==_M"]"))
return FALSE;

if (p==_M"-"))
{

bCaseSensitive))
I/l if end of char set, then
/1 no match found
/1 check a range of chars?
bCaseSensitive); /1 get high

p = ConvertCase(*Pattern,

limt of range

if (p == [l p==_M'1"))
return FALSE; /1 syntax
if (c>=1 && c <=p)
br eak; /1 if in range, nove on
}
I =p;
if (c ==p) /1 if char matches this el ement
br eak; /!l nove on
}
while (p & p'!'=_M'1")) /1 got a match in char set
p = *Pattern++; /1 skip to end of set
}
br eak;
case _M'#'):

C = *String++;
if(! _isndigit(c))
return FALSE;

br eak;

defaul t:
c = ConvertCase(*String++,
if(cl=p)

return FALSE;

br eak;

/1 not a digit

bCaseSensitive);
/1 check for exact char

/! not a match

= _M'\0"))

OPC Alarms and Events Version 1.01 06/02/99

Appendix B — Event Types, Event Categories, and Conditions

The following table shows recommended event categories for each event type, and recommended
conditions corresponding to each event category. It isrecommended that OPC condition names
leverage Foundation Fieldbus naming as appropriate. Asan example, the condition indicating a PV
has entered into a High High Alarm condition is named HI_HI which then matches the Foundation
Fieldbus HI_HI Alarm Type.

Event Type Event Category CONDITION
Condition Related Leve PVLEVEL (Multi State)
SPLEVEL (Multi State)
LO_LO (Single State)
LO (Single State)
HI (Single State)
HI_HI (Single State)
Deviation DV_LO (Single State)
Deviation DV_HI (Single State)
Discrete CFN
TRIP
COs
Statistical
System Failure SYSTEM_FAILURE
Simple Device Failure
Batch Status
System Message
Tracking Operator Process Change
System Configuration
Advanced Control

87

OPC Alarms and Events

Version 1.01

06/02/99

Appendix C — Event Attributes

Thefollowing are recommended attributes for the event categories listed in Appendix B.

Event Type.Category ATTRIBUTE NOTES
ALL ACK COMMENT Latest comment from
| OPCEventServer::AckCondition()
AREAS SAFEARRAY of BSTRS. Each string
isa Qualified Area Name to which this
Source belongs.
Condition.Level cv Current Vdue
LIMIT VALUE EXCEEDED
NEXT LIM
PREV LIM
DEADBAND
LOOP DESC
Condition.Discrete NORMAL STATE
cv Current Vdue
LOOP DESC
Condition.Deviation Ccv Current Vdue
LIMIT EXCEEDED
NEXT LIM
PREV LIM
LOOP DESC
Condition.System HELPFILE
Simple.Devicefaled DEVICE NAME

ERROR CODE/STRING

Simple.Batch BATCHID
Simple.System ?
Tracking. Operator PREV VALUE
Process Change NEW VALUE
NAME OF PARAMETER
COMMENT
Tracking.Advanced PREV VALUE
NEW VALUE
NAME OF PARAMETER
Tracking.Sysconfig PREV VALUE
NEW VALUE
NAME OF PARAMETER

OPC Alarms and Events Version 1.01 06/02/99

Appendix D — Event Server IDL Specification

The current filesrequire MIDL compiler 3.00.15 or later and the WIN NT 4.0 release SDK.
Use the command line MIDL /ms_ext /c_ext /app_config opc_ae.idl.

Theresulting OPC_AE.H file can beincluded in clients and servers. The resulting OPC_AE_I.C
file definesthe interface IDs and can be linked into clients and servers that include OPC_AE.H.

Alternatively, clients and servers may choose to use the Type Library that is embedded in the resource
of the proxy/stub DLL (OPC_AEPS.DLL). InVisual C++ thisis accomplished with the #import
statement:

#inport "opc_aeps.dl " exclude("_FILETI ME")
usi ng nanespace OPC_AE;

NOTE: ThisIDL fileand the Proxy/Stub generated from it should NEVER be
modified in any way. If you add vendor specific interfacesto your server (which
is allowed) you must generate a SEPARATE vendor specific IDL fileto describe
only those interfaces and a separate vendor specific ProxyStub DLL to marshall
only those interfaces.

opc_ae.idl : IDL source for opc_aeps.dll

REVI SION: 05/ 25/ 99 09: 32 AM ((GMI)
VERSIONNNFO 1.0.5.0

This file will be processed by the MDL tool to
produce the type library (opc_ae.tlb) and marshal ling code (opc_aeps.dll).
The type library is enbedded in the resource of opc_aeps.dll

inmport "oaidl.idl";
inmport "ocidl.idl";

11

define OPC Al arm & Events Conponent Categories

uui d(58E13251- AC87- 11d1- 84D5- 00608CBBA7E9) ,
hel pstring("OPC Event Server Category ID (CATID"),
poi nt er _def aul t (uni que)

]
i nterface OPCEvent Server CATI D

/1 This enpty interface is here so that
/1 11D OPCEvent Server CATID wi Il be defined

t ypedef DWORD OPCHANDLE;

typedef enum { OPCAE_BROANSE UP = 1,

OPCAE_BROWSE_DOWW,
OPCAE_BROWSE_TO

} OPCAEBROWSEDI RECTI ON;

typedef enum { OPC_AREA = 1,

89

OPC Alarms and Events

Version 1.01

06/02/99

OPC_SQURCE

} OPCAEBROWSETYPE;

typedef enum { OPCAE_STATUS RUNNI NG = 1,

OPCAE_STATUS_FAI LED,
OPCAE_STATUS_NOCONFI G,
OPCAE_STATUS_SUSPENDED,
OPCAE_STATUS_TEST

} OPCEVENTSERVERSTATE;

typedef struct {

WORD
WORD
[string] LPWSTR
FI LETI ME
[string] LPWSTR
DWORD

DWORD
DWORD
[string] LPWSTR
[string] LPWSTR
WORD

WORD
BOOL

FI LETI ME
DWORD
DWORD

[size_is(dwNunEvent Attrs)] VAR ANT*

[string] LPWSTR

wChangeMask;
wWNewsSt at e;
szSource;
ftTine;
szMessage;
dwEvent Type;
dwEvent Cat egory;
dwSeverity;
szCondi t i onNane;
szSubcondi ti onNang;
wQual ity;
wReser ved;
bAckRequi r ed;
ftActiveTine;
dwCooki e;
dwNuntvent Attrs;

/] added for natural alignnent

pEvent Attri but es;
szActorl D,

} ONEVENTSTRUCT;

typedef struct {

FI LETI ME ftStartTi ne;

FI LETI ME ftCurrentTi ne;

FI LETI ME ft Last Updat eTi ne;

OPCEVENTSERVERSTATE dwSer ver St at e;

WORD wWMRj or Ver si on;

WORD wM nor Ver si on;

WORD wBui | dNumber ;

WORD wReser ved; /1 added for natural alignment

[string] LPWSTR

typedef struct {

WORD wSt at e;
WORD wReser vedl;

szVendor | nf o;

} OPCEVENTSERVERSTATUS;

/! added for natural alignnent

LPWBTR szActiveSubConditi on;
LPWSTR szASCDefinition;

DWORD dwASCSeverity;

LPWSTR szASCDescri pti on;

WORD wQuality;
WORD wReser ved?;

/1 added for natural alignnent

FILETIME ftLast AckTi ne;
FILETIME ft SubCondLast Acti ve;
FI LETIME ft CondLast Acti ve;
FILETIME ftCondLast!| nacti ve;

OPC Alarms and Events Version 1.01

06/02/99

LPWSTR szAcknow edger | D
LPWSTR szComment ;
DWORD dwNunsCs;;
[size_is (dwh\unBSCs)] LPWSTR
[size_is (dwNunSCs)] LPWSTR
[size_is (dwNunBCs)] DWORD
[size_is (dwh\unBSCs)] LPWSTR
DWORD dwNunEvent Attrs;
[size_is(dwNunEvent Attrs)] VAR ANT* pEvent Attri butes;
[size_is(dwNunEvent Attrs)] HRESULT* pErrors;

} OPCCONDI Tl ONSTATE;

pszSCNanes;
pszSCDef i nitions;
pdwSCSeveri ties;
pszSCDescri pti ons;

EE I

uui d(65168851-5783- 11D1- 84A0- 00608CBBA7TE9) ,

hel pstring("| OPCEvent Server |nterface"),
poi nt er _def aul t (uni que)

]

interface | OPCEvent Server : | Unknown

HRESULT Cet St at us(
[out] OPCEVENTSERVERSTATUS **ppEvent Server St at us

)

HRESULT Creat eEvent Subscri pti on(
[in] BOOL bActive,
[in] DWORD dwBuf ferTi ne,
[in] DWORD dw\axSsi ze,
[in] OPCHANDLE hd i ent Subscri pti on,
[in] REFIID riid,
[out, iid_is(riid)] LPUNKNOM * ppUnk,
[out] DWORD *pdwRevi sedBuf f er Ti e,
[out] DWORD *pdwRevi sedMaxSi ze

HRESULT QueryAvai |l abl eFi | ters(
[out] DWORD* pdwFilterMask

)

HRESULT Quer yEvent Cat egori es(
[in] DWRD dwEvent Type,
[out] DWORD* pdwCount,
[out, size_is(,*pdwCount)] DWORD** ppdwEvent Cat egori es,
[out, size_is(,*pdwCount)] LPWSTR** ppszEvent Cat egoryDescs

)

HRESULT Quer yCondi ti onNanes(
[in] DWRD dwEventCategory,
[out] DWORD* pdwCount,
[out, size_is(,*pdwCount)] LPWSTR** ppszConditi onNames

)

HRESULT Quer ySubCondi ti onNames(
[in] LPWSTR szConditi onNang,
[out] DWORD* pdwCount,
[out, size_is(,*pdwCount)] LPWSTR** ppszSubConditi onNanes

)

91

OPC Alarms and Events Version 1.01 06/02/99

HRESULT Quer ySour ceCondi ti ons(
[in] LPWSTR szSource,
[out] DWORD* pdwCount,
[out, size_is(,*pdwCount)] LPWSTR** ppszConditi onNames

)

HRESULT QueryEvent Attri butes(
[in] DWRD dwEvent Cat egory,
[out] DWORD* pdwCount,
[out, size_is(,*pdwCount)] DWORD** ppdwAttr | Ds,
[out, size_is(,*pdwCount)] LPWSBTR** ppszAttrDescs,
[out, size_is(,*pdwCount)] VARTYPE** ppvtAttrTypes
);

HRESULT Transl at eTol t em Ds(
[in] LPWSTR szSour ce,
[in] DWORD dwEvent Cat egory,
[in] LPWSTR szConditi onNang,
[in] LPWSTR szSubconditi onNane,
[in] DAMORD dwCount,
[in, size_is(dwCount)] DWORD* pdwAssocAttrl Ds,
[out, size_is(,dwCount)] LPWSTR** ppszAttrlten Ds,
[out, size_is(,dwCount)] LPWSTR** ppszNodeNanes,
[out, size_is(,dwCount)] CLSID** ppCLSIDs
)

HRESULT Cet ConditionState (
[in] LPWSTR szSource,
[in] LPWSTR szConditi onNane,
[in] DWRD dwNunEvent Attrs,
[in, size_is(dwNunEventAttrs)] DWORD* pdwAttri butel Ds,
[out] OPCCONDI TI ONSTATE ** ppConditi onState

)

HRESULT Enabl eCondi ti onByAr ea(
[in] DWORD dwNumAr eas,
[in, size_is(dwNunAreas)] LPWSTR* pszAreas
)

HRESULT Enabl eCondi ti onBySour ce(
[in] DWORD dwNunSour ces,
[in, size_is(dwNunfources)] LPWSTR* pszSources

)

HRESULT Di sabl eConditi onByAr ea(
[in] DWORD dwNumAr eas,
[in, size_is(dwNumAreas)] LPWSTR* pszAreas
)

HRESULT Di sabl eCondi ti onBySour ce(
[in] DWORD dwNunSour ces,
[in, size_is(dwNunfources)] LPWSTR* pszSources

)

HRESULT AckCondi ti on(
[in] DWORD dwCount,
[in, string] LPWSTR szAcknowl edger|D ,
[in, string] LPWSTR szComment ,
[in, size_is(dwCount)] LPWSTR* pszSource,
[in, size_is(dwCount)] LPWSTR* pszConditi onNane,

92

OPC Alarms and Events Version 1.01 06/02/99

]

[in, size_is(dwCount)] FILETIME* pftActiveTime,
[in, size_is(dwCount)] DWORD* pdwCooki e,

[out, size_is(,dwCount)] HRESULT **ppErrors

)

HRESULT Cr eat eAr eaBr owser (
[in] REFIID riid,
[out, iid_is(riid)] LPUNKNOMW ppUnk
);

uui d(65168855-5783- 11D1- 84A0- 00608CBBA7E9) ,

hel pstring("| OPCEvent Subscri pti onMgt Interface"),
poi nt er _def aul t (uni que)

i nterface | OPCEvent Subscri ptionMgt : | Unknown

{

HRESULT SetFilter(
[in] DANMORD dwEvent Type,
[in] DWORD dwhNumCat egori es,
[in, size_is(dwNuntCategories)] DWORD* pdwEvent Cat egori es,
[in] DWORD dwiowSeverity,
[in] DWORD dwH ghSeverity,
[in] DWORD dwNumAr eas,
[in, size_is(dwNumAreas)] LPWSTR* pszArealist,
[in] DWORD dwhNumnour ces,
[in, size_is(dwNunBSources)] LPWBTR* pszSourcelLi st

)

HRESULT GetFilter(
[out] DWORD* pdwEvent Type,
[out] DWORD* pdwNuntat egori es,
[out, size_is(,*pdwNunCat egories)] DWORD** ppdwEvent Cat egori es,
[out] DWORD* pdwLowSeverity,
[out] DWORD* pdwHi ghSeverity,
[out] DWORD* pdwNunAreas,
[out, size_is(,*pdwNunmireas)] LPWBTR** ppszAreali st,
[out] DWORD* pdwNunfour ces,
[out, size_is(,*pdwNunBources)] LPWSTR** ppszSour celi st

)

HRESULT Sel ect Ret urnedAttri but es(
[in] DWORD dwEvent Cat egory,
[in] DWORD dwCount,
[in, size_is(dwCount)] DWORD* dwAttri butel Ds
);

HRESULT Cet Ret urnedAttri but es(
[in] DWRD dwEvent Cat egory,
[out] DWORD * pdwCount,
[out, size_is(,*pdwCount)] DWORD** ppdwAttri butel Ds

K

HRESULT Refresh(
[in] DWORD dwConnecti on

)

HRESULT Cancel Ref resh(
[in] DWORD dwConnecti on

93

OPC Alarms and Events Version 1.01

06/02/99

)

HRESULT Cet St at e(
[out] BOOL * pbActive,
[out] DWORD * pdwBufferTine,
[out] DWORD * pdwivaxSi ze,
[out] OPCHANDLE * phd i ent Subscription
)

HRESULT Set St at e(
[unique, in] BOOL * pbActive,
[unique, in] DWORD * pdwBufferTine,
[unique, in] DWORD * pdwhaxSi ze,
[in] OPCHANDLE hd i ent Subscri ption,
[out] DWORD * pdwRevi sedBuf f er Ti e,
[out] DWORD * pdwRevi sedMaxSi ze

)

H
[
uui d(65168857- 5783- 11D1- 84A0- 00608CBBA7TE9) ,
hel pstring("l OPCEvent AreaBrowser Interface"),
poi nt er _def aul t (uni que)
]
interface | OPCEvent AreaBrowser : | Unknown
{
HRESULT ChangeBr owsePosi ti on(
[in] OPCAEBROASEDI RECTI ON dwBr owseDirecti on,
[in, string] LPCWSTR szString
)
HRESULT Br owseQOPCAr eas(
[in] OPCAEBROABETYPE dwBrowseFilter Type,
[in, string] LPCWSTR szFilterCriteria,
[out] LPENUMSTRING * ppl Enunftring
)
HRESULT Get Qual i fi edAr eaNane(
[in] LPCWSTR szAr eaNane,
[out, string] LPWSTR *pszQualifi edAr eaNanme
);
HRESULT Get Qual i fi edSour ceNang(
[in] LPCWSTR szSour ceNarne,
[out, string] LPWSTR *pszQualifi edSourceNane
)
H

uui d(6516885F- 5783- 11D1- 84A0- 00608CBBA7E9) ,

hel pstring("l OPCEvent Sink I nterface"),
poi nt er _def aul t (uni que)

]
interface | OPCEvent Si nk : | Unknown

HRESULT OnEvent (
[in] OPCHANDLE hd i ent Subscri pti on,
[in] BOOL bRefresh,
[in] BOOL bLast Refresh,
[in] DWORD dwCount,

OPC Alarms and Events Version 1.01 06/02/99

[in, size_is(dwCount)] ONEVENTSTRUCT* pEvents

uui d(65168844- 5783- 11D1- 84A0- 00608CBBA7E9) ,
version(1.0),
hel pstring("opc_ae 1.0 Type Library")
]
library OPC_AE
{
i mportlib("stdole32.t1b");
i mportlib("stdole2.tlb");

i nterface | OPCEvent Ser ver;

i nterface | OPCEvent Subscri ptionMt ;
i nterface | OPCEvent Ar eaBr owser ;

i nterface | OPCEvent Si nk;

i nterface OPCEvent Server CATI D;

OPC Alarms and Events Version 1.01 06/02/99

Appendix E — OPCAEDEF.H

[*++
Modul e Narre:

opcaedef. h
Abstract:

Macros defined for OPC Alarm & Events dients and Servers

Aut hor :

JimLuth - OPC Alarm & Events Conmittee
Revi sion H story:
oo

#i fndef _ OPCAEDEF H
#defi ne _ OPCAEDEF_H

/] OPC Al arm & Event Conponent Category Description
#defi ne OPC_EVENTSERVER CAT_DESC L"CPC Al arm & Event Server Version 1.0"

//**
/1 OPC Quality flags
/1

/1 Masks for extracting quality subfields
/1 (note 'status' mask also includes 'Quality' bits)

/1

#defi ne OPC_QUALI TY_IVASK 0xQ0
#defi ne OPC_STATUS_NASK OxFC
#defi ne OPC_LI M T_NASK 0x03
/1 Values for QUALITY_MASK bit field

/1

#defi ne OPC_QUALI TY_BAD 0x00
#defi ne CPC_QUALI TY_UNCERTAI N 0x40
#defi ne OPC_QUALI TY_GOOD 0xQ0

/] STATUS MASK Val ues for Quality = BAD

11

#def i ne OPC_QUALI TY CONFI G ERROR 0x04
#def i ne OPC_QUALI TY_NOT_CONNECTED 0x08
#defi ne OPC_QUALI TY_DEVI CE_FAI LURE 0x0c
#def i ne OPC_QUALI TY_SENSOR FAI LURE 0x10
#def i ne OPC_QUALI TY_LAST_KNOWN 0x14
#define OPC_QUALI TY_COW FAI LURE 0x18
#defi ne OPC_QUALI TY_OUT_OF SERVI CE 0x1C

/] STATUS MASK Val ues for Quality = UNCERTAI N

/1
#define OPC_QUALI TY_LAST USABLE Ox44
#define OPC_QUALI TY_SENSOR CAL 0x50

#def i ne OPC_QUALI TY_EGU_EXCEEDED 0x54

OPC Alarms and Events Version 1.01 06/02/99

#defi ne OPC_QUALI TY_SUB_NORMAL 0x58
/1 STATUS MASK Val ues for Quality = GOOD

/1
#define CPC_QUALI TY_LOCAL_OVERRI DE 0xD8

/] State bit masks

#def i ne OPC_CONDI TI ON_ENABLED 0x0001
#def i ne OPC_CONDI TI ON_ACTI VE 0x0002
#define OPC_CONDI TI ON_ACKED 0x0004

/1 bit masks for mwChangeMask
#def i ne OPC_CHANGE_ACTI VE_STATE 0x0001

#defi ne OPC_CHANGE_ACK_STATE 0x0002
#defi ne OPC_CHANGE_ENABLE_STATE 0x0004
#define OPC_CHANGE QUALI TY 0x0008
#defi ne OPC_CHANGE_SEVERI TY 0x0010
#def i ne OPC_CHANGE_SUBCONDI TI ON 0x0020
#def i ne OPC_CHANGE_MESSAGE 0x0040
#defi ne OPC_CHANGE_ATTRI BUTE 0x0080

/1 dwEvent Type

#defi ne OPC_S| MPLE_EVENT 0x0001
#def i ne OPC_TRACKI NG_EVENT 0x0002
#def i ne OPC_CONDI TI ON_EVENT 0x0004

#define OPC_ALL_EVENTS (OPC_SI MPLE_EVENT | OPC TRACKI NG EVENT |
OPC_CONDI TI ON_EVENT)

/1 QueryAvail abl eFilters() bit masks

#defi ne OPC_FI LTER BY_EVENT 0x0001
#defi ne OPC_FI LTER BY_ CATEGORY 0x0002
#define OPC_FI LTER BY_SEVER TY 0x0004
#defi ne OPC_FI LTER BY_AREA 0x0008
#defi ne OPC_FI LTER BY_ SOURCE 0x0010
#endi f

97

OPC Alarms and Events Version 1.01 06/02/99

Appendix F - OPCAE_ER.H
[*++
Modul e Nare:
opcae_er.h
Abstract:

This file is generated by the MC tool fromthe opcae_er.nt nessage
file.

Aut hor :
JimLuth - OPC Alarm & Events Comittee
Revi si on H story:

--%
/*
Code Assi gnenents:
0000 to 0200 are reserved for Mcrosoft use
(al though sonme were inadverdantly used for OPC Data Access 1.0 errors).
0200 to 8000 are reserved for future OPC use.
8000 to FFFF can be vendor specific.

*/

#i fndef _ OPCAE ER H
#define _ OPCAE ER H

/1 Since we use FACILITY_I TF our codes nust be in the range 0x200 - OxFFFF
/1 success codes

/1

/1 Values are 32 bit values | ayed out as foll ows:

/1

/1 33222
/1 10987

I Sev - is the severity code

/1 00 - Success

/1 01 - Informational

I 10 - Warning

/1 11 - Error

I C - is the Custoner code flag
/1 R- is areserved bit

I Facility - is the facility code

/1 Code - is the facility's status code

OPC Alarms and Events Version 1.01

06/02/99

/1

/1 Define the facility codes

I

I

/1 Define the severity codes

/1

/1

/1 Messagel d: OPC_S_ALREADYACKED

I

/'l MessageText:

I

/1 The condition has al ready been acknow eged

/1

#defi ne OPC_S_ALREADYACKED ((HRESULT) 0x00040200L)
/1

/1l Messagel d: OPC_S_| NVALI DBUFFERTI ME

I

/'l MessageText:

/1

/1 The buffer time parameter was invalid

I

#define OPC_S_| NVALI DBUFFERTI ME ((HRESULT) 0x00040201L)
I

/1 Messagel d: OPC_S | NVALI DVAXSI ZE

/1

/1l MessageText:

I

/1 The max size paraneter was invalid

I

#define OPC_S | NVALI DVAXSI ZE ((HRESULT) 0x00040202L)
/'l error codes

I

/] Messagel d: OPC_E_| NVALI DBRANCHNAMVE

/1

/1l MessageText:

I

/1 The string was not recognized as an area nane
I

#defi ne OPC_E_| NVALI DBRANCHNAME ((HRESULT) 0xC0040203L)
/1

/1 Messagel d: OPC_E_I NVALI DTI ME

/1

/'l MessageText:

I

/] The time does not natch the |atest active tine
/1

#defi ne OPC_E_| NVALI DTl ME ((HRESULT) 0xC0040204L)
/1

/'l Messagel d: OPC_E_BUSY

I

/'l MessageText:

/1

/1 Arefresh is currently in progress

I

OPC Alarms and Events Version 1.01 06/02/99

#defi ne OPC_E_BUSY ((HRESULT) 0xC0040205L)

;; Messagel d: OPC_E_NO NFO

H MessageText :

H Information is not avail able

;/#{jefi ne OPC_E_NJO NFO ((HRESULT) 0xC0040206L)

#endi f

100

